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Abstract. We present several results on the round complexity of
Replacement Paths and Second Simple Shortest Path which are basic
graph problems that can address fault tolerance in distributed networks.
These are well-studied in the sequential setting, and have algorithms [18,
20,30,34] that nearly match their fine-grained complexity [3,33]. But very
little is known about either problem in the distributed setting.

We present algorithms and lower bounds for these problems in the
CONGEST model, with many of our results being close to optimal.

Keywords: Distributed Algorithms · Graph Algorithms · Shortest
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1 Introduction

Consider a communication network G = (V,E), with two special nodes s and t in
V , and with communication transmission from s to t along a shortest path Pst. In
the distributed setting, it can be important to maintain efficient communication
from s to t in the event that a link (i.e., edge) on this path Pst fails. This is
the Replacement Paths (RPaths) problem, where for each edge e on Pst, we
need to find a shortest path from s to t that avoids e. The RPaths problem has
been extensively studied in the sequential setting [18,20,30]. The closely related
problem of finding a second simple shortest path (2-SiSP), i.e., a shortest simple
path from s to t avoids at least one edge on the original shortest path Pst, has
also been studied in the sequential setting [34]. Surprisingly, there are virtually
no results known in the distributed CONGEST model for RPaths or 2-SiSP. In
this paper we address this lacuna by obtaining strong round complexity bounds
for these problems in the CONGEST model, which are optimal or near-optimal
in many cases.

Let |V | = n, |E| = m. Directed weighted RPaths and 2-SiSP are important
problems in sequential fine-grained complexity, being part of the n3 time com-
plexity class [33] which contains many graph problems: weighted APSP, Negative
Triangle Detection, Minimum Weight Cycle (MWC), Radius, Eccentricities and
Betweenness Centrality [2]. RPaths and 2-SiSP are also in the fine-grained mn
complexity class [3] which is of more relevance in the CONGEST model where
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O(log n) bits of communication occur per round per edge in the graph, leading
to Õ(m)1 communication per round, and the goal is to minimize the number of
rounds in the computation.

Despite RPaths and 2-SiSP being well-motivated problems for distributed
networks, there is a lack of results in the CONGEST model (see Sect. 1.3 for prior
work). In this paper we present several nontrivial results, in many cases near-
optimal, for distributed RPaths and 2-SiSP. In addition to algorithms computing
weights, we present algorithms that construct paths by computing routing tables
in the full version [22].

Although RPaths and 2-SiSP have not been extensively studied in the CON-
GEST model, other related and more recently defined problems have been stud-
ied: CONGEST algorithms for fault-tolerant distance preservers [8,15], which
are sparse subgraphs on the network in which replacement path distances are
exactly preserved, and fault-tolerant spanners [13,26], which are sparse sub-
graphs in which replacement path distances are approximations of the distances
in the original network have been reported (see Sect. 1.3 for details). The tech-
niques in these results do not readily give efficient algorithms to explicitly com-
pute replacement path weights or to construct a replacement path when a failed
edge in known; further, these results mainly deal with undirected unweighted
graphs.

Weighted directed RPaths and 2-SiSP are in the mn and n3 sequential fine-
grained complexity classes as discussed above. But these two problems are unique
among the problems in these sequential classes in that they become simpler for
undirected graphs [18] and for unweighted directed graphs [30]. The results we
present in this paper for RPaths and 2-SiSP for the CONGEST model show a
similar trend, with the added contribution of an unconditional near linear lower
bound for the weighted directed case along with sublinear round algorithms for
unweighted and undirected graphs (as long as the network diameter and length of
Pst are sublinear). Thus we show a proven separation in complexity for RPaths
and 2-SiSP between weighted directed graphs and either unweighted directed
graphs or undirected graphs (even if weighted) in the CONGEST model. Our
results for undirected graphs are in the full version [22].

1.1 Preliminaries

The CONGEST Model. In the CONGEST model [27], a communication net-
work is represented by a graph G = (V,E) where nodes model processors and
edges model bounded-bandwidth communication links between processors. Each
node has a unique identifier in {0, 1, . . . n−1} where n = |V |, and each node only
knows the identifiers of itself and its neighbors in the network. Each node has
infinite computational power. The nodes perform computation in synchronous
rounds, where each node can send a message of up to Θ(log n) bits to each neigh-
bor and can receive the messages sent to it by its neighbors. The complexity of an
algorithm is measured by the number of rounds until the algorithm terminates.

1 We use the notation Õ, Ω̃, Θ̃ to hide poly-logarithmic factors.
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We consider both weighted and unweighted graphs G in this paper, where in
the weighted case each edge has an integer weight which is known to the vertices
incident to the edge. The graph G can be directed or undirected. Following the
convention for CONGEST algorithms [4,5,12,16,24], the communication links
are always bi-directional and unweighted.

Notation. Let G = (V,E) be a directed or undirected graph with |V | = n and
|E| = m. Let edge (u, v) have non-negative integer weight w(u, v) according to
a weight assignment function w : E → {0, 1, . . . W}, where W = poly(n). Let
d(s, t) denote the weight of a shortest path Pst from s to t and hst denote the
number of edges (hop distance) on this shortest path. The undirected diame-
ter D is the maximum shortest path distance between any two vertices in the
underlying undirected unweighted graph of G.

