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ORACLES FOR DISTANCES AVOIDING A FAILED NODE OR LINK∗
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Abstract. We consider the problem of preprocessing an edge-weighted directed graph G to
answer queries that ask for the length and first hop of a shortest path from any given vertex x to
any given vertex y avoiding any given vertex or edge. As a natural application, this problem models
routing in networks subject to node or link failures. We describe a deterministic oracle with constant
query time for this problem that uses O(n2 logn) space, where n is the number of vertices in G.
The construction time for our oracle is O(mn2 + n3 logn). However, if one is willing to settle for
Θ(n2.5) space, we can improve the preprocessing time to O(mn1.5 + n2.5 logn) while maintaining
the constant query time. Our algorithms can find the shortest path avoiding a failed node or link in
time proportional to the length of the path.
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1. Introduction. In the distance sensitivity problem, we wish to construct a
data structure (which we call distance sensitivity oracle) for an edge-weighted directed
graph G that supports the following queries:

v-dist(x, y, v): returns the distance from vertex x to vertex y in G − { v },
i.e., the length (sum of edge weights) of the shortest possible
path from x to y in G avoiding vertex v, if one exists, and +∞
otherwise.

e-dist(x, y, u, v): returns the distance from vertex x to vertex y in G−{ (u, v) },
i.e., the length (sum of edge weights) of the shortest possible
path from x to y in G avoiding edge (u, v), if one exists, and
+∞ otherwise.

We also consider the corresponding path queries, which we denote by v-path(x, y, v)
and e-path(x, y, u, v), respectively. In this article, we denote by n the number of
vertices and by m the number of edges in G. We also assume that edge weights are
nonnegative. In our bounds, space is measured as the number of memory words,
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1300 DEMETRESCU, THORUP, CHOWDHURY, AND RAMACHANDRAN

where each word can hold the label of a vertex or edge or the weight of an edge or
path.

In our directed case, we note that edge failures subsume vertex failures. The
reduction is well known from work on disjoint paths. We split each vertex v into an
in-vertex v0 and an out-vertex v1, with an in-out edge (v0, v1). The original incoming
edges are moved to v0 and the outgoing edges are moved to v1. Now losing the edge
(v0, v1) due to a network failure has the same effect as losing vertex v in the original
graph.

1.1. Motivation. Our motivating scenario is a network where node/link failures
happen quite rarely. As soon as a node or link failure has been noticed, we want to
be able to answer distance queries and provide directions for shortest paths in the
network without the failed node or link. On the other hand, we assume that we
have plenty of time to compute a new data structure in the background. We model a
network as a weighted directed graph where vertices correspond to network nodes, and
edges correspond to network links. In this scenario, v-dist(x, y, v) yields the distance
from node x to node y in the network avoiding failed node v, and e-dist(x, y, u, v)
yields the distance from node x to node y in the network avoiding failed link (u, v).

We note that the ability to deal with node/link failures enables us to deal with
some other related aspects of the network. For example, by dealing with a link failure
(u, v), we actually deal with arbitrary changes to its weight. More precisely, we can
simply compute the distance from vertex x to vertex y in the graph where (u, v) has
its weight changed to w as min{e-dist(x, y, u, v), dxu + w + dvy}, where dxu is the
distance from vertex x to vertex u and dvy is the distance from vertex v to vertex y
in the graph. Here, a weight change could model that traffic is moving slower/faster
along a certain link. An interesting application of dealing with single weight changes
is a local search like the one in [9]. There, one wants to consider a neighborhood of a
given weight setting, where each neighbor is obtained by changing a single weight.

Another motivation for solving the distance sensitivity problem arises from recent
interest in Vickrey pricing of networks [11, 19]. We describe this application in more
detail in section 1.4.

1.2. Related work. A variant of the distance sensitivity problem, related to
reachability in directed acyclic graphs w.r.t. edge failures, was first introduced by
King and Sagert in [14], where they consider the problem of supporting sensitivity
queries of the kind: “Is there a path from vertex x to vertex y that does not contain
edge (u, v)?” Here, we are concerned with general weighted digraphs and distance
queries instead of reachability queries, and we consider both vertex and edge failures.

This problem is similar to the replacement paths problem [11] (see also the erratum
for [11] and [12, 18, 21]) which, given a pair of vertices x and y in G, computes the set
of shortest paths from x to y avoiding each of the vertices (or edges) on πxy one at a
time, where πxy is the original shortest path from x to y in G. A method for solving
this problem on undirected graphs in O(m + n log n) preprocessing time and O(n)
space is given for the vertex removal case in [18] and for the edge removal case in
[11]. A method for solving this problem on unweighted directed graphs in Õ(m

√
n)

preprocessing time and Õ(n3/2) space is given in [21].

However, in this paper we are interested in finding replacement paths for all
possible sources and destinations, blowing up each of the above bounds by a factor
n2. In particular, the space becomes O(n3). Moreover, we consider the general case
of a weighted directed graph.

D
ow

nl
oa

de
d 

02
/2

8/
13

 to
 1

28
.8

3.
12

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISTANCE ORACLES FOR AVOIDING A FAILED NODE/LINK 1301

Of a similar flavor is the most vital node (or arc) problem [1, 2, 4, 18], which is the
problem of identifying the vertex (or edge) on a given shortest path, whose removal
results in the longest replacement path.

The most natural approach to the distance sensitivity problem would be to use
one of the recent dynamic all pairs shortest paths (APSP) algorithms [5, 6, 13, 15]

and delete the failed vertex or edge. The best bounds [6, 25] take Õ(n2) amortized
time for real weighted directed graphs, but then queries avoiding the failed vertex or
edge are answered in constant time. However, our goal here is to answer a query as
quickly as possible after a vertex or edge failure, and then it may be faster to compute
the answer from scratch at each query using an O(n log n+m) single-source shortest
paths (SSSP) algorithm [10].

Another extreme solution would be to construct a table that for each vertex pair
(x, y) and each vertex/edge stores the distance from x to y avoiding that vertex/edge.
For vertex failures, such a table of size O(n3) is trivially computed by n APSP com-
putations in O(mn2 + n3 log n) time. However, for edge failures the size of the trivial
table is Θ(mn2) and requires m APSP computations. Space can be reduced (at least
for the edge failure case) by working from one source x at a time, constructing a
shortest paths tree T (x). This tree changes only if we remove any of the O(n) ver-
tices or edges in it. Hence, it is only for these vertices and edges that we need to
record new distances from x. An implementation of this idea is given in [24]. If h is
the maximal hop count of a path in T (x), the construction uses h SSSP computations
in O(hm + hn log n) time and O(hn) space. However, we may have h = Ω(n), and
repeating the construction from all sources, we end up with a construction time of
O(mn2+n3 log n) and a space bound of O(n3) for our all pairs case. The fundamental
question considered here is if the cubic space bound can be improved.

Shortest paths computation. In the above time bounds, we have assumed that
SSSP is solved in O(m + n log n) time using Fibonacci heaps in Dijkstra’s SSSP
algorithm [10] and that APSP is solved with an SSSP from each vertex in O(mn +
n2 log n) time. We will make the same assumptions when stating our own results.

