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ABSTRACT
Minimum Weight Cycle (MWC) is the problem of finding a simple

cycle of minimumweight in a graph𝐺 = (𝑉 , 𝐸). This is a fundamen-

tal graph problem with classical sequential algorithms that run in

�̃� (𝑛3) and �̃� (𝑚𝑛) time
†
where 𝑛 = |𝑉 | and𝑚 = |𝐸 |. In recent years

this problem has received significant attention in the context of

fine-grained sequential complexity [3, 50] as well as in the design of

faster sequential approximation algorithms [13, 26, 32, 33], though

not much is known in the distributed CONGEST model.

We present near-optimal Ω̃(𝑛) CONGEST lower bounds on the

round complexity of computing exact and (2 − 𝜖)-approximate

MWC in undirected weighted graphs and in directed graphs even

if unweighted. We complement these lower bounds with sublinear-

round algorithms for computing 2-approximation of MWC. Our

algorithms use a variety of techniques in non-trivial ways, such

as in our approximate directed unweighted MWC algorithm that

efficiently computes BFS from all vertices restricted to certain im-

plicitly computed neighborhoods in sublinear rounds, and in our

weighted approximation algorithms that use unweighted MWC

algorithms on scaled graphs combined with a fast and streamlined

method for computing multiple source approximate SSSP.
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1 INTRODUCTION
We present algorithms and lower bounds to compute a minimum

weight cycle in the distributed CONGEST model. Given a graph

𝐺 = (𝑉 , 𝐸) with a non-negative weight 𝑤 (𝑒) on each edge 𝑒 ∈ 𝐸,
the minimum weight cycle problem (MWC) asks for a cycle of

minimum weight in 𝐺 . An 𝛼-approximation algorithm (𝛼 > 1) for
†
We use �̃� , Ω̃ and Θ̃ to absorb 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 (𝑛) factors.
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MWC must find a cycle whose weight is within an 𝛼 multiplicative

factor of the true MWC. In the distributed setting, cycles are an

important feature in network analysis with connections to deadlock

detection and computing a cycle basis [22, 42, 44], and a shortest

cycle canmodel the likelihood of deadlocks in routing or in database

applications [38].

In the sequential context, MWC is a fundamental and well-

studied problem on both directed and undirected graphs, both

weighted and unweighted. MWC has classical sequential algorithms

running in �̃� (𝑛3) time and �̃� (𝑚𝑛) time
†
, where |𝑉 | = 𝑛 and |𝐸 | =𝑚.

There are also sequential fine-grained hardness results: MWC is in

the 𝑛3 class [50] and in the𝑚𝑛 class [3] for hardness in graph path

problems. In the distributed setting there are near-optimal results

in the CONGEST model for most of the graph path problems in

the sequential 𝑛3 and𝑚𝑛 classes including APSP [8, 41], radius and

eccentricities [1, 2], betweenness centrality [27], replacement paths

and second simple shortest path [39], but very little was known for

MWC prior to our work.

In directed graphs, exact MWC in the CONGEST model can be

computed in �̃� (𝑛) rounds by computing APSP [8, 37] and com-

puting the minimum among cycles formed by concatenating a 𝑣-𝑢

shortest path and a single edge (𝑢, 𝑣). In this paper, we show a nearly

optimal Ω̃(𝑛) lower bound for weighted and unweighted directed

graphs, to compute even a (2 − 𝜖)-approximation of MWC (for any

constant 𝜖 > 0). For an arbitrarily large 𝛼-approximation (constant

𝛼 ≥ 2), we show an Ω̃(
√
𝑛) lower bound. We complement the lower

bounds with sublinear approximation algorithms, with a non-trivial

�̃� (𝑛4/5 + 𝐷)-round algorithm for computing a 2-approximation of

directed unweighted MWC, and a (2+𝜖)-approximation of directed

weighted MWC.

In undirected unweighted graphs, where MWC is also known

as girth, the current best upper and lower bounds for exact com-

putation in the CONGEST model are 𝑂 (𝑛) [28] and Ω̃(
√
𝑛) [23]

respectively. For 2-approximation the previous best upper bound

was �̃� (√𝑛𝑔 +𝐷) [44] (𝑔 is the weight of MWC), which we improve

in this paper to �̃� (
√
𝑛 + 𝐷), which is nearly optimal. We show a

lower bound of Ω̃(𝑛1/3) for (2.5 − 𝜖)-approximation and Ω̃(𝑛1/4)
for arbitrarily large constant 𝛼-approximation.

For undirected weighted graphs, exact MWC can be computed in

the CONGEST model using a reduction to APSP in �̃� (𝑛) rounds [3,
50]. Our lower bounds results are similar to the directed case: we

show near linear lower bound for (2−𝜖)-approximation and Ω̃(
√
𝑛)

lower bound for 𝛼-approximation (for any constant 𝛼 ≥ 2). We

complement these bounds with an �̃� (𝑛2/3 + 𝐷)-round algorithm

for (2 + 𝜖)-approximation of MWC.

Our approximation algorithms use a procedure to compute di-

rected BFS or approximate SSSP from multiple sources, for which

we provide a streamlined algorithm that is significantly more effi-

cient than repeating the current best approximate SSSP algorithm.
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Table 1: MWC results for CONGEST. Approximation results hold for approximation ratio 𝛼 or (1+𝜖), where 𝛼 > 1 is an arbitrarily
large constant, and 𝜖 > 0 is an arbitrarily small constant.

Problem Lower Bound Ref. Upper Bound Ref.

Directed MWC
weighted/unweighted

(2 − 𝜖),Ω
(

𝑛
log𝑛

)
Thm 1.2.A 1, �̃� (𝑛) [8]

2, �̃� (𝑛4/5 + 𝐷) (unweighted) Thm 1.2.C

𝛼,Ω
( √

𝑛

log𝑛

)
Thm 1.2.B (2 + 𝜖), �̃� (𝑛4/5 + 𝐷) (weighted) Thm 1.2.D

Undirected weighted
MWC

(2 − 𝜖),Ω
(

𝑛
log𝑛

)
Thm 1.4.A 1, �̃� (𝑛) [8]

𝛼,Ω
( √

𝑛

log𝑛

)
Thm 1.4.B (2 + 𝜖), �̃� (𝑛2/3 + 𝐷) Thm 1.4.C

Undirected unweighted
MWC (Girth)

(2 − 𝜖),Ω
( √

𝑛

log𝑛

)
[23] 1,𝑂 (𝑛) [28]

(2 −𝑂 (1/𝑔)),Ω
(√
(𝑛/𝑔)
log𝑛

)
[23] (2 − 1

𝑔 ), �̃� (
√
𝑛𝑔 + 𝐷) [44]

𝛼,Ω
(
𝑛1/4

log𝑛

)
Thm 1.3.A (2 − 1

𝑔 ), �̃� (
√
𝑛 + 𝐷) Thm 1.3.B

1.1 Preliminaries
The CONGEST Model. In the CONGEST model [43], a communi-

cation network is represented by a graph 𝐺 = (𝑉 , 𝐸) where nodes
model processors and edges model bounded-bandwidth communi-

cation links between processors. Each node has a unique identifier

in {0, 1, . . . 𝑛 − 1} where 𝑛 = |𝑉 |, and each node only knows the

identifiers of itself and its neighbors in the network. Each node has

infinite computational power. The nodes perform computation in

synchronous rounds, where each node can send a message of up to

Θ(log𝑛) bits to each neighbor and can receive the messages sent

to it by its neighbors. The complexity of an algorithm is measured

by the number of rounds until the algorithm terminates.

The graph 𝐺 can be directed or undirected but the communica-

tion links are always bi-directional (undirected) and unweighted;

this follows the convention for CONGEST algorithms [4, 6, 14, 20].

We consider algorithms on both weighted and unweighted graphs

𝐺 in this paper, where in weighted graphs each edge has a weight

assignment 𝑤 : 𝐸 (𝐺) → {0, 1, . . .𝑊 } where𝑊 = 𝑝𝑜𝑙𝑦 (𝑛), and
the weight of an edge is known to the vertices incident to it. Our

algorithms readily generalize to larger edge weights in networks

with bandwidth Θ(log𝑛 + log𝑊 ), with our round complexities for

weighted graphs having an additional factor of log(𝑛𝑊 ) for arbi-
trary integer𝑊 . The undirected diameter of the network, which we

denote by 𝐷 , is an important parameter in the CONGEST model.

In our algorithms, we frequently use the well-known broadcast

and convergecast CONGEST operations [43]: Broadcasting𝑀 mes-

sages in total to all nodes, where each message could originate

from any node, can be performed in 𝑂 (𝑀 + 𝐷) rounds. In the con-

vergecast operation, each node holds an 𝑂 (log𝑛)-bit value and we

want to compute an associative operation (such as minimum or

maximum) over all values. This can be performed in 𝑂 (𝐷) rounds,
after which all nodes know the result of the operation. We now

define the minimum weight cycle problem considered in this paper.

Definition 1.1. Minimum Weight Cycle problem (MWC):
Given an 𝑛-node graph 𝐺 = (𝑉 , 𝐸) (𝐺 may be directed or undi-

rected, weighted or unweighted), compute the weight of a shortest

simple cycle in 𝐺 . In the case of 𝛼-approximation algorithms, we

need to compute the weight of a cycle that is within a factor 𝛼 of

the minimum (for 𝛼 > 1).

In our distributed CONGEST algorithms for MWC, at the end of

execution, every node in the network knows the computed weight

of MWC (or approximate weight in case of approximation algo-

rithm). Our CONGEST lower bounds for MWC apply even when

only one node is required to know the weight of MWC. Our al-

gorithms also allow us to construct the cycle by storing the next

vertex on the cycle at each vertex that is part of the MWC.

1.2 Our Results
Table 1 summarizes our upper and lower bound results. All of our

lower bounds hold for randomized algorithms, and the algorithms

we present are also randomized – which are correct with high

probability in 𝑛.