Note 1. We use SSSP and APSP to denote the round complexity in the CON-
GEST model for weighted single source shortest paths (SSSP) and weighted
all pairs shortest paths (APSP) respectively. The current best algorithm for
weighted APSP runs in Õ(n) rounds, randomized [7]. For weighted SSSP, recent
results [9,31] provide an Õ(

√
n + n2/5+o(1)D2/5 + D) round randomized algo-

rithm. The current best lower bounds are Ω
( √

n
logn + D

)
for weighted SSSP [28]

and Ω
(

n
logn

)
for (weighted and unweighted) APSP [24].

We now define the two problems we consider in this paper.

Definition 1. Replacement Paths (RPaths) : Given an n-node graph G,
two vertices s, t and a shortest path Pst from s to t, for each edge e ∈ Pst,
compute the weight d(s, t, e) of a shortest simple path Pe from s to t that does
not contain e.

Second Simple Shortest Path (2-SiSP) : Given an n-node graph G, two
vertices s, t and a shortest path Pst from s to t, compute the weight d2(s, t) of a
shortest simple path P2 from s to t that differs from Pst.

Our lower bounds for RPaths and 2-SiSP apply even when only one node in
the graph is required to know each distance d(s, t, e) or d2(s, t). In our algorithms,
all vertices can learn the distances d(s, t, e) or d2(s, t) using a simple broadcast
in O(hst + D) rounds, which is within the round complexity bounds.

In our results, we assume that the shortest path Pst between the vertices s, t is
part of the input and that each vertex in the network knows the identities of s and
t, and the identities of vertices on Pst. The round bounds of our algorithms are
unchanged if we are required to compute Pst using known CONGEST algorithms
for SSSP and broadcast the necessary information in O(hst + D) rounds. Also,
note that once we have the weights of the hst replacement paths for Pst we can
compute the 2-SiSP weight in additional O(D) rounds with a convergecast.

1.2 Our Results

Table 1 lists our results for directed RPaths and 2-SiSP. Our upper bounds are
either exact or (1+ε)-approximation results, for arbitrarily small constant ε > 0,
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Table 1. Our results. SSSP and APSP refer to round complexity of weighted SSSP
and APSP (See Note 1). Approximation results hold for approx. ratio α and (1 + ε),
where α > 1 is an arbitrarily large constant, and ε > 0 is an arbitrarily small constant.

Problem Lower Bound Upper Bound

Results are for directed graphs. Entries are (approx. ratio, round bound)

Weighted RPaths,
2-SiSP

1, Ω
(

n
logn

)
[Theo-

ream 1.A]
1, O(APSP ) = Õ(n) [Theoream 1.B]

Approximate
Weighted RPaths,
2-SiSP

α, Ω(SSSP ) =

Ω
( √

n
logn

+ D
)

[Theoream 2.A]

(1 + ε), Õ(
√

nhst + D +

min(n2/3, h
2/5
st n2/5+o(1)D2/5))

[Theoream 1.C]

Unweighted RPaths,
2-SiSP

α, Ω (SSSP ) [Theo-
ream 2.A]

1, Õ(min(n2/3+
√

nhst+D, SSSP ·hst))
[Theoream 2.B]

and our lower bounds are either exact or α-approximation results (for any con-
stant α > 1). Our main algorithms and bounds are for computing the weights of
paths defined in Definition 1. However, we also have distributed algorithms that
use routing tables to find such a path when an edge fails in the full version [22].

Directed Weighted Graphs. For an n-node directed weighted graph, we present an
RPaths CONGEST algorithm that runs in near-linear Õ(n) rounds (Sect. 2.2).
The classic sequential Õ(mn)-time algorithm for 2-SiSP and RPaths [34] per-
forms a sequence of hst SSSP computations, and a near-linear bound is not
achievable on the CONGEST model through implementing this algorithm.
Instead, we formulate RPaths as an APSP computation (on an alternate graph)
that can be efficiently computed within the APSP bound Õ(n) in the CON-
GEST model. We show that our algorithm is nearly optimal by presenting an
Ω̃(n) lower bound (even when the undirected diameter D is a constant) for both
RPaths and 2-SiSP through a reduction from set disjointness (Sect. 2.1).

Our lower bound proof for RPaths is much more involved than the Ω̃(n)
APSP lower bound in [24], and we also show that RPaths differs from APSP
in efficient approximability: the Ω̃(n) APSP lower bound in [24] applies to α-
approximation for any constant α > 1, but for weighted directed RPaths we give
in Sect. 3.3 an asymptotically improved algorithm for (1+ ε)-approximation (for
any constant ε > 0) that runs in sublinear rounds (Õ(n1−c) for constant c > 0)
whenever both hst and D are sublinear.

Theorem 1. Given a directed weighted graph G on n vertices with undirected
diameter D and a shortest path Pst of hop length hst,

A. Any randomized algorithm that computes RPaths or 2-SiSP for Pst requires
Ω

(
n

logn

)
rounds, even if D is constant.

B. RPaths and 2-SiSP for Pst can be computed in O(APSP ) rounds, and hence
by a randomized algorithm in Õ(n) rounds.
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C. There is a randomized algorithm that computes a (1 + ε)-approximation of
RPaths and 2-SiSP in Õ(

√
nhst+D+min(n2/3, h

2/5
st n2/5+o(1)D2/5)) rounds,

for any constant ε > 0.
D. Computing an α-approximation of RPaths or 2-SiSP for any constant α > 1

requires Ω
( √

n
log n + D

)
rounds.