We note here that there are alternative faster algorithms in different situations.
For example, if the weights are represented as integer or floating point numbers, we
can compute SSSP in O(m+n log log n) time [26], or even in O(m) time if the graph is
undirected [23]. In the case of real weights, we can solve APSP in O(mn+n2 log log n)
time for sparse graphs [20] and in O(n3

√
log log n/log n) time for dense graphs [22, 27].

However, the above improvements are “only” by logarithmic factors, and in our
results for distance sensitivity oracles, we are aiming at polynomial improvements in
space and construction time. Hence we are satisfied just stating the time bounds
assuming Fibonacci heaps in Dijkstra’s algorithm.

1.3. Our results. The main result of this article is a deterministic oracle with
fast query time for both vertex and edge failures that uses nearly the same space as
that required for storing the distance matrix of the input graph. More precisely, we
construct an oracle that uses O(n2 log n) space and answers distance queries subject
to a vertex or edge failure in O(1) worst-case time. This result is quite surprising,
since the space bound is significantly smaller than Θ(n3) and yet our scheme answers
queries in O(1) time. We also present an Ω(m) space lower bound for the single-source
version of the problem. Since m can be as high as Ω(n2), our oracle is thus almost
space-optimal.

The construction time for our oracle is O(mn2 + n3 log n) in the worst case.
However, if one is willing to settle for Θ(n2.5) space, we can improve the preprocessing
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1302 DEMETRESCU, THORUP, CHOWDHURY, AND RAMACHANDRAN

Table 1.1

Known results and our contribution.

References Context
Graph
type

Construction
time

Space
Query
time

Nardelli et al. [18]
Most vital node

detection
[v-dist(x, y, v)]

Undirected O(mn2 + n3 logn) O(n3) O(1)

Hershberger
& Suri [11]

Vickrey pricing
in networks

[e-dist(x, y, u, v)]
Undirected O(mn2 + n3 logn) O(n3) O(1)

Our contribution
Vertex/edge failure

[v-dist(x, y, v)]
[e-dist(x, y, u, v)]

Directed
(or undirected)

Method 1

O(mn2 + n3 log n) O(n2 log n) O(1)

Method 2

O(mn1.5 + n2.5 logn) O(n2.5) O(1)

time to O(mn1.5 + n2.5 log n), and the query time remains constant. In Table 1.1 we
place our bounds in perspective by comparing them to the bounds for related problems
obtainable with previous algorithms: in the context of most vital node detection and
Vickrey pricing, we are extrapolating the performance of algorithms designed for a
single source-destination pair to the all pairs case.

To achieve our bounds, we construct data structures where we store information
about APSP excluding only vertices or edges with specific properties, rather than
excluding all possible vertices or edges. We also store information about shortest paths
where we exclude vertices on entire subpaths, rather than single vertices. We remark
that our algorithms are very simple and thus amenable to efficient implementations.

We note that vertex failures in directed graphs trivially subsume vertex failures in
undirected graphs, but the same does not hold for link failures as an undirected link
failure corresponds to two symmetric directed link failures. However, our solutions
happen to work for the undirected case as well.

Part of the results presented in this paper for link failures were presented in two
conference papers: one by the first two authors [7] which presented the two algorithms,
and the other by the last two authors [3]. The paper [3] improves the query time from
[7], but it also has an extra claim on construction time which is incorrect. Additionally,
this paper presents results obtained by the last two authors on extending the oracles
in [7, 3] to efficiently handle node failures in addition to link failures. This paper
also presents a lower bound result obtained by the first two authors on the space
requirement for the single-source version of the distance oracle problem.

1.4. Vickrey pricing in networks. The Vickrey mechanism is a generalization
of the sealed bid second price auction, in which the highest bidder wins the auction but
pays a price equal to the second highest bid. This auction protocol motivates a rational
bidder to bid truthfully [17]. In a distributed network in which multiple rational self-
interested agents own different parts of the network, Vickrey mechanism is often the
best way to determine the utility of various network elements. In order to elicit
truthful responses from the agents, each agent is compensated in proportion to the
marginal utility he/she brings to the network. Willing manipulations by participating
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Table 1.2

Complexity of computing Vickrey payments for all vertex pairs.

Algorithm Time Space Query time

Näıve O(n2(m + n logn)) O(n3) O(1)

Our 1st result O(n2(m + n logn)) O(n2 logn) O(1)

Our 2nd result O(n1.5(m + n logn)) O(n2.5) O(1)

agents is eliminated by making an agent’s payment depend only on the declarations
of other agents.

Consider a scenario in which we need to find shortest paths in a network G,
where links are owned by self-interested agents. Agents are assumed to bid on each
link individually. Nisan and Ronen [19] formulated the following expression as the
payment pe(x, y) to be made to the owner of a link e for a given vertex pair (x, y):

pe(x, y) =

{
dxy(G|we=∞) − dxy(G|we=0) if e ∈ πxy,
0 otherwise,

where πxy is a shortest path from vertex x to vertex y in G, and dxy(G|we=k) is the
distance from vertex x to vertex y in G, where the weight of edge e is set to k. For any
e ∈ πxy, the term dxy(G|we=0) can be simply computed as dxy(G|we=0) = dxy − we,
where dxy is the distance from x to y in G. However, computing dxy(G|we=∞) näıvely
for all e ∈ πxy requires running an O(m+n log n) time shortest paths algorithm [8, 10]
on G − {e} for each e ∈ πxy. This can be as high as O(mn + n2 log n) in the worst
case. This problem was studied in [11], but no improvement to this trivial bound is
known.

The distance sensitivity problem we study in this article is a generalization of
the above problem to the situation where one is potentially interested in finding all
Vickrey payments for all vertex pairs (instead of a single pair). In this case our first
algorithm can carry out the entire computation using significantly less space than
that used by the näıve algorithm. On the other hand, our second algorithm reduces
both time and space requirements of the computation. The complexities of all three
algorithms are compared in Table 1.2. Observe, however, that for very sparse graphs
the running time of the näıve algorithm can be improved to O(mn(m + n log log n))
[20].

1.5. Organization of the article. The remainder of this article is organized
as follows. In section 2 we introduce the notation used in the article, and we discuss
some simple properties that will be useful in the description of our results. In par-
ticular, we define the notion of “path cover,” showing how to use information about
shortest paths which avoid all vertices on certain paths in the graph to determine
a shortest path that avoids a single vertex. In section 3 we show how to efficiently
compute shortest paths from any given vertex to all other vertices in a directed graph
G with nonnegative real-valued edge weights where we avoid all vertices on certain
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types of paths. These tools are used in section 4 to devise an oracle for the distance
sensitivity problem that answers v-dist queries in constant worst-case time using
nearly the same space required for storing a single distance matrix. This oracle can
be constructed in O(mn2 + n3 log n) worst-case time. In section 5 we show that,
if one is willing to settle for more space, we can reduce the preprocessing time to
O(mn1.5 + n2.5 log n). This second oracle uses O(n2.5) space while still answering
v-dist queries in constant worst-case time. Section 6 shows how to extend the ora-
cles designed for vertex failures to also deal with edge failures, and section 7 addresses
the problem of supporting path queries v-path and e-path. A space lower bound for
the single-source version of the distance sensitivity problem is discussed in section 8.
Finally, section 9 provides some concluding remarks.