1.2.1 Directed Graphs. We show a strong Ω( 𝑛
log𝑛
) lower bound

for the exact computation of directed MWC in both weighted and

unweighted graphs, which is nearly optimal since we have a match-

ing upper bound. We show that this lower bound also holds for any

algorithm computing a (2 − 𝜖)-approximation of directed MWC,

where 𝜖 > 0 is an arbitrarily small constant. Implicit in our MWC

lower bound is an Ω̃(𝑛) lower bound for detecting if a given graph

has a directed cycle of length 𝑞, for any 𝑞 ≥ 4. We also address the

problem of larger approximations, with an Ω̃(
√
𝑛) lower bound for

𝛼-approximation of directed MWC, for arbitrarily large constant

𝛼 ≥ 2.

Our major algorithmic result is a sublinear round algorithm

for computing 2-approximation of MWC in directed unweighted

graphs that runs in �̃� (𝑛4/5 + 𝐷) rounds, which we extend to a

(2 + 𝜖)-approximation algorithm in directed weighted graphs with

the same round complexity. These results show that a linear lower

bound is not possible for 𝛼 ≥ 2 approximations.

Theorem 1.2. Let𝐺 = (𝑉 , 𝐸) be a directed graph. In the CONGEST
model, for any constants 𝜖 > 0, 𝛼 ≥ 2:
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A. Computing a (2−𝜖)-approximation of directedMWC (weighted
or unweighted) requires Ω( 𝑛

log𝑛
) rounds, even on graphs with

constant diameter 𝐷 .
B. Computing an 𝛼-approximation of directed MWC (weighted

or unweighted) requires Ω(
√
𝑛

log𝑛
) rounds, even on graphs with

diameter 𝐷 = Θ(log𝑛).
C. We can compute 2-approximation of unweighted MWC in

�̃� (𝑛4/5 + 𝐷) rounds.
D. We can compute (2 + 𝜖)-approximation of weighted MWC in

�̃� (𝑛4/5 + 𝐷) rounds.

1.2.2 Undirected Unweighted Graphs. Girth (undirected unweighted
MWC) can be computed in 𝑂 (𝑛) rounds [28] and an algorithm

for (2 − 1

𝑔 )-approximation that takes �̃� (√𝑛𝑔 + 𝐷) rounds is given

in [44] (where 𝑔 is the girth). A lower bound of Ω(
√
𝑛

log𝑛
) for (2− 𝜖)-

approximation of girth is given in [23], and this proof also implies

an Ω(
√
(𝑛/𝑔)
log𝑛

) lower bound for (2−𝑂 (1/𝑔))-approximation of girth.

We improve on the result in [44] by presenting a faster �̃� (
√
𝑛+𝐷)-

round algorithm to compute (2 − 1

𝑔 )-approximation of girth. For

larger approximation ratios, we show a lower bound of Ω̃(𝑛1/4) for
arbitrarily large constant approximation.

Theorem 1.3. Consider an undirected unweighted graph 𝐺 =

(𝑉 , 𝐸). In the CONGEST model:

A. For any constant 𝛼 ≥ 2, computing an 𝛼-approximation of
girth requires Ω( 𝑛1/4

log𝑛
) rounds, even on graphs with diameter

𝐷 = Θ(log𝑛).
B. We can compute a (2− 1

𝑔 )-approximation of girth in �̃� (
√
𝑛+𝐷)

rounds, where 𝑔 is the girth.

1.2.3 Undirected Weighted Graphs. For computing MWC in undi-

rected weighted graphs, we present a near-linear lower bound simi-

lar to the directed case, and the lower bound also applies to (2 − 𝜖)-
approximation. This bound is optimal up to a polylog factor. Build-

ing on ourmethod for the unweighted case, we present an algorithm

for (2+𝜖)-approximation of MWC that runs in �̃� (𝑛2/3 +𝐷) rounds.

Theorem 1.4. let 𝐺 = (𝑉 , 𝐸) be an undirected weighted graph
𝐺 = (𝑉 , 𝐸). In the CONGEST model, for any constants 𝜖 > 0, 𝛼 ≥ 2:

A. Computing a (2−𝜖)-approximation of MWC requires Ω( 𝑛
log𝑛
)

rounds, even on graphs with constant diameter.

B. Computing an 𝛼-approximation of MWC requires Ω(
√
𝑛

log𝑛
)

rounds, even on graphs with diameter 𝐷 = Θ(log𝑛).
C. We can compute a (2+𝜖)-approximation of MWC in �̃� (𝑛2/3 +

𝐷) rounds.

1.2.4 Approximate 𝑘-source SSSP. A key subroutine in our approx-

imation algorithms for MWC computes shortest paths efficiently

from 𝑘 sources.

Definition 1.5. 𝑘-source BFS, SSSP problem: Given an 𝑛-node

graph𝐺 = (𝑉 , 𝐸) and a set of 𝑘 vertices𝑈 ⊆ 𝑉 , compute at each 𝑣 ∈
𝑉 the shortest path distance𝑑 (𝑢, 𝑣) for each𝑢 ∈ 𝑈 . The problem is𝑘-
source BFS in unweighted graphs and 𝑘-source SSSP in weighted

graphs.

Optimal algorithms to compute 𝑘-source BFS taking 𝑂 (𝑘 + 𝐷)
rounds are known for undirected unweighted graphs [27, 37]. For

undirected weighted graphs, an algorithm in [18] computes (1 +
𝜖)-approximate SSSP in �̃� (

√
𝑛𝑘 + 𝐷) rounds. When the number

of sources is large, 𝑘 ≥ 𝑛1/3, we present a fast and streamlined

algorithm for directed exact BFS that runs in �̃� (
√
𝑛𝑘+𝐷) rounds.We

extend the algorithm to weighted graphs, computing approximate

SSSP in both directed and undirected weighted graphs in �̃� (
√
𝑛𝑘 +

𝐷) rounds. Our algorithm is more efficient than adapting the result

in [18] to directed weighted graphs for 𝑘 ≥ 𝑛1/3, and matches their

complexity for undirected graphs. In our applications to MWC

algorithms, we only use the streamlined algorithm for 𝑘 ≥ 𝑛1/3.
We present our results for the complete range of 1 ≤ 𝑘 ≤ 𝑛 in

the full version [40]. In the following theorem, 𝑆𝑆𝑆𝑃 = �̃� (
√
𝑛 +

𝑛2/5+𝑜 (1)𝐷2/5 + 𝐷) refers to round complexity of computing SSSP

(from a single source) [9].

Theorem 1.6. A. We can compute exact directed BFS from 𝑘

sources in directed unweighted graphs with round complexity:{
�̃� (
√
𝑛𝑘 + 𝐷) ;𝑘 ≥ 𝑛1/3 (1)

min

(
�̃�

(
𝑛
𝑘
+ 𝐷

)
, 𝑘 · 𝑆𝑆𝑆𝑃

)
;𝑘 < 𝑛1/3

B. We can compute (1 + 𝜖)-approximate weighted SSSP from 𝑘

sources in directed weighted graphs for any constant 𝜖 > 0

with round complexity:{
�̃� (
√
𝑛𝑘 + 𝐷) ;𝑘 ≥ 𝑛1/3 (2)

�̃� (
√
𝑛𝑘 + 𝑘2/5𝑛2/5+𝑜 (1)𝐷2/5 + 𝐷) ;𝑘 < 𝑛1/3

1.3 Significance of our Results
In the distributed setting, cycles are an important network feature,

with applications to deadlock detection and cycle basis computa-

tion [22, 42, 44]. In the sequential context, MWC is a fundamental

graph problem that is well-studied. The �̃� (𝑛3) and �̃� (𝑚𝑛) time

sequential algorithms for MWC have stood the test of time. MWC

is in the sequential 𝑛3 time fine-grained complexity class [50] and

plays a central role as the starting point of hardness for the 𝑚𝑛

time fine-grained complexity class [3].

The 𝑛3 and𝑚𝑛 time fine-grained complexity classes contain im-

portant graph problems, which have been studied in the CONGEST

model and for which nearly optimal upper and lower bounds have

been obtained: All Pairs Shortest Paths (APSP) [8], Radius and Ec-

centricities [1, 6], Betweenness Centrality [27], Replacement Paths

(RP) and Second Simple Shortest Path (2-SiSP) [39]. However, there

is a conspicuous lack of results forMWC (except for girth [23, 28, 44]

and reductions to APSP for exact MWC algorithms).

In this paper, we make significant progress on this problem with

a variety of results, including nearly optimal linear lower bounds

for exact MWC and algorithms and lower bounds for approximate

MWC. While we show that linear lower bounds hold for (2 − 𝜖)-
approximation, we present sublinear algorithms for computing 2

or (2 + 𝜖)-approximation of MWC. Our algorithms use a variety of

techniques in non-trivial ways, such as our directed unweighted

MWC algorithm that computes BFS from all vertices restricted to

certain implicitly computed neighborhoods in sublinear rounds,

and our weighted algorithms that use unweighted MWC algorithms
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on scaled graphs combined with multiple source approximate SSSP.

We also present lower bounds for larger approximation factors,

with Ω̃(
√
𝑛) bounds for arbitrarily large constant factor (≥ 2).

Our Ω̃(𝑛) lower bound for directed MWC also gives a linear

lower bound for directed 4-cycle detection (in fact for any ≥ 4

length cycle), which is surprising given that triangle detection

can be performed optimally in �̃� (𝑛1/3) rounds in directed and

undirected graphs [12, 45].

1.4 Techniques
Lower Bounds. Our lower bounds use reductions from set dis-

jointness, which has an unconditional communication lower bound.

Set Disjointness is a two-party communication problem, where

two players Alice and Bob are given 𝑘-bit strings 𝑆𝑎 and 𝑆𝑏 re-

spectively. Alice and Bob need to communicate and decide if the

sets represented by 𝑆𝑎 and 𝑆𝑏 are disjoint, i.e., whether there is no

bit position 𝑖 , 1 ≤ 𝑖 ≤ 𝑘 , with 𝑆𝑎 [𝑖] = 1 and 𝑆𝑏 [𝑖] = 1. A classi-

cal result in communication complexity states that Alice and Bob

must exchange Ω(𝑘) bits even if they are allowed shared random-

ness [7, 35, 46]. Lower bounds using such a reduction also hold

against randomized algorithms. To show inapproximability for ar-

bitrarily large constant factors, we make use of reductions from

problems with known CONGEST lower bounds: 𝑠-𝑡 connectivity

and 𝑠-𝑡 undirected shortest path [49].