Directed Unweighted Graphs. In the case of directed unweighted graphs, the
near linear lower bound for the weighted case no longer applies. We give an algo-
rithm based on sampling and computing detours that takes Õ(n2/3+

√
nhst+D)

rounds. This gives us an algorithm that runs in sublinear rounds whenever both
hst and D are sublinear. We also have a simple algorithm taking O(hst · SSSP )
rounds that is more efficient when hst is small (Sect. 3.2). We show a lower
bound of Ω(SSSP ) = Ω̃(

√
n+D) for computing RPaths and 2-SiSP on directed

unweighted graphs (Sect. 3.1), and our algorithm matches this O(SSSP ) bound
when hst is O(1). This Ω̃(

√
n + D) lower bound shows that computing RPaths

is harder in directed unweighted graphs than in undirected unweighted graphs,
where we have an O(D) round algorithm (see below).

Theorem 2. Given a directed unweighted graph G on n vertices with undirected
diameter D and a shortest path Pst of hop length hst,

A. Any randomized algorithm that computes RPaths or 2-SiSP requires
Ω

( √
n

logn + D
)

rounds, even if hst and D are as small as Θ(log n). These
lower bounds also apply to an α-approximation, for any constant α > 1.

B. There is a randomized algorithm that computes RPaths and 2-SiSP for Pst

in Õ(min(n2/3 +
√

nhst + D,SSSP · hst)) rounds.

We adapt our lower bound proof for directed unweighted RPaths to other
basic directed graph problems such as s-t reachability and s-t shortest path
in directed unweighted graphs. A folklore lower bound of Ω̃(

√
n + D) for these

problems was attributed by [16] to undirected lower bound results in [32], and we
give explicit proofs here. A lower bound of Ω̃(

√
n + D) for undirected weighted

SSSP was known [14,32] (which also applies to directed weighted SSSP) but
this does not apply to unweighted directed graphs. These problems are easier in
undirected unweighted graphs since undirected BFS can be performed in O(D)
rounds. Thus our results indicate that basic problems in directed graphs are
asymptotically harder than their undirected unweighted counterparts. We note
that this difference is not very surprising since the underlying communication
network is the undirected version of the graph regardless of whether the graph
is directed or undirected.

Undirected Graphs. For undirected graphs, our upper and lower bounds for
RPaths match the round complexity of SSSP (BFS for unweighted) in the CON-
GEST model, except for weighted RPaths which requires an additional O(hst)
rounds. The remaining gap between our upper and lower bounds is inherited
from the gap between the current best bounds for SSSP. Due to space limita-
tion, details of our undirected graph results are deferred to the full version [22].
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Theorem 3. Given an undirected weighted (or unweighted) graph G on n ver-
tices with diameter D and a shortest path Pst of hop length hst,

A. Any algorithm that computes RPaths or 2-SiSP requires:
i. Ω(SSSP ) = Ω

( √
n

logn + D
)

rounds if G is weighted, even if hst is con-
stant. This lower bound applies to α-approximation, for any α > 1.

ii. Ω (D) rounds if G is unweighted, which is a tight bound.
B. We can compute RPaths for Pst in O(SSSP+hst) = Õ(

√
n+n2/5+o(1)D2/5+

D+hst) rounds. For 2-SiSP the bound is O(SSSP ). If G is unweighted, the
bound is O(D) rounds.

.

1.3 Prior Work

RPaths and the closely related 2-SiSP are well studied problems in the sequential
setting. For weighted directed graphs the classical algorithm of Yen [34] runs
in Õ(mn) time and has a matching fine-grained lower bound of Ω̃(mn) assuming
a sequential hardness result for MWC [3]. For unweighted directed graphs, a
randomized Õ(m

√
n) algorithm is given in [30]. For undirected graphs, a near-

linear time algorithm is given in [18], matching the running time for sequential
SSSP. Our bounds for RPaths for these different graph classes in the CONGEST
model follow a similar pattern: close to APSP for weighted directed graphs, close
to SSSP for undirected graphs, and intermediate bounds for directed unweighted
graphs. The more general problem of single source replacement paths (SSRP)
was studied in the sequential setting in [10,11].

In the distributed setting, an O(D log n) algorithm for single source replace-
ment paths in undirected unweighted graphs was given in [15]. We are not aware
of any prior results in the CONGEST model for RPaths or 2-SiSP for directed
graphs or for weighted graphs. Distributed constructions of fault-tolerant pre-
servers, which construct a sparse subgraph that exactly preserves replacement
path distances, have been studied in [8,25] but their constructions do not give an
efficient procedure to compute replacement path distances. Fault-tolerant span-
ners, which construct a sparse subgraph that approximates replacement path
distances, have also been studied in CONGEST [13,26].

There are unconditional Ω̃(n) CONGEST lower bounds for several graph
problems in the sequential n3 and mn fine-grained complexity class: APSP [24],
diameter, radius [1,5], minimum weight cycle (MWC) [23]. CONGEST algo-
rithms for these problems have also been studied: APSP [4,7,21], diameter and
radius [1,5], MWC [23] and betweenness centrality [17].

1.4 Our Techniques

CONGEST Lower Bounds. Our lower bounds use reductions either from Set
Disjointness or from other graph problems with known CONGEST lower bounds.
Set Disjointness is a two party communication complexity problem, where two
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players Alice and Bob are each given a k-bit string Sa and Sb respectively. Alice
and Bob need to communicate and decide if the sets represented by Sa and Sb

are disjoint, i.e., whether there is no bit position i, 1 ≤ i ≤ k with Sa[i] = 1 and
Sb[i] = 1. A classical result in communication complexity is that Alice and Bob
must exchange Ω(k) bits even if they are allowed shared randomness [6,19,29].
Lower bounds using such a reduction also hold against randomized algorithms.