2. Preliminaries. Let G = (V,E,w) be a directed graph with vertex set V ,
edge set E, and edge weight function w. Throughout the article, we assume that,
for each pair of vertices x and y such that y is reachable from x, there is a unique
shortest path from x to y. This is without loss of generality, since ties can be broken
arbitrarily (see, e.g., [6]).

2.1. Notation. In this article, a path pxy is a sequence of vertices of the form
pxy = 〈v0, v1, v2, . . . , vk−1, vk〉 such that v0 = x, vk = y, and (vi, vi+1) ∈ E for
every i, 0 ≤ i < k. Thus, G − pxy is the subgraph of G induced by the vertex set
V − {x, v1, . . . , vk−1, y}. We let pxy · pyz denote the concatenation of path pxy with
path pyz. We denote by wxy the weight of edge (x, y) in G, and we indicate with
w(pxy) the length of pxy, i.e., the sum of weights of edges in pxy. We also denote by
T (x) the single-source shortest path tree of G with source x, and we denote by πxy

the (unique) shortest path from vertex x to vertex y in G, if any. Using a geometrical
analogy, we sometimes look at shortest paths as “segments,” using the notation [x, y]
instead of πxy. Similarly, we sometimes use ]x, y[ to denote πxy − {x, y }, [x, y[ to
denote πxy − { y }, and ]x, y] to denote πxy − {x }. We indicate with dxy the length
of πxy (distance from x to y in G), and with hxy the number of edges in πxy (number

of hops). If y is not reachable from x, we assume that dxy = hxy = +∞. By Ĝ
we denote the directed graph obtained from G by reversing the orientation of edges.
Thus, π̂ and T̂ denote π and T in Ĝ. If T is a rooted tree, we let BT (i, j) denote the
set of paths in T that connect vertices at level i with vertices at level j > i in the
tree, assuming that the root of T has level 0. Notice that, if πcd ∈ BT (x)(i, j), then
hcd = j − i. Let a and b be vertices on pxy; we say that a < b if a appears before b
on pxy, and a ≤ b if a < b or a = b. Finally, by πuv

xy we denote a shortest path from
vertex x to vertex y in G − [u, v]. The path πuv

xy could be thought of as an optimal
“replacement path” from x to y to be used in case all vertices in [u, v] fail. Observe
that, for each internal vertex v in πxy, v-dist(x, y, v) = w(πvv

xy). Indeed, the goal of
this article is to provide methods for answering queries about πvv

xy. The notation used
in this article is summarized in Table 2.1.

2.2. Structural properties. By our assumption of uniqueness of shortest paths,
for any pair of vertices a, b ∈ πxy such that a ≤ b, πab is a subpath of πxy. Moreover, if
πxy = {v0, v1, . . . , vk−1, vk}, then π̂yx = {vk, vk−1, . . . , v1, v0}; i.e., one is the reversal
of the other.

We now discuss a simple structural property of πuv
xy . In particular, the following

claim shows that, if y is reachable from x in G − [u, v], then πuv
xy and πxy share a

common prefix and a common suffix and are vertex-disjoint elsewhere (see Figure 2.1).
Intuitively, the internal subpath of πuv

xy that is vertex-disjoint from πxy can be thought
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Table 2.1

Notation used in this article.

Notation Meaning

G edge-weighted directed graph G = (V,E,w)

wxy weight of edge (x, y) in G

pxy path 〈x, v1, v2, · · · , vk−1, y〉 from vertex x to vertex y in G

pxy · pyz concatenation of path pxy with path pyz

w(pxy) length of path pxy (sum of weights of edges in pxy)

πxy or [x, y] shortest path from vertex x to vertex y in G (we assume it is unique)

]x, y[ πxy − {x, y }

[x, y[ πxy − { y }

]x, y] πxy − {x }

hxy number of edges in πxy

dxy distance from vertex x to vertex y in G (dxy = w(πxy))

T (x) shortest path tree rooted at x in G (x is at level 0 in T (x))

Ĝ reversed graph (V, Ê, ŵ) s.t. Ê = {(x, y) : (y, x) ∈ E} and ŵxy = wyx

T̂ (x), π̂xy T (x) and πxy in Ĝ instead of G

BT (i, j) set of all paths in tree T connecting vertices at level i to vertices at level j

a < b in pxy vertex a precedes vertex b in pxy

πuv
xy shortest path from x to y in G− [u, v]

dxy(l1, l2, r1, r2)
min a ∈ [l1, l2[

b ∈ ]r1, r2]

{ dxa + w(πl2r1
ab ) + dby }

(see Definition 2.1)

of as an “optimal detour” that avoids vertices in [u, v].
Claim 1. Let G = (V,E,w) be an edge-weighted directed graph. For any x, y ∈ V

and for any u, v ∈ πxy with x < u ≤ v < y, if πuv
xy �= ∅, then there exist two vertices

a, b ∈ πxy such that πuv
xy = πxa · pab · πby, where pab ∩ πab = {a, b}.

Proof. We first notice that πxy and πuv
xy are both paths in G, since every path in

G− [u, v] is also a path in G. Moreover, πxy �= πuv
xy , since u ∈ πxy, but u �∈ πuv

xy .
Now, let pxa be the longest common prefix of πuv

xy and πxy, and let pby be their
longest common suffix. These subpaths are never empty, since πuv

xy and πxy share at
least their endpoints. This proves the existence of vertices a and b in our claim.

Since every subpath of πxy is a shortest path (by the optimal substructure prop-
erty of shortest paths) and shortest paths are unique in G, then pxa = πxa and
pby = πby. Furthermore, since πxy �= πuv

xy , then a �= b and pxa ∩ pby = ∅. Thus, we can
write πuv

xy as πxa · pab · πby for some pab.
It remains to prove that pab ∩ πab = {a, b}. Suppose by contradiction that there

is a vertex c ∈ pab ∩ πab such that a < c < b. Now, observe that c /∈ [u, v], since
pab∩[u, v] = ∅, and that [u, v] is a subpath of πab, since πxa∩[u, v] = ∅ and πby∩[u, v] =
∅. Assume without loss of generality that c < u in πxy (the case v < c is completely
analogous). Consider the subpath πac of πab, and notice that it is a shortest path in
both G and G − [u, v]. Now, pab is a shortest path in G − [u, v], and thus, by the
optimal-substructure property, its subpath pac has to be shortest as well in G− [u, v].
Since shortest paths are unique in G − [u, v], then pac = πac, and thus πxy and πuv

xy
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u v yx a b

π xa π by

= πuv
abpab

Fig. 2.1. Structure of a replacement path πuv
xy = πxa · pab · πby.

share the same subpath from x to c > a. This means that a cannot be the last vertex
of the longest common prefix of πuv

xy and πxy, which is clearly a contradiction.

2.3. Path covering. We now discuss the notion of “path covering” that will be
crucial to proving the correctness of our query algorithms.