We use a reduction from set disjointness to establish a Ω̃(𝑛) lower
bound in directed weighted and unweighted graphs, for exact MWC

and for (2−𝜖)-approximation (Theorem 1.2.A). We establish Ω̃(
√
𝑛)

lower bounds for any constant factor approximation algorithms

for MWC in directed graphs by adapting a general lower bound

graph used for MST, SSSP and other graph problems [17, 49] (The-

orem 1.2.B). We also adapt these constructions to obtain a similar

lower bound for undirected weighted graphs (Theorem 1.4.A,B). For

undirected unweighted graphs, a lower bound of Ω̃(
√
𝑛) is known

for (2 − 𝜖)-approximation [23], and we obtain an Ω̃(𝑛1/4) lower
bound for any constant factor approximation (Theorem 1.3.A).

Due to space constraints, we defer our lower bound constructions

and proofs to the full version [40].

Approximate MWCUpper Bounds. Our upper bounds use a frame-

work of computing long cycles of high hop length and short cy-

cles separately. Computing long cycles typically involves random

sampling followed by computing shortest paths through sampled

vertices. The sampling probability is chosen such that there is a

sampled vertex on any long cycle with high probability, and we

compute minimum weight cycles passing through sampled vertices.

Computing short cycles requires a variety of techniques for each

of our algorithms, with our method for directed unweighted MWC

being the most involved. In a directed unweighted graph, we define

a specific neighborhood for each vertex 𝑣 which contains a mini-

mum weight cycle through 𝑣 if the MWC does not pass through

any sampled vertex, a method inspired by the sequential algorithm

of [13]. In order to explore these neighborhoods efficiently, we

perform a BFS computation with random scheduling from each

vertex that is hop-restricted and restricted to the neighborhood. Ad-

ditionally, to address congestion, we separately handle bottleneck

vertices that send or receive a large number of messages.

The idea of bottleneck vertices has been used in [5, 29] to con-

trol congestion while communicating information. This technique

is used in the context of computing exact weighted APSP, in a

subroutine to send distance information from all vertices to a set

of sinks (common to all vertices) through shortest path trees that

have been implicitly computed. They identify bottleneck vertices

through which too many messages are to be sent, and compute dis-

tances through the bottleneck vertex separately. These algorithms

can afford to use a super-linear number of rounds as they involve

expensive Bellman-Ford operations, and they identify bottleneck

vertices one at a time. On the other hand in our algorithm, each

vertex needs to send messages to a different set of vertices, i.e., the

neighborhood containing short cycles. Another key difference is

that our restricted BFS is performed on the fly simultaneously with

identifying bottleneck vertices in a distributed manner, as we do not

know the shortest path trees beforehand. Finally, distances through

all bottleneck vertices are computed with a pipelined hop-restricted

BFS to maintain our sublinear round bound.

For undirected unweighted graphs, we compute the

√
𝑛 closest

neighbors efficiently using pipelining and compute cycles contained

within them. We prove that for any cycle that extends outside a√
𝑛-neighborhood, a 2-approximation of this cycle is computed with

a BFS from sampled vertices.

For weighted graphs, both directed and undirected, we use hop-

bounded versions of the unweighted algorithms to compute ap-

proximations of short cycles. We use a scaling technique from [41],

where we construct a series of graphs with scaled weights such

that distance-bounded shortest paths in the original graphs are ap-

proximated by some hop-bounded shortest path in a scaled graph.

1.5 Prior Work
Sequential Minimum Weight Cycle. The problem of computing

MWC has been extensively studied in the sequential setting, for

directed and undirected graphs, both weighted and unweighted.

It can be solved by computing All Pairs Shortest Paths (APSP) in

the given graph in 𝑂 (𝑛3) time and in �̃� (𝑚𝑛) time. The hardness

of computing MWC in the fine-grained setting was shown by [50]

for the 𝑛3 class and MWC𝑚𝑛-hardness is the hypothesis used for

establishing hardness for the𝑚𝑛 class [3]. Fast approximation algo-

rithms for computing MWC have been studied: 2-approximation

of directed MWC can be computed in �̃� (min(𝑛2,𝑚
√
𝑛)) time [13]

and 4-approximation can be computed in �̃� (𝑚𝑛1/3) time [26]. For

undirected unweighted graphs, an 𝛼-approximation can be com-

puted in �̃� (𝑛1+1/𝛼 ) time [32]. For undirected weighted graphs,
4

3
-

approximation can be computed in �̃� (𝑛2) time [47] and a general

4

3
𝛼-approximation can be computed in �̃� (𝑛1+1/𝛼 ) time [33].

Distributed Minimum Weight Cycle. An 𝑂 (𝑛) algorithm for com-

puting girth was given in [28], and a Ω̃(
√
𝑛) lower bound for

computing girth was given in [23] which applies to any (2 − 𝜖)-
approximation algorithm. An �̃� (√𝑛𝑔 + 𝐷)-round algorithm was

given in [44] to compute (2 − 1

𝑔 )-approximation of girth(where 𝑔

is the girth). Computing girth in low-treewidth graphs has been

studied in [31]. For exact computation of girth, the gap between

lower and upper bounds has been a longstanding open problem.

The related problem of cycle detection has been studied with both
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upper and lower bounds for undirected graphs [11, 15, 16, 21]. Tight

bounds of Θ̃(𝑛1/3) are known for triangle detection in undirected

and directed graphs [12, 30, 45].

Other than reductions of exact MWC to APSP for directed and

undirected graphs [3, 50], there are no prior results for computing

MWC in directed graphs or weighted graphs, despite its significance

in the sequential setting. Approximation algorithms and lower

bounds for MWC also have not been studied except for girth.

CONGEST results for APSP and related problems. The CONGEST
round complexity of APSP [41] has been studied extensively, with

near-optimal upper and lower bounds of �̃� (𝑛) [8] and Ω( 𝑛
log𝑛
) [41]

respectively. Upper and lower bounds for some related problems

that have sequential 𝑂 (𝑛3) and 𝑂 (𝑚𝑛) algorithms have been stud-

ied in the CONGESTmodel, such as for diameter [1, 6], replacement

paths and second simple shortest paths [39], radius and eccentrici-

ties [1, 6], and betweenness centrality [27].

The round complexity of both exact and approximate SSSP has

been extensively researched [9, 10, 14, 17, 20, 41]. For exact or (1+𝜖)-
approximate SSSP, the current best upper and lower bounds are

�̃� (𝑛2/5+𝑜 (1)𝐷2/5 +
√
𝑛 +𝐷) [9] and Ω(

√
𝑛 +𝐷) [17, 49] respectively.

Multiple source SSSP has been studied in [18, 19], with an algorithm

taking �̃� (
√
𝑛𝑘 + 𝐷) for approximate 𝑘-source SSSP in undirected

graphs in [18].

1.6 Roadmap
We start by presenting algorithms for computing 𝑘-source directed

BFS and approximate SSSP in Section 2, which are used as subrou-

tines in our MWC algorithms. Our main algorithmic result for 2-

approximation of directed unweighted MWC in �̃� (𝑛4/5 +𝐷) rounds
is in Section 3. For undirected unweighted graphs, we present a

near-optimal algorithm for (2 − 1

𝑔 )-approximation of undirected

unweighted MWC in �̃� (
√
𝑛 + 𝐷) rounds in Section 4 (here 𝑔 is the

length of MWC). We compute (2 + 𝜖)-approximation of weighted

MWC in Section 5, taking �̃� (𝑛2/3 + 𝐷) rounds for undirected and

�̃� (𝑛4/5 + 𝐷) for directed graphs. We conclude with some avenues

for further research in Section 6.

2 𝑘-SSSP FROM 𝑘 ≥ 𝑛1/3 SOURCES
We present algorithms to compute directed 𝑘-source BFS in un-

weighted graphs and 𝑘-source SSSP in weighted graphs. For 𝑘-

source directed unweighted BFS our algorithm uses techniques of

sampling and constructing a skeleton graph on sampled vertices,

which are methods used in CONGEST single source reachability

and SSSP algorithms [25, 41]. For 𝑘-source approximate directed

SSSP, we utilize a recent directed hopset construction from [10]

in conjunction with some techniques used in [18] for computing

approximate 𝑘-source SSSP in undirected graphs.

We start by presenting Algorithm 1 that computes an𝑛1/3-source
exact directed BFS in �̃� (𝑛2/3 + 𝐷) rounds, and later generalize

our result to 𝑘 ≥ 𝑛1/3 sources. We then extend our algorithm to

weighted graphs to compute 𝑘-source (1 + 𝜖)-approximate SSSP.

Let 𝑈 ⊆ 𝑉 be the set of sources. Algorithm 1 first randomly

samples a vertex set 𝑆 ⊆ 𝑉 of size Θ̃(𝑛1/3) in line 1. We define

a (virtual) skeleton graph on this vertex set 𝑆 , where for vertices

𝑢, 𝑣 ∈ 𝑆 , an edge (𝑢, 𝑣) is added iff there is a directed path from 𝑢 to

Algorithm 1 Exact 𝑛1/3-source Directed BFS algorithm

Input: Directed unweighted graph 𝐺 = (𝑉 , 𝐸), set of sources𝑈 ⊆
𝑉 with |𝑈 | = 𝑘 = 𝑛1/3.

Output: Every vertex 𝑣 computes 𝑑 (𝑢, 𝑣) for each source 𝑢 ∈ 𝑈 .

1: Let ℎ = 𝑛2/3. Construct set 𝑆 ⊆ 𝑉 by sampling each vertex

𝑣 ∈ 𝑉 with probability Θ( log𝑛
ℎ
). W.h.p. in 𝑛, |𝑆 | = Θ̃(𝑛1/3).