Our reduction from Set Disjointness for the Ω̃(n) CONGEST lower bound
for directed weighted RPaths is loosely inspired by a construction in a sparse
sequential reduction from MWC to RPaths in [3]. Some of our lower bounds use
known unconditional CONGEST lower bounds for problems like s-t Subgraph
Connectivity and weighted s-t Shortest Path [32].

CONGEST Algorithms. Adapting the sequential algorithm for directed
weighted replacement paths [34] directly to the CONGEST model requires up to
n SSSP computations, which is not efficient. Instead, our CONGEST algorithm
builds on a sequential sparse reduction from RPaths to Eccentricities in [3] which
we tailor to work efficiently in the CONGEST model using weighted APSP [7] as
a subroutine. Our algorithm for directed unweighted RPaths is loosely based on
the sequential algorithm in [30], but we make significant changes to obtain effi-
ciency in the distributed setting. We use a variety of techniques such as sampling,
computing shortest paths in skeleton graphs and pipelined BFS.

Many of our algorithms do not use any randomness apart from that used by
the randomized algorithms for SSSP and APSP. If we use deterministic CON-
GEST algorithms for these problems, such as for unweighted APSP [21] and
weighted APSP [4], our algorithms will be deterministic as well. The exceptions
to this are our directed unweighted RPaths algorithm and approximate weighted
directed RPaths, both of which inherently use random sampling.

2 Directed Weighted Replacement Paths

In this section, we prove near-linear unconditional CONGEST lower bounds for
directed weighted RPaths and 2-SiSP (Sect. 2.1). We complement this result with
an algorithm that runs in a near-linear number of rounds (Sect. 2.2).

2.1 Directed Weighted RPaths Lower Bound

We prove Theorem 1.A by showing an unconditional Ω
(

n
logn

)
lower bound for

computing 2-SiSP (which extends to RPaths) in directed weighted graphs. Our
proof is based on a new reduction from set disjointness pictured in Fig. 1, partly
inspired by a sparse sequential reduction from MWC to RPaths in [3].

Consider an instance of the Set Disjointness problem where the players Alice
and Bob are given k2-bit strings Sa and Sb respectively representing sets of at
most k2 elements (the i’th bit being 1 indicates element i belongs to the set). The
problem is to determine whether Sa ∩Sb = φ, i.e., that for all indices 1 ≤ i ≤ k2

either Sa[i] = 0 or Sb[i] = 0. A classical result in communication complexity
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Fig. 1. Directed weighted RPaths, 2-SiSP lower bound construction

is that Alice and Bob must exchange Ω(k) bits even if they are allowed shared
randomness [6,19,29]. Our reduction constructs the graph G = (V,E) described
below and we show in Lemma 1 that G has a low-weight 2-SiSP if and only if
the sets Sa and Sb are not disjoint.

We will construct G = (V,E) with six sets of vertices (see Fig. 1): L = {�i |
1 ≤ i ≤ k}, L′ = {�′

i | 1 ≤ i ≤ k}, R = {ri | 1 ≤ i ≤ k}, R′ = {r′
i | 1 ≤ i ≤ k},

L = {�i | 1 ≤ i ≤ k}, P = {pi | 0 ≤ i ≤ k}. Note that the number of vertices is
n = 6k + 1. We set s = p0 and t = pk and for each 1 ≤ i ≤ k, we add the edges
(pi−1, pi) with weight 1; this is the input shortest path P = Pst. We add directed
edges (�i, ri) and (r′

i, �
′
i) for each 1 ≤ i ≤ k. Each of these edges has weight k.

For each 1 ≤ i ≤ k, we add the edges (pi−1, �i) with weight 4k(k − i + 1) and
(�i, pi) with weight 4ki. This is our base graph.

We now add edges to G based on the set disjointness inputs Sa,Sb. We encode
each integer q, 1 ≤ q ≤ k2, as an ordered pair (i, j) such that q = (i − 1) · k + j.
If Sa[q] = 1, we add the edge (�′

j , �i) with weight k, if Sb[q] = 1, we add the edge
(ri, r′

j) with weight k. For the 2-SiSP problem, the desired output is d2(p0, pk),
the weight of a second simple shortest path from p0 to pk.

Lemma 1. If Sa ∩ Sb �= ∅, then d2(p0, pk) ≤ (4k2 + 9k − 1). Otherwise, if
Sa ∩ Sb = ∅, then d2(p0, pk) ≥ (4k2 + 12k).

Proof. If the sets Sa, Sb are not disjoint, then there exists 1 ≤ i, j ≤ k such that
Sa[(i− 1) · k+ j] = Sb[(i− 1) · k+ j] = 1. Then, the path 〈pi−1, �i, ri, r

′
j , �

′
i, �i, pi〉

provides a detour for the edge (pi−1, pi). This can be used along with the shortest
paths from p0 to pi−1 and pi to pk to obtain a simple path of weight 4k(k+1)+
4k + k − 1 that does not use edge (pi−1, pi). So, the second simple shortest path
from p0 to pk has weight at most 4k2 + 9k − 1.