Definition 2.1. Let x ≤ l1 < l2 ≤ r1 < r2 ≤ y be vertices on πxy. We define
dxy(l1, l2, r1, r2) as

dxy(l1, l2, r1, r2) = min
a ∈ [l1, l2[
b ∈ ]r1, r2]

{ dxa + w(πl2r1
ab ) + dby },

and we say that a value d covers [l1, l2[ × ]r1, r2] w.r.t. x, y if d ≤ dxy(l1, l2, r1, r2).

In this case, we also say that d covers all paths of the form πxa · πl2r1
ab · πby for each

a ∈ [l1, l2[ and for each b ∈ ]r1, r2].
Observe that dxy(l1, l2, r1, r2) is the distance from vertex x to vertex y in G using

paths that first follow a shortest path from x to some vertex a in [l1, l2[, then take
an optimal detour that avoids all vertices in [l2, r1], and finally go through a shortest
path from some vertex b in ]r1, r2] to y. The following claim, which easily follows from
Definition 2.1 and from Claim 1, states that, if l1 = x and r2 = y, then dxy(l1, l2, r1, r2)
is equal to the length of the shortest path from x to y avoiding [u, v].

Claim 2. Let x < u ≤ v < y be vertices on πxy. Then w(πuv
xy ) = dxy(x, u, v, y).

We now show how information about the distance from x to y avoiding [u, v]
with detours having constrained positions of their endpoints can be used to compute
w(πuv

xy ). The following claim will be useful to prove the correctness of our query
algorithms.

Claim 3. For any x < û ≤ ũ < u ≤ v < ṽ ≤ v̂ < y on πxy,

dxy(x, u, v, y) = min{dxy(x, ũ, ṽ, y), dxy(û, u, v, y), dxy(x, u, v, v̂)}.

Proof. Let the endpoints of the optimal detour in πuv
xy be a and b, a < b, and

consider all possible positions of a in [x, u[:
• a in [x, û[: d1 = dxy(x, u, v, v̂) handles the cases when b lies in ]v, v̂]; i.e., d1

covers [x, û[ × ]v, v̂] w.r.t. x, y. Moreover, d2 = dxy(x, ũ, ṽ, y) handles the
cases when b lies in ]v̂, y]; i.e., d2 covers [x, û[ × ]v̂, y] w.r.t. x, y. Thus,
d3 = min{dxy(x, u, v, v̂), dxy(x, ũ, ṽ, y)} handles all possible positions of b in
]v, y]; i.e., d3 covers [x, û[ × ]v, y] w.r.t. x, y.

• a in [û, u[: d4 = dxy(û, u, v, y) handles the cases where b lies in ]v, y]; i.e., d4

covers [û, u[ × ]v, y] w.r.t. x, y.
Thus, for each possible position of a in [x, u[, d5 = min(dxy(x, ũ, ṽ, y), dxy(û, u, v, y),
dxy(x, u, v, v̂)) handles all possible positions of b in ]v, y]; i.e., d5 covers [x, u[ × ]v, y]
w.r.t. x, y. Since d5 equals the length of some path from x to y in G− [u, v], we can
then conclude that d5 = dxy(x, u, v, y).
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3. Distances under deletion of paths. In this section we provide simple
algorithms for computing distances in a directed graph G with nonnegative real-
valued edge weights where we avoid all vertices on certain paths. These algorithms
will be useful in sections 4 and 5 for constructing distance sensitivity oracles.

Let x be a vertex and let P be a set of shortest paths in G. We consider the
problem of designing a procedure exclude(G, x, P ) that computes for each path π ∈ P
the distances from vertex x to all other vertices in G− π. Throughout this article we
assume that the deletion of the vertices on a given path π results in the deletion of
all its vertices including its endpoints.

We can compute exclude(G, x, P ) with a straightforward algorithm that runs in
O(|P |(m + n log n)) worst-case time using a Dijkstra computation [10] on the graph
G with all vertices in π deleted for each π ∈ P . In the remainder of this section we
show that this computation can be made considerably more efficient if we restrict our
attention to P ⊆ T (x) (i.e., every path in P is also a path in T (x)) and if we assume
that paths in P are “independent,” a notion we define in Definition 3.1.

3.1. Algorithm fast-exclude. In this section we devise a variant of exclude
(G, x, P ), which we call fast-exclude(G, x, P ), for the case when P ⊆ T (x). As
above, our goal is to compute for each path π ∈ P the distances from vertex x to all
other vertices in G− π.

Let P ⊆ T (x), and for any path π ∈ P , denote by Tx(π) the subtree of T (x)
rooted at the first vertex of π, and let Wπ be the set of all vertices in Tx(π) except the
vertices on π. We observe that only vertices in Wπ may have their distances from x
increased if we remove from G the vertices on π. Now, consider the following directed
graph Gπ = (Vπ, Eπ, wπ), where the following hold:

• Vπ = Wπ ∪ {x}.
• Eπ contains an edge from x to each vertex in Wπ and the edges in G induced

by vertices in Wπ.
• wπ,ab is the weight of edge (a, b) in Gπ defined as

wπ,ab =

{
minc�∈Tx(π){dxc + wcb} if a = x,
wab otherwise,

where we assume that dxc = +∞ if c is not reachable from x in G and
wcb = +∞ if (c, b) is not an edge of G.

It is not difficult to see (see proof of Claim 4) that the shortest path from vertex x
to a vertex v in Wπ has the same length in G − π as the shortest path from x to v
in Gπ. Hence, distances in G − π from x to all vertices in Wπ can be computed by
a Dijkstra computation on Gπ with source x. The algorithm fast-exclude(G, x, P )
works in the same way as exclude(G, x, P ), but it uses Gπ instead of G for each π in
P .

Since the graph Gπ is typically smaller than G, fast-exclude can be expected to
have better performance than exclude for any collection of paths P ⊆ T (x). We now
define the notion of independent shortest paths, and we show that fast-exclude per-
forms significantly better than exclude when P ⊆ T (x) is a collection of independent
shortest paths.

Definition 3.1. Let T be a rooted tree and let πuv and πu′v′ be two paths in T .
We say that πuv and πu′v′ are independent in T if the subtree of T rooted at u and
the subtree of T rooted at u′ are disjoint.

Claim 4. If P ⊆ T (x) is a set of pairwise independent shortest paths in T (x),
then algorithm fast-exclude(G, x, P ) requires O(m+n log n) time in the worst case

D
ow

nl
oa

de
d 

02
/2

8/
13

 to
 1

28
.8

3.
12

0.
10

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1308 DEMETRESCU, THORUP, CHOWDHURY, AND RAMACHANDRAN

and computes the same output as exclude(G, x, P ).

Proof. Using the notation given above, for a given π ∈ P , let π′
xy be the shortest

path from x to any y ∈ Wπ avoiding the vertices on π. Let b be the first vertex
on π′

xy such that b ∈ Wπ, and let c be the vertex preceding b. Then let us write
π′

xy = pxc · 〈c, b〉 · π′
by, where 〈c, b〉 is the path from c to b formed by the single edge

(c, b). Since for any z �∈ Tx(π), the path πxz is composed entirely of the vertices in
T (x)−Tx(π), it follows that pxc = πxc. Also note that π′

by cannot contain any vertex
z �∈ Tx(π), since if it contains such a vertex z, then πxz will be a shorter path to z,
contradicting our choice of b. These two observations justify the use of Gπ instead of
G− π in order to compute the shortest path tree rooted at x avoiding the vertices on
π.