2: Compute ℎ-hop directed BFS from each vertex in 𝑆 . Repeat this

computation in the reversed graph. This takes 𝑂 ( |𝑆 | + ℎ) =
�̃� (𝑛2/3) rounds. ⊲ Computes shortest path distances of ≤ ℎ hops.

3: ⊲ The following lines compute (> ℎ)-hop shortest path distances. ⊳
4: Construct a skeleton graph on vertex set 𝑆 : For each directed ℎ-

hop shortest path in the underlying graph 𝐺 between sampled

vertices found in line 2, add a directed edge with weight equal

to shortest path distance. ⊲ Internal computation
5: Share all edges of the skeleton graph by broadcast, node 𝑣

broadcasts all its outgoing edges. We broadcast up to |𝑆 |2 values
in total, which takes 𝑂 ( |𝑆 |2 + 𝐷) = �̃� (𝑛2/3 + 𝐷) rounds.

6: Each sampled vertex internally computes all pairs shortest

paths in the skeleton graph using the broadcast values.

7: Perform ℎ-hop directed BFS from each source 𝑢 ∈ 𝑈 , in 𝑂 (ℎ +
𝑘) = �̃� (𝑛2/3) rounds. If any sampled vertex 𝑠 ∈ 𝑆 is visited

during this BFS, 𝑠 broadcasts distance 𝑑 (𝑢, 𝑠). We broadcast up

to 𝑘 · |𝑆 | = Θ̃(𝑛2/3) values, taking �̃� (𝑛2/3 + 𝐷) rounds.
8: Using the broadcast information, sampled vertices determine

their shortest path distance to sources in 𝑈 : if distance 𝑑 (𝑢, 𝑡)
was broadcast for some 𝑢 ∈ 𝑈 , 𝑡 ∈ 𝑆 , each sampled vertex 𝑠 ∈ 𝑆
locally sets 𝑑 (𝑢, 𝑠) ← min(𝑑 (𝑢, 𝑠), 𝑑 (𝑢, 𝑡) + 𝑑 (𝑡, 𝑠)).

9: Each sampled vertex 𝑠 ∈ 𝑆 propagates distance 𝑑 (𝑢, 𝑠) for each
𝑢 ∈ 𝑈 through ℎ-hop BFS trees computed in line 2. Using ran-

dom scheduling [24], this takes �̃� (ℎ + 𝑘 |𝑆 |) = �̃� (𝑛2/3) rounds.
10: Each vertex 𝑣 receives distance 𝑑 (𝑢, 𝑠) for source 𝑢 from a

sampled vertex 𝑠 that contains 𝑣 in its ℎ-hop BFS tree, and 𝑣

computes 𝑑 (𝑢, 𝑣) ← min𝑠∈𝑆 (𝑑 (𝑢, 𝑠) + 𝑑 (𝑠, 𝑣)).

𝑣 of at most ℎ = 𝑛2/3 hops in 𝐺 . The skeleton graph is directed and

weighted, with the weight of each skeleton graph edge being the ℎ-

hop bounded shortest path distance in𝐺 . The skeleton graph edges

are determined using an ℎ-hop directed BFS from each sampled

vertex in line 2, and each sampled vertex uses this information to

internally determine its outgoing edges in line 4. These skeleton

graph edges are then broadcast to all vertices in line 5. All pairs

shortest path distances in the skeleton graph can be computed

locally at each vertex in line 6 using these broadcast distances, due

to the chosen sampling probability.

In line 7, an ℎ-hop BFS is performed from each source, and each

vertex that is at most ℎ hops from a source can compute its distance

from that source. We now compute distances from each source to

sampled vertices (regardless of hop-length) in line 8 using theℎ-hop

bounded distances from line 7 along with skeleton graph distances

from line 2. Finally distances from each source to all vertices are

computed in line 9, by propagating the distances computed in line 8

through the ℎ-hop BFS trees rooted at each sampled vertex. This

allows all vertices to locally compute their distance from all sources.

Computing ℎ-hop BFS from 𝑘 sources takes𝑂 (ℎ+𝑘) rounds [37],
and broadcasting |𝑆 |2 = 𝑂 (𝑛2/3) values in line 5 takes �̃� (𝑛2/3 + 𝐷)
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rounds. Line 9 involves 𝑘 |𝑆 | = �̃� (𝑛2/3) values propagated through

(ℎ = 𝑛2/3)-hop BFS trees, which takes �̃� (𝑛2/3) rounds using random
scheduling [24, 36]. So, the total round complexity of Algorithm 1

is �̃� (𝑛2/3 + 𝐷) rounds. Detailed proofs are in the full version [40].

Algorithm 1 for 𝑘 = 𝑛1/3 sources can be readily generalized to

𝑘 ≥ 𝑛1/3 sources to obtain an algorithm that takes �̃� (
√
𝑛𝑘 + 𝐷)

rounds by using parameter ℎ =
√
𝑛𝑘 , proving result (1) in Theo-

rem 1.6.A.

Weighted Graphs. We extend our results to weighted graphs to

compute 𝑘-source (1 + 𝜖)-approximate SSSP. We replace the ℎ-hop

directed BFS computations in Algorithm 1 with ℎ-hop approximate

SSSP algorithm from [41] that takes �̃� (ℎ + 𝑘) rounds for 𝑘 sources

(which only increases rounds by a polylog factor). Thus, we obtain

an algorithm to compute (1 + 𝜖)-approximate SSSP from 𝑘 ≥ 𝑛1/3

sources in �̃� (
√
𝑛𝑘 +𝐷) rounds in directed and undirected weighted

graphs, proving result (2) in Theorem 1.6.B.

Multiple Source SSSP from 𝑘 < 𝑛1/3 sources. In directed un-

weighted graphs for 𝑘 < 𝑛1/3, Algorithm 1 computes exact 𝑘-source

BFS in �̃� ( 𝑛
𝑘
+𝐷) rounds by choosing parameter ℎ =

√
𝑛𝑘 . For small

𝑘 , the simple algorithm of repeating SSSP computation in sequence

from each source taking 𝑘 · 𝑆𝑆𝑆𝑃 rounds could be more efficient

(threshold for 𝑘 depends on value of 𝐷), and this gives the result in

Theorem 1.6.A. See the full version [40] for more details.

In the full version [40], we present an algorithm for approxi-

mate SSSP and BFS from 𝑘 < 𝑛1/3 sources with round complexity

�̃� (
√
𝑛𝑘 +𝑘2/5𝑛2/5+𝑜 (1)𝐷2/5 +𝐷), proving Theorem 1.6.B. Our algo-

rithm improves on the simple method of repeating the current best

(approximate) SSSP algorithm [10] 𝑘 times for the entire range of

1 < 𝑘 ≤ 𝑛.

3 APPROXIMATE DIRECTED MWC
We present a CONGEST algorithm for 2-approximation of directed

unweighted MWC in Algorithm 2. Our algorithm uses sampling

combined with multiple source exact directed BFS (result (1) of

Theorem 1.6.A) to exactly compute the weight of MWC among

long cycles of hop length ≥ ℎ = 𝑛3/5. We handle the case when

MWC is short with hop length < ℎ in Section 3.1.

In line 2 of Algorithm 2, we sample Θ̃(𝑛2/5) vertices uniformly at

random and in line 3, we perform a directed BFS computation from

each of them in �̃� (𝑛7/10 + 𝐷) rounds (Theorem 1.6.A). Using these

computed distances, each sampled vertex locally computes a mini-

mum weight cycle through itself in line 4, thus computing MWC

weight among long cycles. We use Algorithm 3 (see Section 3.1)

in line 6 to handle short cycles. Computing short MWC requires

the distances between all pairs of sampled vertices as input: so in

line 5 of Algorithm 2 we broadcast theℎ-hop shortest path distances

between sampled vertices found during the BFS of line 3 and use

these distances to locally compute shortest paths between all pairs

of sampled vertices at each vertex. Thus, we exactly compute MWC

weight if a minimum weight cycle passes through a sampled vertex

in line 4, and a 2-approximation of MWCweight in line 6 otherwise.

We now address the short cycle subroutine used in line 6.

Algorithm 2 2-Approximation Algorithm for Directed Unweighted

MWC

Input: Directed unweighted graph 𝐺 = (𝑉 , 𝐸)
Output: 𝜇, 2-approximation of weight of a MWC in 𝐺

1: Let ℎ = 𝑛3/5. Set 𝜇𝑣 ←∞ for all 𝑣 ∈ 𝑉 . ⊲ 𝜇𝑣 will track the min-
imum weight cycle through 𝑣 found so far.

2: Construct set 𝑆 by sampling each vertex 𝑣 ∈ 𝐺 with probability

Θ( 1
ℎ
· log3 𝑛). W.h.p. in 𝑛, |𝑆 | = Θ(𝑛2/5 · log2 𝑛).

3: Compute 𝑑 (𝑠, 𝑣) for 𝑠 ∈ 𝑆, 𝑣 ∈ 𝑉 using multiple source exact

directed BFS (Theorem 1.6.A, Algorithm 1) from 𝑆 . This takes

�̃� (
√︁
𝑛 |𝑆 | + 𝐷) rounds as |𝑆 | > 𝑛1/3.

4: Compute cycles through 𝑠 ∈ 𝑆 : For each edge (𝑣, 𝑠), 𝜇𝑣 ←
𝑚𝑖𝑛(𝜇𝑣,𝑤 (𝑣, 𝑠) + 𝑑 (𝑠, 𝑣)). ⊲ Locally compute lengths of long cy-
cles and all cycles passing through some sampled vertex.

5: Broadcast all pairs distances between sampled vertices: Each

𝑡 ∈ 𝑆 broadcasts 𝑑 (𝑠, 𝑡) for all 𝑠 ∈ 𝑆 . There are at most |𝑆 |2 such
distances, which takes 𝑂 ( |𝑆 |2 + 𝐷) rounds.

6: Run Algorithm 3 to compute approximate short MWC if it does

not contain a sampled vertex, updating 𝜇𝑣 for each 𝑣 ∈ 𝑉 . ⊲ See
Section 3.1.

7: Return 𝜇 ← min𝑣∈𝑉 𝜇𝑣 , computed by a convergecast opera-

tion [43] in 𝑂 (𝐷) rounds.

