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Abstract

This paper presents a multicore-cache model that reflects

the reality that multicore processors have both per-processor

private (L1) caches and a large shared (L2) cache on

chip. We consider a broad class of parallel divide-and-

conquer algorithms and present a new on-line scheduler,

controlled-pdf, that is competitive with the standard

sequential scheduler in the following sense. Given any

dynamically unfolding computation DAG from this class

of algorithms, the cache complexity on the multicore-cache

model under our new scheduler is within a constant factor

of the sequential cache complexity for both L1 and L2,

while the time complexity is within a constant factor of

the sequential time complexity divided by the number of

processors p. These are the first such asymptotically-

optimal results for any multicore model. Finally, we show

that a separator-based algorithm for sparse-matrix-dense-

vector-multiply achieves provably good cache performance

in the multicore-cache model, as well as in the well-studied

sequential cache-oblivious model.

1 Introduction

Chip multiprocessors (CMPs) [25, 24, 9], or multi-
cores, are emerging as the dominant computing plat-
form. Nearly all chip manufacturers have made the
paradigm shift to focus on producing chips containing
multiple processors or cores [1, 3, 2]. In light of this
new era of parallel processing on a chip, algorithms re-
searchers have begun exploring models, algorithms, and
scheduling policies for such machines [12, 17, 19, 22, 11].
Some work has focused on the fact that CMPs have a
large on-chip cache, which is shared among the proces-
sors [12, 19]. This cache provides a low latency, high
bandwidth means of communicating among the proces-
sors, by writing and reading memory locations that are
currently cached. Algorithms and scheduling policies
are designed to make good use of the shared cache, in
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order to avoid the high cost of accessing the off-chip
memory. This work has modeled the shared cache us-
ing a natural generalization of the disk access machine
model [6] to multiple processors. Namely, p processors
share a cache of size M and a memory of unbounded
size. If a processor reads or writes a memory word w
currently residing in the cache, a shared-cache hit oc-
curs. If w is not in the cache, a shared-cache miss oc-
curs, and the cache line of size B that contains w is
placed in the cache, causing another line to be evicted
if the cache is full. We will refer to this as the (parallel)
shared-cache model.

Other work [22, 11, 19, 23] has focused on the fact
that CMPs also have private caches on chip—typically
one per processor. This work has modeled these caches
using a variety of distributed-cache models [22, 11, 23].
In these models, p processors each have a cache of
size C1, and there is a shared memory of unbounded
size. Hits and misses to a private cache are defined
analogously to the shared-cache model. Unlike the
shared-cache model, however, the same cache line can
appear simultaneously in multiple private caches, as
long as all processors are only reading the line [11].
Before a processor can complete a write to the line, all
other copies of that line get evicted. We will refer to
this as the (parallel) private-cache model.

In contrast to this prior work, this paper studies
the combined effect of having both private and shared
caches on chip. We propose a multicore-cache model,
which reflects the reality that CMPs have both small
private (first level) caches and a large shared (second
level) cache on chip. There have been no formal models
or analysis of such effects.

Our goal is to design an on-line scheduler for mul-
tithreaded programs that obtains provably good perfor-
mance on the multicore-cache model, despite the some-
times competing effects of private and shared caches.
These competing effects were observed in previous ex-
perimental studies [18], which show that (1) the state-
of-the-art scheduler for the private-cache model, work-
stealing (ws), can suffer from excessive shared-cache
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Figure 1: Multicore-cache model.

misses on CMP architectures, and conversely, (2) the
state-of-the-art scheduler for the shared-cache model,
parallel depth-first (pdf), can suffer from excessive
private-cache misses on CMP architectures.

In this paper, we consider a broad class of paral-
lel divide-and-conquer algorithms, and show that a new
on-line scheduler, controlled-pdf, achieves provably
good cache performance on the multicore-cache model.
This class includes mergesort, all-pairs shortest paths,
recursive matrix addition, multiplication and inversion,
as well as space-efficient parallel Strassen’s matrix mul-
tiplication and matrix inversion. One of our key results
is showing that a separator-based algorithm for sparse-
matrix-dense-vector multiplication, an important com-
putational kernel, also achieves provably good cache
performance in the multicore-cache model (as well as in
the well-studied sequential cache-oblivious model [21]).