Assume the strings are disjoint. Let P2 be a second simple shortest path,
and let (pi−1, pi) be the first edge that is not in P2 but is in the p0-pk shortest
path P. Since the only other outgoing edge from pi−1 is (pi−1, �i) (with weight
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4k(k − i + 1)), this edge must be on P2. Let pj (j ≥ i) be the next vertex from
P that is also on path P2, such a vertex must exist as pk is on P and P2. By the
construction of G, edge (�j , pj) (with weight 4kj) must be in P2 which means
the path P2 has weight at least 4k(k − i + 1) + 4kj not including edges in the
path from �i to �j . We also observe that any path from �i to �j requires at
least 4 edges, with total weight 4k. If we have j > i, we immediately conclude
that P2 has weight at least 4k(k − i + 1 + j) + 4k ≥ 4k(k + 1) + 8k. If j = i,
then P2 contains a path from �i to �i. This path can have length 4 if and only
if the edges (ri, r′

j) and (�′
j , �i) simultaneously exist for some j, which means

Sa[(i − 1) · k + j] = Sb[(i − 1) · k + j] = 1. This contradicts the assumption that
strings Sa and Sb are disjoint. So, this �i to �i path has length at least 8, which
means P2 has weight at least 4k(k + 1) + 8k = 4k2 + 12k. �

To complete the reduction from set disjointness, assume that there is a
CONGEST algorithm A that takes R(n) rounds to compute the weight of a
2-SiSP path in a directed weighted graph on n vertices. Consider the vertex
partition Va, Vb of V with Va = L ∪ L′ ∪ L ∪ P and Vb = R ∪ R′, and let
Ga(Va, Ea), Gb(Vb, Eb) be the subgraphs of G induced by the vertex sets Va, Vb

respectively. Note that Ga is completely determined by Sa and Gb is completely
determined by Sb. Alice and Bob will communicate to simulate A on G. Alice
will simulate the computation done in nodes in Va, and Bob will simulate the
computation done in nodes in Vb. If the algorithm communicates from a node in
Va to a node in Vb, Alice sends all the information communicated along this edge
to Bob. Since there are 2k cut edges, and A can send O(log n) bits through each
edge per round, Alice and Bob communicate up to O(2k · log n) bits per round,
for a total of O(2k · log n ·R(n)) bits. After the simulation, Alice knows d2(p0, pk)
and can determine if the sets are disjoint by checking if d2(p0, pk) > 4k2+9k−1
(Lemma 1). Since any communication protocol for set disjointness must use at
least Ω(k2) bits and n = Θ(k), R(n) is Ω

(
n

logn

)
.

Our lower bound also applies to the RPaths problem, since given an algo-
rithm A that computes replacement path for each edge, Alice can compute the
minimum of those to get the second simple shortest path weight and then use
Lemma 1 as before. This lower bound applies even for graphs with constant
undirected diameter: we can add a ‘sink’ vertex with incoming edges from all
vertices in G, so that Lemma 1 still holds and the undirected diameter is 2.

2.2 Directed Weighted RPaths Algorithm

In this section we present an Õ(n) round CONGEST algorithm for computing
RPaths and 2-SiSP in directed weighted graphs, which is nearly optimal given the
near linear lower bound in Sect. 2.1. Our main tool is a reduction from RPaths
to weighted APSP that can be simulated efficiently in the CONGEST network.
This reduction is inspired by a sequential fine-grained reduction from RPaths
to Eccentricities in [3], though some care is needed to ensure that the reduction
can be efficiently mapped to the underlying CONGEST network. We present our
algorithm to compute replacement path weights, and the second simple shortest
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Fig. 2. Directed weighted RPaths reduction to APSP. v0 = s and vh = t.

path weight d2(s, t) can be computed by taking the minimum weight replacement
path among those computed, with an additional O(D) rounds.

Our algorithm constructs a graph G′ pictured in Fig. 2, and runs a weighted
APSP algorithm on G′. We show later how communication in the newly con-
structed G′ can be simulated efficiently in the underlying CONGEST network
of G, so that the APSP algorithm can be applied to G′ in Õ(n) rounds. The
algorithm uses the Õ(n) round weighted APSP algorithm [7] as a subroutine and
has O(n) additive overhead, giving our Õ(n) round bound.

We construct graph G′(V ′, E′) with V ′ = V ∪Zo ∪Zi, where Zo = {zjo | 0 ≤
j < h}, Zi = {zji | 0 ≤ j < h}. We denote the nodes on the shortest path Pst by
s = v0, v1, . . . vh = t. E′ contains all edges in E with their original weights, except
the edges from the given shortest path Pst which are removed. Additionally, E′

contains directed edges (zjo , vj), (zji , zjo), (vj+1, zji) for 0 ≤ j < h. Edge (zjo , vj)
has weight d(s, vj), edge (vj+1, zji) has weight d(vj+1, t) and edge (zji , zjo) has
weight 0 — recall that d(s, vj) denotes the shortest path distance from s to vj
in G. We use d′ to denote shortest path distances in G′. The following lemma
shows that we can compute replacement paths in G using distances in G′.

Lemma 2. The shortest path distance d′(zjo , zji) in G′ (Figure 2) is equal to
the replacement path weight d(s, t, (vj , vj+1)) in the original graph G.