3.1 Computing Approximate Short MWC
We present a method to compute 2-approximation of weight of

minimum weight cycle among cycles of at most ℎ = 𝑛3/5 hops that
do not pass through any sampled vertex in 𝑆 . Our method is detailed

in Algorithm 3 and runs in �̃� (𝑛4/5) rounds. As mentioned in the

previous section, each vertex 𝑣 knows the distances 𝑑 (𝑣, 𝑠), 𝑑 (𝑠, 𝑣)
for each vertex 𝑠 ∈ 𝑆 , and distances 𝑑 (𝑠, 𝑡) for all pairs 𝑠, 𝑡 ∈ 𝑆 .

Description of 𝑃 (𝑣) and 𝑅(𝑣). For each vertex 𝑣 ∈ 𝑉 , we define

a neighborhood 𝑃 (𝑣) ⊆ 𝑉 such that 𝑃 (𝑣) contains (w.h.p. in 𝑛) a cy-
cle whose length is at most a 2-approximation of a minimumweight

cycle 𝐶 through 𝑣 if 𝐶 does not pass through any sampled vertex.

The construction of 𝑃 (𝑣) is inspired by a sequential algorithm for

directed MWC in [13], which uses the following lemma.

Fact 1 (Lemma 5.1 of [13]). Let𝐶 be a minimumweight cycle that

goes through vertices 𝑣 , 𝑦 in a directed weighted graph 𝐺 . For any

vertex 𝑡 , if 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣,𝑦) ≥ 𝑑 (𝑡, 𝑦) + 2𝑑 (𝑣, 𝑡), then a minimum

weight cycle containing 𝑡 and 𝑣 has weight at most 2𝑤 (𝐶).

Suppose we determine that 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣,𝑦) ≥ 𝑑 (𝑡, 𝑦) + 2𝑑 (𝑣, 𝑡)
for a vertex 𝑦 ∈ 𝑉 and some sampled vertex 𝑡 ∈ 𝑆 . Then by Fact 1

the minimum weight cycle through 𝑣 and 𝑡 is at most twice the

minimum weight cycle through 𝑣 and 𝑦. Since we compute MWC

through all sampled vertices, we can exclude𝑦 from 𝑃 (𝑣).We choose

a subset 𝑅(𝑣) ⊆ 𝑆 and use only 𝑡 ∈ 𝑅(𝑣) to eliminate vertices from

𝑃 (𝑣) using Fact 1. In particular, we will construct a set 𝑅(𝑣) ⊆ 𝑆

of size log𝑛 such that the size of 𝑃 (𝑣) is reduced to at most
𝑛
|𝑆 | =

�̃� (𝑛3/5) (as we show later).

Definition 3.1. Given a subset 𝑅(𝑣) ⊆ 𝑆 , define

𝑃 (𝑣) = {𝑦 ∈ 𝑉 | ∀𝑡 ∈ 𝑅(𝑣), 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣,𝑦) ≤ 𝑑 (𝑡, 𝑦) + 2𝑑 (𝑣, 𝑡)}
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Our algorithm computes a directed BFS from each vertex 𝑣 re-

stricted to 𝑃 (𝑣). For the BFS to reach all of 𝑃 (𝑣), the graph induced

by 𝑃 (𝑣) must be connected, which we prove below in Lemma 3.2.

Lemma 3.2. 𝑃 (𝑣) induces a connected subgraph in the shortest
path out-tree rooted at 𝑣 .

Proof. Let vertex 𝑦 ∈ 𝑃 (𝑣). Then, we will prove that for any
vertex 𝑧 on a shortest path from 𝑣 to 𝑦, 𝑧 ∈ 𝑃 (𝑣) thus proving our
claim.

We will use the fact that 𝑑 (𝑣,𝑦) = 𝑑 (𝑣, 𝑧) + 𝑑 (𝑧,𝑦) by our as-

sumption. Assume 𝑦 ∈ 𝑃 (𝑣), that is ∀𝑡 ∈ 𝑅(𝑣), 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣,𝑦) ≤
𝑑 (𝑡, 𝑦) + 2𝑑 (𝑣, 𝑡). Fix any 𝑡 ∈ 𝑅(𝑣), we need to prove that 𝑑 (𝑧, 𝑡) +
2𝑑 (𝑣, 𝑧) ≤ 𝑑 (𝑡, 𝑧) + 2𝑑 (𝑣, 𝑡). We will use the triangle inequali-

ties 𝑑 (𝑧, 𝑡) ≤ 𝑑 (𝑧,𝑦) + 𝑑 (𝑦, 𝑡) and 𝑑 (𝑡, 𝑦) ≤ 𝑑 (𝑡, 𝑧) + 𝑑 (𝑧,𝑦) ⇒
𝑑 (𝑡, 𝑦) − 𝑑 (𝑧,𝑦) ≤ 𝑑 (𝑡, 𝑧).
𝑑 (𝑧, 𝑡) + 2𝑑 (𝑣, 𝑧) ≤ 𝑑 (𝑧,𝑦) + 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣, 𝑧)

= 𝑑 (𝑦, 𝑡) + (2𝑑 (𝑣, 𝑧) + 2𝑑 (𝑧,𝑦)) − 𝑑 (𝑧,𝑦)
= 𝑑 (𝑦, 𝑡) + 2𝑑 (𝑣,𝑦) − 𝑑 (𝑧,𝑦)
≤ 𝑑 (𝑡, 𝑦) + 2𝑑 (𝑣, 𝑡) − 𝑑 (𝑧,𝑦) (since 𝑦 ∈ 𝑃 (𝑣))
= (𝑑 (𝑡, 𝑦) − 𝑑 (𝑧,𝑦)) + 2𝑑 (𝑣, 𝑡)
≤ 𝑑 (𝑡, 𝑧) + 2𝑑 (𝑣, 𝑡)

□

To construct the set 𝑅(𝑣) at vertex 𝑣 , Algorithm 3 partitions the

sampled vertices into 𝛽 = log𝑛 sets 𝑆1, . . . 𝑆𝛽 in line 2. In lines 3-8

of Algorithm 3, we construct 𝑅(𝑣) iteratively by adding at most

one vertex from each 𝑆𝑖 , so that 𝑅(𝑣) has size ≤ log𝑛. In the 𝑖’th

iteration, we identify the vertices in 𝑆𝑖 that have not been eliminated

from 𝑃 (𝑣) by any of the (𝑖 − 1) previously chosen vertices in 𝑅(𝑣)
and choose one of these vertices at random to add to 𝑅(𝑣). This
entire computation is done locally at 𝑣 using distances between all

pairs of sampled vertices sent to 𝑣 in line 5 of Algorithm 2.

Restricted BFS. In lines 13-22 of Algorithm 3, we compute ℎ-

hop BFS from all vertices 𝑣 restricted to neighborhood 𝑃 (𝑣): the
BFS proceeds for ℎ steps, and at each step the BFS message is

forwarded only to neighbors in 𝑃 (𝑣). To test membership in 𝑃 (𝑣)
using Definition 3.1 at an intermediate vertex before propagating,

we use distances between sampled vertices that are part of the

input along with information about 𝑅(𝑣) that is included in the BFS

message. Note that the BFS message has size 𝑂 (log𝑛) since 𝑅(𝑣)
has size log𝑛 (see line 16).

The restricted BFS from every vertex needs to be carefully sched-

uled to obtain our sublinear round bound. We first implement ran-

dom delays using ideas in [24, 36], where the start of BFS for a

source 𝑣 is delayed by an offset 𝛿𝑣 chosen uniformly from range

[1, 𝜌 = 𝑛4/5] at random by 𝑣 . Here, the parameter 𝜌 = 𝑛4/5 is chosen
based on the maximum number of messages allowed throughout

the BFS for a single vertex, as we shall see later. With this sched-

uling, all BFS messages for a particular source 𝑣 are synchronous

even though messages from different sources may not be. We or-

ganize the BFS into phases, each phase involving at most Θ(log𝑛)
messages. However, the graph may contain bottleneck vertices 𝑢

that are in the neighborhood 𝑃 (𝑣) for many 𝑣 : such a vertex𝑢 has to

process up to 𝑛 messages, requiring Ω(𝑛) phases even with random

scheduling.

We define 𝑢 to be a phase-overflow vertex if it has to send or

receive more than Θ(log𝑛) messages in a single phase of the re-

stricted BFS. During the BFS, we identify any such phase-overflow

vertex and terminate BFS computation through it. The BFS runs for

𝑂 (𝑛4/5) phases and each BFS message contains𝑂 (log𝑛) words, and
hence the BFS takes a total of �̃� (𝑛4/5) rounds. After this restricted
BFS is completed, each vertex 𝑢 knows its shortest path distance

from all vertices 𝑣 such that 𝑢 ∈ 𝑃 (𝑣) and there is a 𝑣-𝑢 shortest

path that has at most ℎ hops and contains no phase-overflow vertex.

Now, it remains to compute ℎ-hop shortest path distances for

paths that contain phase-overflow vertices. We prove a bound of

�̃� (𝑛4/5) on the number of phase-overflow vertices as follows. We

define 𝑢 to be a bottleneck vertex if 𝑢 ∈ 𝑃 (𝑣) for more than 𝜌 = 𝑛4/5

vertices 𝑣 ∈ 𝑉 , i.e., 𝑢 may have to handle messages for more than

𝑛4/5 sources across all phases of the BFS. We prove the following

claims in Lemma 3.3: (i) Vertex 𝑢 can be a phase-overflow vertex

only if 𝑢 is a bottleneck vertex, and (ii) the number of bottleneck

vertices is at most �̃� (𝑛4/5). The bound on the number of bottleneck

vertices is obtained using the bound of �̃� (𝑛3/5) on the size of each

𝑃 (𝑣). We compute ℎ-hop directed BFS from the �̃� (𝑛4/5) phase-
overflow vertices in 𝑂 (ℎ + 𝑛4/5) rounds.