For each π ∈ P , |Vπ| is never greater than the number of vertices in Tx(π). Since
the paths in P are pairwise independent, any two such subtrees are disjoint for distinct
paths in P . Since each Eπ contains edges in G induced by vertices in Wπ and edges
from x to only the vertices in Wπ, it follows that the sum of the cardinalities of all
Vπ and Eπ are linear in n and m, respectively. Hence, fast-exclude(G, x, P ) runs
in O(m + n log n) time when P ⊆ T (x) is a set of independent shortest paths.

4. Oracle with O(1) query time and O(n2 logn) space. In this section
we describe a deterministic oracle for single-vertex failure with constant query time
that uses nearly the same space as that required for storing a single distance matrix.
In particular, we show how to preprocess a graph with nonnegative real-valued edge
weights in O(mn2 + n3 log n) worst-case time, producing a compact oracle that uses
O(n2 log n) space and answers v-dist queries in O(1) worst-case time.

4.1. Data structure. Using O(n2 log n) space, we maintain each dxy and hxy,
and we maintain six matrices dl, dr, sl, sr, vl, and vr of size n× n× 
log2 n� defined
for every pair of distinct vertices x and y as follows:

• dl[x, y, i] = distance from vertex x to vertex y in G− π, where π is the sub-
path of πxy starting at level 2i−1 and ending at level 2i − 1 in T (x), and
1 ≤ i ≤ log2 hxy;

• dr[x, y, i] = distance from vertex y to vertex x in Ĝ− π, where π is the sub-

path of π̂yx starting at level 2i−1 and ending at level 2i − 1 in T̂ (y), and
1 ≤ i ≤ log2 hxy;

• sl[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the
vertex of πxy at level 2i−1 in T (x), and 1 ≤ i < 1 + log2 hxy;

• sr[x, y, i] = distance from vertex y to vertex x in Ĝ − {v}, where v is the

vertex of π̂yx at level 2i−1 in T̂ (y), and 1 ≤ i < 1 + log2 hxy;
• vl[x, y, i] = vertex of πxy at level 2i−1 in T (x), where 1 ≤ i ≤ 1 + log2 hxy;

• vr[x, y, i] = vertex of π̂yx at level 2i−1 in T̂ (y), where 1 ≤ i ≤ 1 + log2 hxy.

4.2. Preprocessing. The above quantities are computed in the preprocessing
phase as follows:

• Distances dxy and hxy and matrices vl and vr are easily initialized from
shortest path trees of G.

• To compute dl[x, y, i], we call procedure exclude(G, x,BT (x)(2
i−1, 2i − 1)),

discussed in section 3, for each x and for each i, 1 ≤ i < log2 n.

• To compute dr[x, y, i], we call procedure exclude(Ĝ, y, BT̂ (y)(2
i−1, 2i − 1)),

for each y and for each i, 1 ≤ i < log2 n.
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function v-dist(x, y, v) : R
1. if dxv + dvy > dxy then return dxy
2. l ← �log2 hxv�
3. if l = log2 hxv then return sl[x, y, l + 1]
4. r ← �log2 hvy�
5. if r = log2 hvy then return sr[x, y, r + 1]
6. û ← vr[x, v, l], v̂ ← vl[v, y, r]
7. d ← min{dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y}
8. if hxv ≤ hvy then d ← min{d, dl[x, y, l]} {v in left half}
9. else d ← min(d, dr[x, y, r]) {v in right half}
10. return d

Fig. 4.1. Query algorithm for the first oracle.

• For each x and for each i, 1 ≤ i < 1 + log2 (n− 1), we compute sl[x, y, i] by
calling procedure fast-exclude(G, x,BT (x)(2

i−1, 2i−1)).

• We compute sr[x, y, i] by calling procedure fast-exclude(Ĝ, y, BT̂ (y)(2
i−1,

2i−1)) for each y and for each i, 1 ≤ i < 1 + log2 (n− 1).

4.3. Query. The query algorithm is shown in Figure 4.1. We address only the
general interesting case where v �= x and v �= y; otherwise, the answer is clearly +∞.
In line 1 of the algorithm, we get rid of the case where v /∈ πxy and return dxy as the
answer. Lines 2 and 3 take care of the case where v is 2l edges away from vertex x
on πxy for some nonnegative integer l, 0 ≤ l < log2 hxy. Lines 4 and 5 handle the
case where v is 2r edges away from vertex y on π̂yx for some nonnegative integer r,
0 ≤ r < log2 hxy. Lines 6 to 9 take care of the remaining cases.

4.4. Analysis. We first discuss the correctness of our query procedure. Using
the matrices sl and sr, lines 2 to 5 of the query algorithm answer the following two
types of trivial queries: (1) hxv = 2l for some nonnegative integer l, 0 ≤ l < log2 hxy,
and (2) hvy = 2r for some nonnegative integer r, 0 ≤ r < log2 hxy. So in order to
prove the correctness of v-dist, we need only to prove the correctness of the code
segment of lines 6 to 9 that handles the nontrivial case when neither of the above two
conditions holds.

In line 7, we assign d to the minimum of dxû + sl[û, y, l] and sr[x, v̂, r] + dv̂y,
where dxû + sl[û, y, l] = dxy(û, v, v, y) and sr[x, v̂, r] + dv̂y = dxy(x, v, v, v̂). In line 8,
we consider the case where hxv ≤ hvy, i.e., v is in the first half of πxy (see Figure 4.2).
In this case, 0 < hxû < hûv = 2l−1 ≤ hvv̂. The value dl[x, y, l] is the distance from x
to y avoiding a subpath having 2l−1 vertices and starting at a vertex that is 2l−1 edges
away from x on πxy. Let the endpoints of that subpath be ũ and ṽ, and hxũ < hxṽ.
So, we have x < û ≤ ũ < v < ṽ ≤ v̂ < y. Thus, by Claim 3, d covers [x, v[× ]v, y]
following the assignment in line 8. By construction of matrices dl, sr, and sr, d is
always equal to the weight of some path from x to y that does not use vertex v. Thus,
we can conclude that d is the desired answer to v-dist(x, y, v). A similar argument
holds for the case where hxv > hvy (line 9).

We now address the running times of preprocessing and query procedures.

Claim 5. Preprocessing requires O(mn2 + n3 log n) worst-case time and any
v-dist operation requires O(1) worst-case time.