Proof. Let P be a replacement path for the edge (vj , vj+1) with weight
d(s, t, (vj , vj+1)). We will construct a path from zjo to zji that has the same
weight as P. Let va be the first vertex where P deviates from Pst, vb be the
first vertex after va where P rejoins Pst. Note that a ≤ j and b ≥ j + 1
as it is a replacement path for edge (vj , vj+1), and P contains a subpath
Pab from va to vb that does not contain any edge from Pst. Construct the
path 〈zjo , . . . zao

, va〉 ◦ Pab ◦ 〈vb, zb−1i , . . . zji〉, which has weight w(zao
, va) +

w(Pab) + w(vb, zb−1i) = d(s, a) + w(Pab) + d(b, t) = w(P). Thus, we have
d′(zjo , zji) ≤ d(s, t, (vj , vj+1)).

Now, consider any shortest path P from zjo to zji . Observe that any such
P must use a unique edge of the form (zao

, va) and a unique edge (zb, zb−1i) in
order to reach zji from zjo , where a ≤ j and b ≥ j +1. Denote the subpath of P
from va to vb as Pab. Now, consider the path P in G obtained by concatenating
s-va shortest path, Pab and vb-t shortest path — this is a replacement path for
edge (vj , vj+1) since a ≤ j, b ≥ j + 1 and Pab does not contain any edge on Pst.
The weight of P is equal to d(s, va) + w(Pab) + d(vb, t) which is equal to w(P )
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Fig. 3. Directed unweighted RPaths, 2-SiSP lower bound graph G′

since the only nonzero weight edges on P that are outside subpath Pab are the
ones with weight d(s, va) and d(vb, t). Hence d(s, t, (vj , vj+1)) ≤ d′(zjo , zji). �

To simulate an APSP algorithm on G′ using the communication network
G, we assign vertices vi, zi−1i , zio of G′ to be simulated by CONGEST node
vi of G—this is represented by the dashed boxes in Fig. 2. This ensures that
any edge of G′ corresponds to either a communication link between nodes in
the CONGEST network of G, or the edge is within the same node of G. We
can compute the weights required to simulate G′ after two SSSP computations
with s and t as sources, and use an Õ(n) algorithm to compute APSP in G′ [7].
We show how to augment this algorithm to construct replacement paths using
routing tables in the full version [22].

When the hop length of the s-t path hst is small, the simple algorithm of per-
forming hst shortest path computations with each edge on the s-t path removed
gives us an O(hst · SSSP ) round algorithm. We can obtain an improved round
complexity if we only require a (1 + ε)-approximation of the replacement path
weight. We defer the presentation of this approximation algorithm for directed
weighted RPaths to Sect. 3.3 since it uses techniques that build on the directed
unweighted RPaths algorithm.

3 Directed Unweighted Replacement Paths

In Sect. 3.1 we show a lower bound of Ω̃(
√

n + D) for computing RPaths and
2-SiSP in directed unweighted graphs, which also proves a folklore lower bound
for directed single source reachability. We present an algorithm for directed
unweighted RPaths in Sect. 3.2, and extend it to (1 + ε)-approximate directed
weighted RPaths (Sect. 3.3).

3.1 Directed Unweighted RPaths Lower Bound

Our lower bound method uses a reduction from the undirected s-t subgraph
connectivity problem defined in [32] as follows: Given an undirected CONGEST
network G with n vertices, a subgraph H of G, and two vertices s, t, determine
whether s and t are in the same connected component of H. The input subgraph
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H is given by letting each vertex know which of its incident edges are in H. It
is shown in [32] that this problem has a lower bound of Ω

( √
n

log n + D
)

in graphs
with D as small as Θ(log n). We assume WLOG that network G is connected.

Proof (Proof of Theorem 3.A and Theorem 1.D). Given an instance of s-t sub-
graph connectivity with undirected network G, vertices s and t and subgraph
H, our first attempt is to construct a directed unweighted graph G′ with two
copies of V (G): G′

H contains only the edges in H, with bidirectional edges, and
G′

P contains only a directed shortest path from s′ to t′ made of edges in G where
s′, t′ are copies of s, t. These copies are connected with directed edges (s′, sH)
and (tH , t′) (Fig. 3 without copy G′

G).
This construction has the property that there is a second directed path from

s′ to t′ in G′ (apart from the one in G′
P ) if and only if there is an sH -tH path

in GH . So 2-SiSP weight in G is finite iff s,t are connected in H. But, this
construction could have high undirected diameter as we have no control over the
diameter of H, and fails to give a meaningful lower bound.

To obtain small undirected diameter, we add a third copy of G, denoted G′
G,

which has all edges of G as bidirectional edges, pictured in Fig. 3. This copy is
connected to the others with directed edges (vG, vH) and (vG, v′) where vG is
the copy in G′

G of v ∈ G. The undirected diameter of G′ is now (D + 2) (D is
the diameter of G) as we can connect any pair of vertices using a bidirectional
path in G′

G along with at most 2 connecting edges. This addition does not add
any new directed paths from s′ to t′.

Any communication in G′ can be simulated in a constant number of rounds
in the underlying network of G, as each node v in the network can simulate
vertices vG, vH , v′ of G′, and all edges in G′ are either within the same node
or have an underlying undirected edge of G. Constructing G′ requires only an
O(D)-round computation of undirected shortest path from s to t in G.

This completes the reduction and establishes a lower bound of Ω
( √

n
log n + D

)

for 2-SiSP (and RPaths) in unweighted directed graphs by additionally noting
that Ω(D) rounds are necessary, as with other global problems in the distributed
model [32], for information to travel to the farthest vertices to determine 2-SiSP.
Our lower bound also applies to any α-approximation algorithm (α > 1) since
we distinguish between 2-SiSP of length ≤ n + 2 and infinite length. �

Other Directed Unweighted Graph Problems. Our lower bound for
directed unweighted RPaths can be adapted to give the same lower bound for
other graph problems on directed unweighted graphs, including the basic prob-
lems of s-t directed reachability and s-t directed shortest path. These folklore
lower bounds [16] have been attributed to [32] which only deals with undirected
graphs, and we make these results explicit.