After computing all distances from each 𝑣 ∈ 𝑉 to vertices 𝑦 in

𝑃 (𝑣), we locally compute the minimum among discovered cycles

through 𝑣 : at vertex 𝑣 , a discovered cycle is formed by concatenating

a 𝑣-𝑦 shortest path and an incoming edge (𝑣,𝑦).
We now prove some results in order to argue correctness. We

first argue that 𝑃 (𝑣) has size at most
𝑛
|𝑆 | = Θ̃(𝑛3/5) w.h.p in 𝑛

(adapting Lemma 6.2 of [13]). When we add a vertex 𝑡 to 𝑅(𝑣) in
line 8, we expect 𝑡 to cover cycles through half the remaining un-

covered vertices, since the condition we check (as in Definition 3.1)

is symmetric. At any iteration 𝑖 of lines 7-8, if the number of un-

covered vertices is larger than Θ̃(𝑛3/5), then w.h.p. in 𝑛 there is

some vertex in 𝑆𝑖 (which has size Θ(𝑛2/5 log𝑛)) that is not covered.
This vertex is then added to 𝑅(𝑣), reducing the remaining number

of uncovered vertices by half. So, the probability that the number

of uncovered vertices 𝑃 (𝑣) remains larger than Θ̃(𝑛3/5) after log𝑛
such iterations is polynomially small.

Lemma 3.3. (i) Vertex 𝑢 ∈ 𝑉 is a phase-overflow vertex only if
𝑢 is a bottleneck vertex.

(ii) There are at most �̃� (𝑛4/5) bottleneck vertices w.h.p. in 𝑛.
(iii) There are at most �̃� (𝑛4/5) phase-overflow vertices w.h.p. in 𝑛.

Proof. We define 𝑃−1 (𝑢) = {𝑣 ∈ 𝑉 | 𝑢 ∈ 𝑃 (𝑣)} to be the set of

vertices for which 𝑢 is a part of their neighborhood. By definition,

𝑢 is a bottleneck vertex if |𝑃−1 (𝑢) | ≥ 𝜌 = 𝑛4/5.
Proof of (i): A message is sent to 𝑢 from source 𝑣 by some neighbor

𝑥 only if𝑢 ∈ 𝑃 (𝑣), so 𝑃−1 (𝑢) is the set of sources for which 𝑢 has to

send and receive BFS messages. Assume that 𝑢 is not a bottleneck

vertex, |𝑃−1 (𝑢) | < 𝜌 , we will prove that 𝑢 is not a phase-overflow

vertex w.h.p. in 𝑛, i.e.,𝑢 sends or receives at mostΘ(log𝑛) messages

in a single phase of BFS.

By assumption, 𝑢 receives messages from at most |𝑃−1 (𝑢) | < 𝜌

sources throughout all phases of the restricted BFS. Additionally,

each incoming edge to 𝑢 receives at most 𝜌 messages throughout

the BFS since a single BFS sends at most one message through a

single edge. Fix one such edge, that receives messages from sources
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Algorithm 3 Approximate Short Cycle Subroutine

Input: Directed unweighted graph 𝐺 = (𝑉 , 𝐸), set of sampled

vertices 𝑆 ⊆ 𝑉 . Each vertex 𝑣 knows distances𝑑 (𝑣, 𝑠), 𝑑 (𝑠, 𝑣)
for 𝑠 ∈ 𝑆 and distances 𝑑 (𝑠, 𝑡) for 𝑠, 𝑡 ∈ 𝑆 .

Output: For each 𝑣 , return 𝜇𝑣 which is a 2-approximation of mini-

mum weight of cycles through 𝑣 among cycles that are

short(< 𝑛3/5 hops) and do not pass through any vertex

in 𝑆 .

1: ℎ = 𝑛3/5, 𝜌 = 𝑛4/5.
2: Partition 𝑆 into 𝛽 = log𝑛 sets 𝑆1, . . . 𝑆𝛽 of size Θ(𝑛2/5 · log𝑛).
3: for each vertex 𝑣 ∈ 𝐺 do
4: ⊲ Initial Setup: Compute set 𝑅(𝑣) ⊆ 𝑆 , which is used

to restrict BFS to neighborhood 𝑃 (𝑣) ⊆ 𝑉 (defined in
Section 3.1). ⊳

5: 𝑅(𝑣) ← 𝜙

6: for 𝑖 = 1 . . . 𝛽 do ⊲ Local computation at 𝑣 .
7: Let 𝑇 (𝑣) = {𝑠 ∈ 𝑆𝑖 | ∀𝑡 ∈ 𝑅(𝑣), 𝑑 (𝑠, 𝑡) + 2𝑑 (𝑣, 𝑠) ≤

𝑑 (𝑡, 𝑠) + 2𝑑 (𝑣, 𝑡)}.
8: If 𝑇 (𝑣) is not empty, select a random vertex 𝑠∗ ∈ 𝑇 (𝑣)

and add it to 𝑅(𝑣).
9: 𝛿𝑣 is chosen uniformly at random from {1, . . . , 𝜌}. ⊲Choose

BFS delay.
10: 𝑍 (𝑣) ← 0 ⊲ 𝑍 (𝑣) is a flag that determines whether 𝑣 is a

phase-overflow vertex.
11: Send {(𝑑 (𝑣, 𝑠), 𝑑 (𝑠, 𝑣)) | 𝑠 ∈ 𝑆} to each neighbor 𝑢 in𝑂 ( |𝑆 |)

rounds.

12: ⊲ Restricted BFS from all vertices: Computation is organized
into phases where each vertex receives and sends at most log𝑛
BFS messages along its edges. Each BFS message contains
𝑂 (log𝑛) words and hence each phase takes𝑂 (log2 𝑛) CON-
GEST rounds. ⊳

13: for phase 𝑟 = 1 . . . (ℎ + 𝜌) do
14: for each vertex 𝑣 ∈ 𝐺 do
15: if 𝑟 = 𝛿𝑣 then ⊲ This is the first phase for the BFS rooted

at 𝑣 .
16: Construct message 𝑄 (𝑣) = (𝑅(𝑣), {𝑑 (𝑣, 𝑡) | ∀𝑡 ∈

𝑅(𝑣)}) to be sent along the BFS rooted at 𝑣 . 𝑄 (𝑣)
contains 𝑂 (log𝑛) words (|𝑅(𝑣) | ≤ 𝛽 = log𝑛) and

can be sent in 𝑂 (log𝑛) rounds.
17: Send BFS message (𝑄 (𝑣), 𝑑 (𝑣, 𝑣) = 0) to each out-

neighbor of 𝑣 .

18: ⊲ Process and propagate messages from other sources
𝑦. We restrict the number of messages sent/received
by a vertex by Θ(log𝑛) and identify phase-overflow
vertices(𝑍 (𝑣) ← 1) exceeding this congestion. Phase-
overflow vertices are processed separately in line 24. ⊳

19: Receive at most log𝑛 messages (𝑄 (𝑦), 𝑑∗ (𝑦, 𝑣)) from
each in-neighbor. If more than Θ(log𝑛) messages are

received from an edge, set 𝑍 (𝑣) ← 1 and terminate.

20: If message (𝑄 (𝑦), 𝑑∗ (𝑦, 𝑣)) is not the first message re-

ceived for source 𝑦, discard it. Let 𝑌 𝑟 (𝑣) denote the

remaining set of sources𝑦 with first time messages, and

set 𝑑 (𝑦, 𝑣) ← 𝑑∗ (𝑦, 𝑣) for 𝑦 ∈ 𝑌 𝑟 (𝑣) .
21: If |𝑌 𝑟 (𝑣) | > Θ(log𝑛), set 𝑍 (𝑣) ← 1 and terminate.

22: For each 𝑦 ∈ 𝑌 𝑟 (𝑣), and for each outgoing neigh-

bor 𝑢, set estimate 𝑑∗ (𝑦,𝑢) ← 𝑑 (𝑦, 𝑣) + 1. If ∀𝑡 ∈
𝑅(𝑦), 𝑑 (𝑢, 𝑡) + 2𝑑∗ (𝑦,𝑢) ≤ 𝑑 (𝑡,𝑢) + 2𝑑 (𝑦, 𝑡), send mes-

sage (𝑄 (𝑦), 𝑑∗ (𝑦,𝑢)) to 𝑢. ⊲ Note that 𝑅(𝑦), 𝑑 (𝑦, 𝑡) are
known to 𝑣 from 𝑄 (𝑦) and 𝑑 (𝑢, 𝑡), 𝑑 (𝑡,𝑢) from line 11.

23: ⊲ Process phase-overflow vertices. ⊳

24: Let 𝑍 = {𝑣 ∈ 𝑉 | 𝑍 (𝑣) = 1}. Perform directed ℎ-hop BFS with

sources 𝑍 in𝑂 ( |𝑍 | + ℎ) rounds. For each 𝑣 ∈ 𝑍 and edge (𝑥, 𝑣),
set 𝜇𝑥 ←𝑚𝑖𝑛(𝜇𝑥 , 𝑑 (𝑣, 𝑥) +𝑤 (𝑥, 𝑣)).

25: for vertex 𝑣 ∈ 𝑉 do
26: 𝜇𝑣 ← min(𝜇𝑣, 𝑑 (𝑣,𝑦) + 1), for each 𝑦 ∈ 𝑉 such that edge

(𝑦, 𝑣) exists and 𝑑 (𝑣,𝑦) was computed during this algorithm.

𝑣1, 𝑣2, . . . 𝑣𝛾 for 𝛾 < 𝜌 , and let the distance from 𝑣𝑖 to 𝑢 be ℎ𝑖 . The

BFS messages from source 𝑣 are offset by a random delay 𝛿𝑣 ∈
{1, 2, . . . 𝜌} and thus the BFS message from 𝑣𝑖 is received at 𝑢 at

phase ℎ𝑖 + 𝛿𝑣𝑖 . For a fixed phase 𝑟 , the message from 𝑣𝑖 is sent to 𝑢

at phase 𝑟 iff 𝑟 = ℎ𝑖 + 𝛿𝑣𝑖 which happens with probability
1

𝜌 since

𝛿𝑣𝑖 is chosen uniformly at random. Using a Chernoff bound, we can

show that w.h.p. in 𝑛, there are at most Θ(log𝑛) of the 𝛾 messages

that are sent at phase 𝑟 through the chosen edge.