Proof. We observe that the number of distinct paths in BT (x)(2
i−1, 2i − 1) is
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yvx

Paths covered by sr[x,v,r]^

û

2r-1

u~ v~ v̂

yvx

Paths covered by sl[u,y,l]^

û

2l-1

u~ v~ v̂

yv~vx u~

2l-1

Paths covered by dl[x,y,l]

û v̂

Fig. 4.2. Query example with hxv ≤ hvy: The distance from vertex x to vertex y in G − {v}
can be obtained by taking the minimum of dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y, and dl[x, y, l]. Notice
that the union of the paths in the grey areas in the figure is the set of all possible detours avoiding
vertex v.

exactly the same as the number of vertices on level 2i − 1 in T (x). Hence, the total
number of distinct paths in all BT (x)(2

i−1, 2i − 1) for 1 ≤ i < log2 n is bounded
from above by the number of vertices in T (x). Since exclude(G, x, P ) runs in
O(|P |(m + n log n)) time and

∑
1≤i<log2 n |BT (x)(2

i−1, 2i − 1)| = O(n), the matri-

ces dl and dr can be calculated in O(mn2 + n3 log n) worst-case time. On the
other hand, for each x and for each i, 1 ≤ i < 1 + log2 (n− 1), we can compute
sl[x, y, i] by calling procedure fast-exclude(G, x,BT (x)(2

i−1, 2i−1)) since the single-
vertex paths in BT (x)(2

i−1, 2i−1) are trivially pairwise independent in T (x). Since
fast-exclude(G, x,BT (x)(2

i−1, 2i−1)) runs in O(m+n log n) time, the total time re-

quired to compute the matrix sl is O(mn log n+n2 log2 n). Similarly the matrix sr can
be computed in O(mn log n + n2 log2 n) time. Hence the preprocessing time is domi-
nated by the time to compute the dl and dr matrices and requires O(mn2 + n3 log n)
worst-case time.

Since the query algorithm executes a constant number of steps, it runs in O(1)
worst-case time.

5. Improving the preprocessing time. In this section we show that, if one
is willing to settle for more space, we can design a distance sensitivity oracle where
we reduce the preprocessing time to O(mn1.5 + n2.5 log n). This second oracle uses
O(n2.5) space and answers distance queries in O(1) worst-case time.

5.1. Data structure. We maintain each dxy and hxy, and we maintain five
matrices dh, dt, vc, dc, and bc using O(n2.5) space. Matrix dh has size n× n× 


√
n�,

matrices dt, vc, and dc have size n× n× 
2
√
n�, and matrix bc has size n× n. They
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(a) Sequence {li} obtained by cutting 
T'(x) at vertices of degree >1

(b) Sequence {si} obtained by cutting 
at regular intervals of height √n

(c) Sequence {qi} obtained by 
merging sequences {li} and {si}

l0

l1

l2
l3

x x xs0

s1

s2

s3

s4

q0

q1

q4
q5

q2

q3

q6

q7

Fig. 5.1. Constructing matrix dc: Cutting tree T ′(x) to form bands of pairwise independent
shortest paths in it.

are defined as follows:
• dh[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the

vertex of πxy at level i in T (x) and 0 < i ≤
√
n;

• dt[x, y, i] = distance from vertex x to vertex y in G − {v}, where v is the

vertex of πxy at level i in T̂ (y) and 0 < i ≤ 2
√
n;

• vc[x, y, i] = vertex of πxy at level qi in T (x), where q0 = 0 < q1 < · · · < qk < n
is any increasing sequence of k + 1 ≤ 2

√
n positive numbers depending on x,

and qi− qi−1 ≤
√
n for any i, 1 ≤ i ≤ k (a method for obtaining the sequence

{qi : 0 ≤ i ≤ k} is described in section 5.2.1);
• dc[x, y, i] = distance from vertex x to vertex y in G − [û, v̂], where û is the

successor of vc[x, y, i] in πxy and v̂ = vc[x, y, i+1] if hv̂y >
√
n and is undefined

otherwise;
• bc[x, y] = index i such that qi + 1 ≤ hxy ≤ qi+1.

5.2. Preprocessing. As distances dxy and hxy are easily initialized from short-
est path trees of G, we focus on constructing matrices dh, dt, dc, vc, and bc. Since
bands BT (x)(i, i) contain paths formed by single vertices, which are trivially pairwise
independent in T (x), constructing matrix dh can be done by performing calls to algo-
rithm fast-exclude(G, x, BT (x)(i, i)), presented in section 3, for each vertex x and
for each i such that 0 < i ≤

√
n. Similarly, matrix dt can be initialized via calls to

algorithm fast-exclude(Ĝ, y, BT̂ (y)(i, i)) for each vertex y and for each i such that

0 < i ≤ 2
√
n.

To compute dc, we consider the problem of cutting each shortest path tree T (x)
into at most 2

√
n bands of height ≤

√
n, finding a suitable subset of each band

containing pairwise independent shortest paths in T (x), and calling fast-exclude to
compute distances without those paths. To do so, we need to compute for each vertex
x a suitable sequence {qi : 0 ≤ i ≤ k}.

5.2.1. Computing the qi’s. For each vertex x we wish to find a sequence
q0 = 0 < q1 < · · · < qk < n of length k + 1 ≤ 2

√
n such that qi − qi−1 ≤

√
n for any

i, 1 ≤ i ≤ k, and compute a subset of paths in BT (x)(qi + 1, qi+1) that are pairwise
independent in T (x). The following claim provides a nice combinatorial property on
trees that helps us solve the problem.

Let T be a rooted directed tree with n vertices and let size(v) be the number of
vertices in the subtree of T rooted at v. Let T ′ be obtained from T by deleting any
vertex u such that size(u) ≤

√
n in T .
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Claim 6. For any directed tree T with n vertices, at most
√
n vertices in T ′ have

out-degree > 1.
Proof. Since T ′ contains only vertices that have size greater than

√
n in T , T ′

has at most
√
n leaves. This implies that at most

√
n vertices of T ′ have out-degree

> 1.
Let l0 < l1 < · · · < lk be the sequence of levels in T ′ such that at each level li

there is a vertex with out-degree > 1 in T ′ (Figure 5.1(a)). By Claim 6, k ≤
√
n. We

now observe that cutting T ′ at each li yields bands of vertex-disjoint paths.
Claim 7. For any i, 1 ≤ i < k, BT ′(li+1, li+1) is a band of vertex-disjoint paths.
Proof. BT ′(li + 1, li+1) contains all paths that connect vertices at level li + 1

with vertices at level li+1 in T ′. The proof easily follows by observing that, by the
definition of sequence {li}, all vertices in T ′ at levels li +1 to li+1 −1 have out-degree
≤ 1.

Notice that, since by Claim 7 BT ′(li + 1, li+1) is a band of vertex-disjoint paths
and all of them start at the same level li + 1 in T ′, then they are clearly pairwise
independent in T ′. As T ′ is obtained by pruning T , BT ′(li +1, li+1) ⊆ BT (li +1, li+1)
and paths in BT ′(li + 1, li+1) are also pairwise independent in T . Unfortunately,
however, we are not guaranteed that li − li−1 ≤

√
n, as we need for constructing dc.

However, we note that splitting a band of vertex-disjoint paths yields again bands of
vertex-disjoint paths. This leads to the following claim.

Claim 8. If BT (i+1, j) is a band of vertex-disjoint paths, then for any i < h < j,
both BT (i + 1, h) and BT (h + 1, j) are bands of vertex-disjoint paths.

Let s0 < s1 < · · · < s	√n� be a sequence such that si = i · 

√
n� (Figure 5.1b). By

Claim 8, if we merge sequences {li} and {si} and get rid of duplicates, we obtain an
ordered sequence {qi} of length at most 2

√
n with the desired properties (Figure 5.1c).