Lemma 3. Any algorithm computing s-t directed reachability or s-t directed
shortest path in a directed unweighted graph requires Ω

( √
n

log n + D
)

rounds, even
if the graph has undirected diameter as low as Θ(log n).
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Proof. We use a simpler version of the construction in Fig. 3 by removing G′
P

from the graph G′ to form a graph G′′. A directed path from sH to tH exists
in G′′ if and only if s and t are connected in the subgraph H. Using the same
arguments as the RPaths lower bound, we note that G′′ has undirected diameter
O(D) when the network G has undirected diameter D and G′′ can be efficiently
simulated on the original network G. So we get the desired reduction for both
problems from s-t subgraph connectivity [32]. �

3.2 Directed Unweighted RPaths Algorithm

In the sequential setting, there are two approaches to compute replacement paths
in directed graphs: (1) remove each edge in the input path Pst and compute
shortest paths in the resulting graphs separately, using hst shortest path compu-
tations [34], (2) compute shortest detour distances in order to compute replace-
ment paths: A detour from a to b, where a, b are vertices on Pst, is a simple path
from a to b with no edge in common with Pst. Any replacement path for edge
e ∈ Pst can be characterized as the concatenation of an initial s-a subpath of
Pst, a detour from a to b, and a final b-t subpath of Pst, where a, b are vertices
in Pst such that e is contained in the a-b subpath of Pst [30,34].

Our distributed algorithm uses both these approaches for different ranges
of hst,D (as in line 4 of Algorithm 1). In the first method, used in Case 1 of
Algorithm 1, we compute replacement paths in O(hst · SSSP ) rounds using the
obvious algorithm of removing one of the hst edges on the input shortest path Pst

and computing SSSP from s. We use a directed weighted SSSP algorithm with
the weight of the removed edge set to ∞. We do not use unweighted directed
BFS since an s-t shortest path could have up to n − 1 hops after edge removal.

In the second method, used in Case 2 of Algorithm 1, we present a distributed
detour-based algorithm that runs in Õ(n2/3 +

√
nhst + D) rounds.

To compute short detours (hop length ≤ h, parameter h determined in line 4),
our distributed algorithm exploits pipelining to compute h-hop limited BFS from
each vertex on Pst in O(hst + h) rounds [17,21]. We compute these distances in
the graph G − Pst, which is the graph G with edges on Pst removed. We denote
shortest path distances in graph G − Pst by d−(u, v).

For long detours (hop length > h), we sample Θ(p) vertices (p determined in
line 4) in line 6 and compute a ‘skeleton graph’ on the set of sampled vertices: for
u, v ∈ S, we add a directed edge (u, v) to the skeleton graph with weight d−(u, v)
if there is an h-hop directed shortest path from u to v in G − Pst. The edges
of the skeleton graph are computed using an h-hop BFS in line 9. The h-hop
distances between all pairs of sampled vertices, and between sampled vertices
and vertices on Pst are broadcast to all vertices in line 10. Algorithm 2, described
below, is run at each vertex a ∈ Pst. It uses the h-hop distances (broadcast in
line 10 of Algorithm 1) to locally compute at vertex a all detours starting from
a. It then computes at a the best candidate replacement path among paths first
deviating from Pst at a for each edge e ∈ Pst that occurs after a on Pst, denoted
da(s, t, e). Finally, Algorithm 1 performs a pipelined minimum operation along
Pst in line 15 to compute shortest replacement path distances for all hst edges
among candidate replacement paths computed by Algorithm 2 at each a ∈ Pst.
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Computation in Algorithm 2 (local computation at each a ∈ Pst). Algo-
rithm 2 at vertex a ∈ Pst takes as input the h-hop distances to and from a,
computed in line 9 of Algorithm 1, and the h-hop distances broadcast in line 10
of Algorithm 1. In Algorithm 2, all pairs shortest path distances d−(u, v) for
u, v ∈ S in the skeleton graph are locally computed in line 3 using the h-hop skele-
ton graph edge distances. These distances, along with h-hop distances d−(u, b)
for u ∈ S, b ∈ Pst, are used to compute long detours in line 5. Short detours are
computed at a using the h-hop distance d−(a, b) to each vertex b ∈ Pst. With the
best detour distances δ(a, b) computed in line 5, a locally computes replacement
paths using detours starting from a in line 7, which gives the best candidate
replacement path distance da(s, t, e) among paths that first deviate from Pst at
a, for each edge e after a on Pst.

Lemma 4. The local computation in Algorithm 2 at a ∈ Pst correctly computes
da(s, t, e), the minimum weight replacement path for e ∈ Pst among paths that
first deviate from Pst at a.
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Proof. We assume that a knows the correct h-hop distances specified as input
to Algorithm 2. Note that the vertices and distances along Pst are known to a
as part of RPaths input.

Due to our sampling probability, any shortest path between u, v ∈ S can
be decomposed into h-hop subpaths between sampled vertices w.h.p. in n. So
in line 3, vertex a correctly computes all pairs shortest path distances between
sampled vertices in S using h-hop skeleton graph distances.