Vertex 𝑢 sends an outgoing message for the BFS rooted at 𝑣 only

if 𝑢 ∈ 𝑃 (𝑣) and it received a message from source 𝑣 . So, 𝑢 sends at

most |𝑃−1 (𝑢) | < 𝜌 outgoing messages through a single outgoing

edge, and we can repeat the same argument above to argue that at

most Θ(log𝑛) messages are sent out at a single phase. So, 𝑢 is not

a phase-overflow vertex.

Proof of (ii): We use the fact that w.h.p. in 𝑛, for each 𝑣 ∈ 𝑉 ,

|𝑃 (𝑣) | ≤ 𝑛3/5. By definition of 𝑃−1 (𝑢), we have ∑𝑢∈𝑉 |𝑃−1 (𝑢) | =∑
𝑣∈𝑉 |𝑃 (𝑣) | (counting pairs of vertices 𝑣,𝑢 ∈ 𝑃 (𝑣)). Using the

bound |𝑃 (𝑣) | ≤ �̃� (𝑛3/5), we get ∑𝑢∈𝑉 |𝑃−1 (𝑢) | ≤ 𝑛 · �̃� (𝑛3/5).
Let𝐵 denote the set of bottleneck vertices. Then,

∑
𝑢∈𝑉 |𝑃−1 (𝑢) | ≥∑

𝑢∈𝐵 |𝑃−1 (𝑢) | ≥ |𝐵 | ·𝜌 and hence |𝐵 | ≤ (𝑛/𝜌) ·�̃� (𝑛3/5) = �̃� (𝑛4/5).
Proof of (iii): By (i), the number of phase-overflow vertices is ≤ |𝐵 |
and |𝐵 | ≤ �̃� (𝑛4/5) by (ii). □

We now present details of the proof of correctness and round

complexity of Algorithm 2.

Lemma 3.4. Algorithm 2 correctly computes a 2-approximation
of MWC weight in a given directed unweighted graph 𝐺 = (𝑉 , 𝐸) in
�̃� (𝑛4/5 + 𝐷) rounds.

Proof. Correctness: Whenever we update 𝜇𝑣 for any 𝑣 ∈ 𝑉 ,
we use a shortest path from 𝑥 to 𝑣 along with an edge (𝑣, 𝑥), which
means we only record weights of valid directed cycles. Let 𝐶 be a

MWC of 𝐺 with weight𝑤 (𝐶) and let 𝑣 refer to an arbitrary vertex

on 𝐶 . In the following cases for 𝐶 , Cases 1 and 2 are handled in

Algorithm 2, and Cases 3, 4 are handled by the subroutine in line 6

using Algorithm 3.

Case 1:𝒘 (𝑪) ≥ 𝒉: 𝐶 contains at least ℎ vertices, and hence w.h.p.

in 𝑛, 𝐶 contains a sampled vertex in 𝑆 by our choice of sampling

probability. If 𝑠 ∈ 𝑆 is on 𝐶 , then the computation in line 4 exactly

computes𝑤 (𝐶).
Case 2:𝒘 (𝑪) < 𝒉 and 𝑪 extends outside 𝑷 (𝒗): Let 𝑢 be a vertex

on𝐶 such that 𝑢 ∉ 𝑃 (𝑣), then we have 𝑑 (𝑢, 𝑡) + 2𝑑 (𝑣,𝑢) > 𝑑 (𝑡,𝑢) +
2𝑑 (𝑣, 𝑡) for some 𝑡 ∈ 𝑅(𝑣). By Fact 1, this means that a minimum

weight cycle containing 𝑡 and 𝑣 has weight at most 2𝑤 (𝐶) since 𝐶
is a minimum weight cycle containing 𝑣 and 𝑢. Since 𝑅(𝑣) ⊆ 𝑆 , 𝑡

is a sampled vertex and hence 𝜇𝑡 ≤ 2𝑤 (𝐶) by the computation in

line 4. Thus, we compute a 2-approximation of the weight of 𝐶 .
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Case 3:𝒘 (𝑪) < 𝒉, 𝑪 is contained in 𝑷 (𝒗), ∃𝒖 ∈ 𝑪, 𝒁 (𝒖) = 1: In
this case, 𝑢 is in the set of phase-overflow vertices 𝑍 constructed in

line 24 of Algorithm 3. After the BFS computation through vertices

in 𝑍 , a minimum weight cycle through 𝑢 is computed in line 24.

Thus,𝑤 (𝐶) is computed exactly.

Case 4: 𝒘 (𝑪) < 𝒉, 𝑪 is contained in 𝑷 (𝒗), ∀𝒖 ∈ 𝑪, 𝒁 (𝒖) = 0:
In Algorithm 3, 𝑢 is not a phase-overflow vertex as 𝑍 (𝑢) = 0 and

𝑢 never terminates its execution in line 19. In fact, none of the

vertices on𝐶 terminate their execution and forward messages from

all sources, including 𝑣 . Thus, the vertex 𝑧 furthest from 𝑣 receives

message 𝑑 (𝑣, 𝑧) and records a cycle of weight𝑤 (𝐶) in line 26.

Round complexity: We first address the running time of Algo-

rithm 2 apart from line 6 which invokes the subroutine Algorithm 3.

We choose our sampling probability such that |𝑆 | = Θ̃(𝑛/ℎ) =
Θ̃(𝑛2/5), so the multiple source SSSP in line 3 of Algorithm 2 takes

time �̃� (
√︁
𝑛 |𝑆 | + 𝐷) = �̃� (𝑛7/10 + 𝐷) using Theorem 1.6.A since we

have Θ̃(𝑛2/5) > 𝑛1/3 sources. In line 5, we broadcast |𝑆 |2 values tak-
ing𝑂 ( |𝑆 |2+𝐷) = �̃� (𝑛4/5+𝐷) rounds. Line 7 involves a convergecast
operation among all vertices, which takes 𝑂 (𝐷) rounds [43].
Round complexity of Algorithm 3: We now show that Algo-

rithm 3 takes �̃� (𝑛4/5) rounds.
The computation in lines 1-10 is done locally at each vertex 𝑣 .

The local computation of 𝑅(𝑣) (lines 3-8) only uses distances 𝑑 (𝑣, 𝑡)
and distances 𝑑 (𝑠, 𝑡) for 𝑠, 𝑡 ∈ 𝑆 that are part of the input. In line 11,

vertex 𝑣 sends𝑂 ( |𝑆 |) words of information to each neighbor, which

takes 𝑂 ( |𝑆 |) = �̃� (𝑛2/5) rounds.
We now address the round complexity of the restricted BFS

of Lines 13-22. The restricted BFS computation is organized into

(ℎ + 𝜌) phases (recall ℎ = 𝑛3/5, 𝜌 = 𝑛4/5). Each phase runs for

𝑂 (log2 𝑛) rounds in which each vertex receives and sends up to

Θ(log𝑛) BFS messages. Each message of the BFS is of the form

(𝑄 (𝑣), 𝑑 (𝑣,𝑤)) as in line 16. Since 𝑄 (𝑣) has at most 𝛽 = log𝑛

words, the BFS message can be sent across an edge in 𝑂 (log𝑛)
rounds. The round bound for each phase is enforced in lines 19,21

where propagation through a vertex is terminated if it has to send

or receive more than Θ(log𝑛) messages in a single round, i.e., it is

a phase-overflow vertex. The membership test in line 22 is done

using distances known to 𝑣 along with information from the BFS

message, without additional communication. Thus, lines 13-22 take

a total of 𝑂

(
(ℎ + 𝜌) · log2 𝑛

)
= �̃� (𝑛4/5) rounds.

We bound the round complexity of line 24 using Lemma 3.3

to bound the number of phase-overflow vertices by �̃� (𝑛4/5), i.e.,
|𝑍 | ≤ �̃� (𝑛4/5). Now, the ℎ-hop directed BFS in line 24 from |𝑍 |
sources takes 𝑂 ( |𝑍 | + ℎ) = �̃� (𝑛4/5) rounds [37]. Finally in line 26,

after all BFS computations are completed, we locally compute the

minimum discovered cycle through each vertex 𝑣 formed by a𝑤-𝑣

shortest path along with edge (𝑣,𝑤). □

4 UNDIRECTED UNWEIGHTED MWC
In this section, we present an algorithm for computing (2 − 1

𝑔 )-
approximation of girth (undirected unweightedMWC) in �̃� (

√
𝑛+𝐷)

rounds, where 𝑔 is the girth. We outline our method here, and

present pseudocode in the full version [40].

We first sample a set of �̃� (
√
𝑛) vertices and perform a BFS with

each sampled vertex as source. For each non-tree edge (𝑥,𝑦) in 𝑇 ,

the BFS tree from sampled vertex𝑤 , we record a candidate cycle

of weight 𝑑 (𝑤, 𝑥) + 𝑑 (𝑤,𝑦) + 1. Note that this may overestimate

the size of the simple cycle 𝐶 created by edge (𝑥,𝑦) and paths in 𝑇

from 𝑥 and 𝑦 by at most 2𝑑 (𝑤, 𝑣) where 𝑣 is the closest vertex to

𝑤 on 𝐶 (i.e., 𝑣 is 𝑙𝑐𝑎(𝑥,𝑦) in 𝑇 ). For cycles where 𝑑 (𝑤, 𝑣) is small

relative to the size of𝐶 , we get a good approximation of the weight

of the cycle. We prove that w.h.p. in 𝑛, the only cycles for which

this method fails to give a good approximation for any source 𝑤

are cycles entirely contained within the

√
𝑛 neighborhood of each

vertex in the cycle. We efficiently compute shortest path distances

within each neighborhood using a source detection algorithm [37],

and then compute MWC within the neighborhood.