5.2.2. Computing vc, dc, and bc. We remark that {qi} induces at most
2
√
n bands of vertex-disjoint paths in T ′(x) with height ≤

√
n. Clearly, these paths

are pairwise independent in T ′(x). To initialize dc, we can thus perform calls to
fast-exclude(G, x,BT ′(x)(qi + 1, qi+1)) for each vertex x and for each 0 < i ≤ 2

√
n.

Again, we can use fast-exclude instead of exclude.
At this point, one may argue that excluding only independent paths in T ′(x),

which is obtained by pruning T (x), might not give the correct result for some dc[x, y, i]
if y �∈ T ′(x). However, dc[x, y, i] is defined only when hv̂y >

√
n, where v̂ =

vc[x, y, i + 1], and v̂ ∈ T ′(x) in this case. Thus dc[x, y, i] is correctly computed
by calling fast-exclude(G, x,BT ′(x)(qi + 1, qi+1)).

Finally, we observe that once sequences {qi} have been computed for each T (x),
matrices vc and bc can be easily initialized.

5.3. Query. The query algorithm is shown in Figure 5.2. We first get rid of the
cases where v �∈ πxy and hvy ≤ 2

√
n, for which the answers are stored explicitly in

dxy and dt[x, y, hvy], respectively (lines 1–2). In line 3 we retrieve the unique index i
such that v falls in BT (x)(qi + 1, qi+1), and then in lines 4–5 we identify the vertices
û and v̂ on the path πxy in T (x) that are at levels qi + 1 and qi+1, respectively. The
correct answer is given in line 6 by accessing matrices dc, dh, and dt.

5.4. Analysis. To prove the correctness of v-dist in the case that lines 3–7
are executed, we first note that hvy > 2

√
n implies hv̂y >

√
n, since by construction

qi − qi−1 ≤
√
n, and thus dc[x, y, i] is well defined. We now prove that the answer

takes into account all possible configurations of the endpoints of detours πuv
ab (see

Figure 2.1). It is easy to see that x < û < v < v̂ < y and
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function v-dist(x, y, v) : R
1. if dxv + dvy > dxy then return dxy
2. if hvy ≤ 2

√
n then return dt[x, y, hvy]

3. i ← bc[x, v]
4. û ← successor of vc[x, y, i] in πxy

5. v̂ ← vc[x, y, i + 1]
6. d ← min { dc[x, y, i],

dxû + dh[û, y, hûv],
dt[x, v̂, hvv̂] + dv̂y }

7. return d

Fig. 5.2. Query algorithm for the second oracle.

• dc[x, y, i] = dxy(x, û, v̂, y),
• dxû + dh[û, y, hûv] = dxy(û, v, v, y), and
• dt[x, v̂, hvv̂] + dv̂y = dxy(x, v, v, v̂).

Thus, by Claim 3, d = dxy(x, v, v, y).
Claim 9. Preprocessing requires O(mn1.5 + n2.5 log n) worst-case time and any

v-dist operation requires O(1) worst-case time.
Proof. Growing shortest path trees T (x) for all vertices x requires O(mn+n2 log n)

time in the worst case [10]. The proof for the preprocessing follows from Claim 4 by ob-
serving that initializing dc, dh, and dt is carried out via O(

√
n) calls to fast-exclude

for each vertex x. The bound for queries is straightforward.

6. Handling edge failures. The oracles in the previous two sections can be
easily extended to handle edge failures by maintaining one additional matrix de of
size n× n for any x and y:

• de[x, y] = distance from vertex x to vertex y in G without the first edge of
πxy.

Claim 10. The matrix de can be initialized in O(mn + n2 log n) time.
Proof. The proof directly follows from the properties of an earlier version of

the algorithm fast-exclude in [7] based on the notion of edge-independent paths.
However, since in this article we use the notion of vertex-independent paths instead,
we present a proof of the claim based on it.

Consider a given T (x), and let v1, v2, . . . , vk be the children of x in T (x). We
extend T (x) to T ′(x) and thus G to G′ by introducing k new vertices u1, u2, . . . , uk

and for 1 ≤ i ≤ k, replacing each edge (x, vi) in T (x) by two consecutive edges
(x, ui) and (ui, vi). Clearly removing any vertex ui from T ′(x) has the same effect
as removing the corresponding edge (x, vi) from T (x). Therefore, since the single-
vertex paths in BT ′(x)(1, 1) are trivially independent, we can compute de[x, y] for
all y ∈ V − {x} in time O(m + n log n) by calling fast-exclude(G′, x, BT ′(x)(1, 1)).
(Note that we can perform the same computation in the same time bound without
constructing G′ explicitly but instead extending fast-exclude to handle this special
case.) Since we need to call fast-exclude once for each x ∈ V , the total initialization
time for de is O(mn + n2 log n).

6.1. Query. The query algorithm is shown in Figure 6.1. In line 1 of the al-
gorithm, we get rid of the case where the failed edge is not on πxy. In line 2, d1 is
assigned the distance from x to y avoiding vertex u and thus edge (u, v). In line 3, d2

is assigned the distance from x to y that avoids the edge (u, v) but passes through the
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function e-dist(x, y, u, v) : R
1. if dxu + wu,v + dvy > dxy then return dxy
2. d1 ← v-dist(x, y, u)
3. d2 ← dxu + de[u, y]
4. d ← min{d1, d2}
5. return d

Fig. 6.1. Query algorithm for link failure.

vertex u. In line 4, d is assigned the minimum of d1 and d2 which is then returned in
line 5 as the shortest x to y distance avoiding (u, v).

6.2. Analysis. We observe that the paths in G from x to y that avoid (u, v) can
be divided into two groups: (1) paths that avoid u and (2) paths that pass through
u. Line 2 of the algorithm finds the length of the shortest path in group (1), and line
3 does the same for group (2). Thus the minimum of the two distances obtained in
lines 2 and 3 gives the required distance. Note that since v-dist runs in constant
worst-case time, so does e-dist.

6.3. Avoiding two consecutive edges. In this section we observe that the
distance from any vertex x to another vertex y avoiding two consecutive failed edges
on πxy can be computed in constant time by maintaining another n × n matrix d̂e,

which is the dual of de in Ĝ:

• d̂e[x, y] = distance from vertex y to vertex x in Ĝ without the first edge of
π̂yx.

Assuming that the two consecutive failed links are (u, v) and (v, w), all paths in
G from x to y avoiding those two edges can be divided into two groups: (1) paths that
avoid v (the length of the shortest such path can be found by calling v-dist(x, y, v))
and (2) paths that pass through v (the length of the shortest such path is given by

d̂e[x, v] + de[v, y]). Thus the smaller of these distances is the required distance.

7. Supporting path queries. The oracles presented in this paper can easily be
extended to support path queries of the form v-path(x, y, v) and e-path(x, y, u, v),
which return the first edge on the shortest path from vertex x to vertex y in G− {v}
and in G− {(u, v)}, respectively.