Now we show that line 5 computes a shortest detour P d
ab from a to each

b ∈ Pst that occurs after a on Pst, whose distance is denoted δ(a, b). If P d
ab is a

short detour, with hop length ≤ h, its distance is equal to the h-hop distance
d−(a, b) which is part of the input to a.

If P d
ab is a long detour, with hop length > h, we use the fact that due to

our sampling probability, any path of h hops contains a sampled vertex in S
w.h.p. in n. We can find a sampled vertex u on the detour within h hops from
a and a sampled vertex v on the detour within h hops from b. We will assume
WLOG that v occurs after u or u = v. Then, the detour distance is δ(a, b) =
d−(a, u) + d−(u, v) + d−(v, b), and line 5 correctly computes this distance.

In any replacement path for edge e ∈ Pst first deviating from Pst at a, there
is a vertex b ∈ Pst where it rejoins Pst. We can characterize such a replacement
path as the concatenation of the s-a subpath of Pst, a detour P d

ab from a to b, and
the b-t subpath of Pst. This path has weight d(s, a) + δ(a, b) + d(b, t). We then
compute the minimum over all valid detour endpoints b in line 7. This correctly
computes da(s, t, e) for edges e = (x, y) that are on the a-b subpath of Pst �
Lemma 5. Algorithm 1 computes replacement path weights in a directed
unweighted graph in Õ(min(n2/3 +

√
nhst + D,hst · SSSP )) rounds.

Proof. We focus on the analysis of Case 2 since Case 1 is straightforward.
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Correctness: The inputs used by Algorithm 2 at vertex a ∈ Pst are cor-
rectly computed in Algorithm 1: the h-hop distances from a to other vertices
b ∈ Pst and h-hop distances from sampled vertices are computed in line 9.
After Algorithm 2 correctly computes da(s, t, e), line 15 computes d(s, t, e) =
mina∈Pst

da(s, t, e) for each edge e as the minimum distance among all valid
replacement paths which may deviate at any a ∈ Pst.

Round Complexity: Recall that local computation does not contribute to the
cost of an algorithm in the CONGEST model. So we can ignore Algorithm 2
for the round complexity analysis. In line 9 of Algorithm 1, we use the k-source
h-hop BFS algorithm for directed graphs which runs in O(k + h) rounds using
pipelining [17,21]. As we have k = p + hst sources and h hops, this takes O(p +
hst + h) rounds. We use the standard broadcast operation in line 10 which
broadcasts (p + hst) · p values in O(p2 + p · hst + D) rounds [27]. The global
minimum in line 15 involves hst convergecast operations which can be pipelined
to take O(hst+D) rounds. The total round complexity is O(p2+p ·hst+h+D).

Setting parameters h = n2/3, p = n1/3 gives us a round complexity of
Õ(n2/3+n1/3hst+D). When hst ≥ n1/3, the parameters h =

√
nhst, p =

√
n/hst

are more favorable, giving a round complexity of Õ(
√

nhst + n/hst + D) =
Õ(

√
nhst +D) (since hst ≥ n1/3). The input parameter hst can be shared to all

nodes with a broadcast, so all vertices can choose the setting of h, p appropri-
ately. Thus, Case 2 takes Õ(n2/3 +

√
nhst + D) rounds. �

We augment Algorithm 1, which computes only weights, to also construct
replacement paths using routing tables in the full version [22].

3.3 Approximate Directed Weighted RPaths Algorithm

We present a (1+ε)-approximation algorithm for directed weighted RPaths that
runs in Õ

(√
nhst + D +min

(
n2/3, h

2/5
st n2/5+o(1)D2/5

))
rounds.

Proof (Proof of Theorem 1.C). Our algorithm is based on the directed
unweighted RPaths algorithm described earlier. The key tool is to replace h-
hop BFS computation in line 9 of Algorithm 1 with (1 + ε)-approximate h-hop
limited shortest path computation, using an algorithm in ( [24], Theorem 3.6),
which gives us a Õ(k + h)-round algorithm for k sources.

With this change, approximate distances are computed in the skeleton graph
in line 3 of Algorithm 2. Thus, the local detour distances (both short and long)
are (1 + ε)-approximate detour distances in line 5. The final replacement paths
add these approximate detours to exact distances (line 15 of Algorithm 1) and
are hence (1 + ε)-approximate. Using the same analysis as Lemma 5, we get an
algorithm with round complexity Õ

(
n2/3 +

√
nhst + D

)
.

When hst is small, we can improve the hst · SSSP round algorithm used
in the exact unweighted algorithm. A recent result in [23] shows that k-source
approximate directed weighted SSSP can be performed in Õ(

√
nk+D) rounds if

k ≥ n1/3 and in Õ(
√

nk+D+k2/5n2/5+o(1)D2/5) rounds if k < n1/3. We compute
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all detours using an hst-source SSSP computation by treating each a ∈ Pst as a
source and computing shortest path distances in G−Pst. This method is efficient
when hst < n1/3. Combining the two methods proves our result. �

4 Further Research

We have presented several nontrivial algorithms and lower bounds for RPaths
and 2-SiSP in the CONGEST model, with many of our results being near-
optimal. A key avenue for further research is to narrow or close the gap between
the Õ(n2/3+

√
nhst+D) upper bound and Ω̃(

√
n+D) lower bound for directed

unweighted RPaths and approximate weighted directed RPaths. Another ques-
tion is whether the dependence on hst can be improved in our algorithms.
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