If a minimumweight cycle extends outside the

√
𝑛 neighborhood

of even one of the vertices in the cycle, we show that a sampled

vertex 𝑤 exists in this neighborhood. Thus, when we compute

distances from each sampled vertex, we compute a 2-approximation

of the weight of such a cycle. We use a more precise approach

to obtain our (2 − 1

𝑔 )-approximation, by computing lengths of

cycles such that exactly one vertex is outside the neighborhood. The

source detection procedure for

√
𝑛-neighborhood takes 𝑂 (

√
𝑛 + 𝐷)

rounds [37] and BFS from �̃� (
√
𝑛) sampled vertices takes �̃� (

√
𝑛+𝐷)

rounds [37] giving us our total round complexity of �̃� (
√
𝑛 + 𝐷).

Computing ℎ-hop limited MWC. (used in Section 5.1). If we

are only required to compute approximate ℎ-hop limited MWC, i.e.

compute 2-approximation of minimum weight among cycles of ≤ ℎ

hops, we can restrict our BFS computations to ℎ hops to obtain an

�̃� (
√
𝑛 +ℎ +𝐷) round algorithm. This does not improve the running

time for unweighted graphs as ℎ ≤ 𝐷 , but in Section 5.1 we will

apply this procedure to weighted graphs using the following notion

of stretched graph: given a network 𝐺 = (𝑉 , 𝐸) with weights on

edges, a stretched unweighted graph 𝐺𝑠
is obtained by mapping

each edge of 𝐺 with weight𝑤 to a unweighted path of𝑤 edges. If

𝐺 is directed, the path is directed as well.

Given edge-weighted network 𝐺 = (𝑉 , 𝐸), we can efficiently

simulate the corresponding stretched graph 𝐺𝑠
on the network

by simulating all but the last edge of the path corresponding to a

weighted edge at one of the endpoints. The diameter of the stretched

graph may be much larger than that of 𝐺 but convergecast oper-

ations cost only 𝑅𝑐𝑎𝑠𝑡 = 𝑂 (𝐷) rounds where 𝐷 is the undirected

diameter of 𝐺 . Thus, we can compute ℎ-hop limited unweighted

MWC in 𝐺𝑠
in �̃� (

√
𝑛 + ℎ + 𝑅𝑐𝑎𝑠𝑡 ) rounds. Note that a cycle of hop

length ℎ in 𝐺𝑠
corresponds to a cycle of weight ℎ in 𝐺 . We use this

idea in the next section with scaled-down weights so that even a

cycle of large weight in 𝐺 can be approximated by a cycle of low

hops in an appropriate stretched graph. See the full version [40]

for details.

Corollary 4.1. Given a network 𝐺 = (𝑉 , 𝐸) with edge weights,
we can compute a (2 − 1/𝑔)-approximation of ℎ-hop limited MWC of
𝐺𝑠 (stretched unweighted graph of 𝐺) in �̃� (

√
𝑛 + ℎ + 𝑅𝑐𝑎𝑠𝑡 ) rounds,

where 𝑔 is the ℎ-hop limited MWC value in𝐺𝑠 and 𝑅𝑐𝑎𝑠𝑡 is the round
complexity of convergecast.

5 WEIGHTED MWC
In this section, we present algorithms to compute (2+𝜖)-approximate

weighted MWC in �̃� (𝑛2/3 + 𝐷) rounds for undirected graphs and
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�̃� (𝑛4/5 + 𝐷) rounds for directed graphs. Our algorithms use the

𝑘-source approximate SSSP algorithm from Section 2 along with

unweighted MWC approximation algorithms of Sections 3 and 4

on scaled graphs to approximate weighted MWC.

5.1 Approximate Undirected Weighted MWC
We sketch our method to compute (2+𝜖)-approximation in �̃� (𝑛2/3+
𝐷) rounds, proving Theorem 1.4.C. Details are in the full ver-

sion [40].

Let ℎ = 𝑛2/3. For long cycles with ≥ ℎ hops, we sample 𝑘 =

Θ̃(𝑛1/3) vertices so that w.h.p. in 𝑛 there is at least one sampled

vertex on the cycle. We compute (1 + 𝜖)-approximate 𝑘-SSSP from

sampled vertices (result (2) of Theorem 1.6.B) and use this to obtain

(1 + 𝜖)-approximate MWC among long cycles.

For small cycles (hop length < ℎ), we use scaling along with

a hop-limited version of 2-approximate undirected unweighted

MWC algorithm from Corollary 4.1 of Section 4. We use the scaling

technique in [41], where it was used in the context of computing

approximate shortest paths. We construct 𝑂 (log𝑛) scaled versions

of the graph𝐺 , denoted𝐺𝑖
for 1 ≤ 𝑖 ≤ log(ℎ𝑊 ) with edge-weight𝑤

scaled to have weight ⌈ 2ℎ𝑤
𝜖2𝑖
⌉. Each ℎ-hop limited shortest path 𝑃 in

𝐺 is approximated by a path of weight at most ℎ∗ = ((1 + (2/𝜖)) ·ℎ)
in some𝐺𝑖∗

— this 𝑖∗ is in fact ⌈log𝑤 (𝑃)⌉ where𝑤 (𝑃) is the weight
of 𝑃 in 𝐺 , as proven in [41].

We run anℎ∗-hop limited version of the unweighted approximate

MWC algorithm on the stretched scaled graph (see Section 4). The

stretched graph may have large edge weights and such edges may

not always be traversed in ℎ∗ rounds, but a (1 + 𝜖)-approximation

of any ℎ-hop shortest path is traversed within ℎ∗ rounds in at least

one of the𝐺𝑖
. We apply Corollary 4.1 to compute 2-approximation

ofℎ∗-hop limited MWC in each stretched𝐺𝑖
, and take the minimum

to compute (2 + 𝜖)-approximate ℎ-hop limited MWC in 𝐺 .

The round complexity of our algorithm is �̃� (𝑛2/3 + 𝐷) rounds.
Computing long cycles takes �̃� (𝑛2/3+𝐷) rounds using sampling and

𝑛1/3-source approximate SSSP algorithm (Theorem 1.6.B). Using the

method in Corollary 4.1, computing short cycles takes �̃� ((
√
𝑛+ℎ∗ +

𝑅𝑐𝑎𝑠𝑡 ) · log(𝑛𝑊 )) rounds, where 𝑅𝑐𝑎𝑠𝑡 = 𝑂 (𝐷) and ℎ∗ = �̃� (𝑛2/3).
For detailed proofs, see the full version [40].

5.2 Approximate Directed Weighted MWC
We use the above framework for undirected graphs to compute

(2 + 𝜖)-approximation of directed weighted MWC, by replacing

the hop-limited undirected unweighted MWC computation with a

directed version. We can compute ℎ-hop limited 2-approximation

of MWC in stretched directed unweighted graphs in �̃� (𝑛4/5 + ℎ +
𝑅𝑐𝑎𝑠𝑡 ) rounds by applying the modifications in Corollary 4.1 to our

directed unweighted MWC algorithm (Algorithm 2 from Section 3).

The overall algorithm runs in �̃� (𝑛4/5 + 𝐷) rounds, dominated by

the cost of the directed unweighted MWC subroutine.

6 CONCLUSION AND OPEN PROBLEMS
We have presented several CONGEST upper and lower bounds for

computing MWC in directed and undirected graphs, both weighted

and unweighted. While many of our results are close to optimal,

here are some topics for further research.

For (2 − 𝜖)-approximation of MWC, we have shown nearly opti-

mal near-linear lower bounds in all cases except girth, with near-

linear round algorithms for exact computation.

For girth we present a near-optimal �̃� (
√
𝑛 + 𝐷)-round algo-

rithm for (2 − (1/𝑔))-approximation. For larger approximations,

we showed a lower bound of Ω̃(𝑛1/4) for arbitrarily large con-

stant 𝛼-approximation, and a Ω̃(𝑛1/3) lower bound for (2.5 − 𝜖)-
approximation in the full version [40]. The current best upper bound

for girth is still𝑂 (𝑛) [11, 28], and the CONGEST complexity of exact

girth remains an open problem.

We have studied larger constant (𝛼 ≥ 2) approximation of MWC

in directed graphs and weighted graphs, and presented sublinear

algorithms for 2-approximation ((2 + 𝜖) for weighted graphs) beat-

ing the linear lower bounds for (2 − 𝜖)-approximation. Our re-

sults include: for directed unweighted MWC, �̃� (𝑛4/5 + 𝐷)-round
2-approximation algorithm; for directed weighted MWC, (2 + 𝜖)-
approximation algorithm with the same �̃� (𝑛4/5 + 𝐷) complexity;

for undirected weighted MWC, �̃� (𝑛2/3 + 𝐷)-round algorithm for

(2+𝜖)-approximation. For these three graph types, we showed lower

bounds of Ω̃(
√
𝑛) for any 𝛼-approximation of MWC, for arbitrarily

large constant 𝛼 . Whether we can bridge these gaps between upper

and lower bounds, or provide tradeoffs between round complexity

and approximation quality is a topic for further research.

Our approximation algorithms for weighted MWC (directed and

undirected) are based on scaling techniques, which introduce an

additional multiplicative error causing our algorithms to give (2+𝜖)-
approximation instead of the 2-approximation obtained in the un-

weighted case. The main roadblock in obtaining a 2-approximation

is an efficient method to compute exact SSSP from multiple sources,

on which we elaborate below.

When 𝑘 ≥ 𝑛1/3, we have presented a fast and streamlined

�̃� (
√
𝑛𝑘+𝐷)-round algorithm for 𝑘-source exact directed BFS, where

the key to our speedup is sharing shortest path computations from

different sources using skeleton graph constructions. Using scaling

techniques, we extended this to an algorithm for 𝑘-source directed

SSSP in weighted graphs, but only for (1+𝜖)-approximation. While

there have been recent techniques for a single source to compute ex-

act SSSP from approximate SSSP algorithms [9, 48] building on [34],

it is not clear how to extend them to multiple sources seems difficult.

These techniques involve distance computations on graphs whose

edge-weights depend on the source. As a result, we can no longer

construct a single weighted graph where we can share shortest com-

putations for 𝑘 sources. Providing an exact 𝑘-source SSSP algorithm

that matches the round complexity of our 𝑘-source approximate

weighted SSSP algorithm is a topic for further research.
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