In this section, we show how to extend the oracle given in section 4 to support
v-path(x, y, v) queries. Extending the other oracles and supporting e-path(x, y, u, v)
queries can easily be done in a similar way. We add to the data structure of section 4.1
the following additional matrices:

• dle[x, y, i] = (x, x′), where (x, x′) is the first edge on the shortest path from
vertex x to vertex y (�= x) in G− π, and π is the subpath of πxy starting at
level 2i−1 and ending at level 2i − 1 (1 ≤ i ≤ log2 hxy) in T (x);

• dre[x, y, i] = (x, x′), where (x′, x) is the last edge on the shortest path from

vertex y to vertex x (�= y) in Ĝ− π, and π is the subpath of π̂yx starting at

level 2i−1 and ending at level 2i − 1 (1 ≤ i ≤ log2 hxy) in T̂ (y);
• sle[x, y, i] = (x, x′), where (x, x′) is the first edge on the shortest path from

vertex x to vertex y (�= x) in G−{v}, and v is the vertex of πxy at level 2i−1

(1 ≤ i < 1 + log2 hxy) in T (x);
• sre[x, y, i] = (x, x′), where (x′, x) is the last edge on the shortest path from
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function v-path(x, y, v) : E
1. if dxv + dvy > dxy then return first edge of πxy

2. l ← �log2 hxv�
3. if l = log2 hxv then return sle[x, y, l + 1]
4. r ← �log2 hvy�
5. if r = log2 hvy then return sre[x, y, r + 1]
6. û ← vr[x, v, l], v̂ ← vl[v, y, r]
7. d ← min{dxû + sl[û, y, l], sr[x, v̂, r] + dv̂y}
8. if d = dxû + sl[û, y, l] then e ← first edge of πxû

9. else e ← sre[x, v̂, r]
10. if hxv ≤ hvy and dl[x, y, l] < d then e ← dle[x, y, l] {v in left half}
11. if hxv > hvy and dr[x, y, r] < d then e ← dre[x, y, r] {v in right half}
12. return e

Fig. 7.1. Path version of the query algorithm for our first oracle.

vertex y to vertex x (�= y) in Ĝ−{v}, and v is the vertex of π̂yx at level 2i−1

(1 ≤ i < 1 + log2 hxy) in T̂ (y).

Matrices dle, dre, sle, and sre can easily be initialized in the preprocessing phase
within the same time bounds by a simple extension of procedures exclude and
fast-exclude described in section 3. Figure 7.1 shows an implementation of op-
eration v-path obtained as a modification of the query procedure v-dist given Fig-
ure 4.1. The analysis is straightforward and is left to the reader.

8. A space lower bound. In this section, we briefly discuss a space lower
bound for the single-source version of the distance sensitivity problem. This version
is relevant for shortest path routing in networks [16]: a router cares only about itself
as a source when deciding which outgoing link to use when forwarding a packet on a
shortest path to its destination. We would therefore like a single-source routing table
working under each possible failure. The solution in [24] uses O(hn) space if h is
the maximal hop count on a shortest path to a destination. However, we might have
h = Ω(n). Corresponding to our O(n2 log n) space solution for the all pairs case, we
would like an O(n log n) space solution for the single-source case. For single-source
and single-destination we can get down to O(n) space if the graph is undirected, and
this includes a representation of the alternative paths [11, 19], but now we want an
Õ(n) solution working for all possible destinations and failures. Below we show that
this is impossible if m is large. In fact, we will prove that the O(h · n) space bound
from [24] is tight. More precisely, for any number of vertices n > 2, and h < n, we will
demonstrate a graph with m = Θ(hn) edges, with maximal hop count h in shortest
paths from a specified source, and so that any single-source distance oracle for failures
requires Ω(hn) space no matter whether it is for edge or vertex failures or for directed
or undirected graphs.

First we present the construction for h = n− 1. We assume that the word length
w is even and at least 2(1 + log n). Let the vertices be v0, . . . , vn−1 where v0 is the
source vertex. For each i < j, we have an edge (vi, vj), and hence a total of

(
n
2

)
edges. Each edge will have an arbitrary half word stored in the least significant bits
of its weight. From the answers of a failure distance oracle, we will be able to recover
all these half words. It then follows that the full representation of a failure distance
oracle requires at least

(
n
2

)
/2 words.
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The low part of a weight represents numbers below 2w/2, and the high part
represents multiples of 2w/2. Hence, if the low part is x0 and the large part is x1, the
weight represented is x0 + 2w/2x1. If we know the full weight, we can easily recover
the low half word with the stored information.

We will now describe how to fill the high parts of the weights. The edges (vi, vi+1)
in the path (v0, v1, . . . , vn−1) are all given a high part of 0. The shortest path tree
will consist of this path. For an edge (vi, vj) with j ≥ i+2, the high part is 2n− j+ i.
It is easy to see that if link (vi, vi+1) or vertex vi+1 fails and we want to go to vj ,
j ≥ i + 2, then the unique shortest path first follows the original shortest path from
v0 to vi and then switches to the link (vi, vj). All this is true in both the directed
and the undirected cases.

With the above setting of the high parts of the weights, we can first use the regular
distances to find the weights along the path; that is, the weight of (vi, vi+1) is the
distance to vi+1 minus that to vi. Next, for each i and j ≥ i + 2, we fail (vi, vi+1) to
get a distance to vj , which is the known weight of the path (v0, . . . , vi) plus the weight
of (vi, vj). Thus, if we have a distance oracle that can handle failures, then we can
recover all the weights and hence all the low parts with arbitrary stored information.

In the case where h < n−1, we start with the source vertex v0, and then we create
�n−1/h� paths from v0, each of length between h/2 and h. Thus, if we removed v0, the
graph would fall into a set of disjoint paths. We now apply the previous construction

to each of the paths from v0. If a path has length h′, it uses
(
h′

2

)
= Θ(h2) edges.

Thus we get a total of Θ(nh) edges, all of whose weights can be recovered by a failure
distance oracle. The representation of the distance oracle therefore requires a space
of Θ(nh) words.

9. Conclusions. We have presented compact data structures for maintaining
information about shortest paths in a weighted directed graph in cases of both vertex
failures and edge failures. We have shown that, surprisingly, such a data structure
can be stored using nearly the same space required to store a single distance matrix,
while still supporting queries in constant time. Our oracle can easily be constructed in
O(mn2+n3 log n) time, matching the preprocessing time of all pairs variants of similar
problems such as most vital node detection [18] and Vickrey pricing [11] in networks;
while these algorithms require Θ(n3) space, our oracle requires only O(n2 log n) space.
Furthermore, we have shown that by using O(n2.5) space we can improve construction
time to O(mn1.5 + n2.5 log n).

Our oracles are different from the case of dynamic algorithms, where distances
have to be updated after each vertex or edge failure. Instead, our oracles are already
prepared to answer distance queries following the failure of any single vertex or edge,
and so the delay time in answering a query is minimized. If failures in a network
happen quite rarely, when a node or link goes down we have time to construct a
new oracle in the background to cope with a possible additional failure. It would be
interesting to explore whether compact oracles with fast query time that are able to
deal with more than one failure at a time can be constructed. Finally, can we further
improve construction time?
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