2 A Multicore-Cache Model

Multicore-Cache Model. Our multicore-cache
model is a simple combination of the private-cache and
shared-cache models. There are p > 1 processors,
where each processor has a private L1 cache of size C1

and all processors share an L2 cache of size C2, where
C2 ≥ p · C1. There is also a shared memory of un-
bounded size, partitioned into data blocks of size B.
Each L1 cache has space for C1/B data blocks; the L2

cache has space for C2/B data blocks. See Figure 1.
Initially, all caches are empty and the input resides in
the shared memory. Blocks are moved or copied be-
tween the various caches and the memory as a result of
processors’ read or write requests. A processor request-
ing to read a block must first fetch a copy of the block
into its L1 cache, if it is not already there. The same
block may continue to reside in other caches and/or the
memory. A processor requesting to write a block must
first fetch the block into its L1 cache, if it’s not already
there, and this copy must be the only copy of the block
in the caches or memory—all other copies are removed

(invalidated). (In CMPs, this rule is enforced automat-
ically by the hardware.) A block can also be removed
(evicted) from a cache to make room for another block.
Before the sole copy of a block is evicted, it must be
moved to either another cache or to the memory.

This model reflects nearly all existing CMPs, leav-
ing unspecified several aspects where CMPs tend to dif-
fer. For example, some CMPs may enforce inclusion,
which requires that every block in some L1 is also in the
L2, and every block in the L2 is also in memory (in the
case of a block that is being written, the L2 and mem-
ory blocks are marked as “stale”). In addition, the cache
replacement policies, which determine what block gets
evicted, may differ. For concreteness, we will assume a
least-recently-used (LRU) replacement policy: For the
L1 cache, the least recently read or written block by its
associated processor is evicted. For the L2 cache, the
block that has been least recently either added to the
L2 or copied to an L1 is evicted. Note that this is one
of several possible definitions of LRU for CMPs, and it
idealizes real-world policies by assuming perfect LRU
over the entire cache. Our asymptotic results hold (i)
whether there is inclusion or not, and (ii) for a variety of
LRU policies, as well as other well-studied replacement
policies such as an optimal policy (as in [22]).

On-line Schedulers and pdf. As is common, we
model a computation as a DAG that unfolds dynami-
cally as the computation proceeds. Each node v in the
DAG corresponds to a sequence of wv operations (lo-
cal computations, reads, or writes) to be executed by a
processor; we say wv is the weight of node v. Edges in
the DAG correspond to serial dependences between the
nodes. An on-line scheduler assigns nodes of the DAG
to processors, as the DAG unfolds. A node is ready if
all its ancestor nodes have executed. An assigned node
may be executed on a processor if and only if it is ready.

The standard sequential execution of a computation
DAG is according to a depth-first topological sort of the
DAG (a 1df-schedule). In a pdf-scheduler [13, 12],
a processor completing a node is assigned the ready
node that the 1df-schedule would have executed ear-
liest among the ready nodes. (Previous work [13, 14]
has shown how the pdf-schedule can be generated on-
line without having to precompute a 1df-schedule, for
multithreaded computations with nested fork-join par-
allelism, including divide-and-conquer algorithms, and
even with synchronization variables.) In Section 3, we
will define a new scheduler, called controlled-pdf,
which is a hybrid of the 1df and pdf schedulers.

Complexity Metrics. We consider three performance
metrics for an algorithm (i.e., a multithreaded computa-
tion) scheduled according to a given on-line scheduler.
The time complexity is the makespan of the schedule,
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measured in terms of the number of operations (i.e.,
assuming each operation takes unit time). It can be
viewed as the number of parallel steps of the algorithm.
A processor i incurs an L1-hit (L1-miss) if it requests
to read or write a block that was (was not) already in
i’s L1 cache. Our second metric, the L1-cache complex-
ity, is the number of L1-misses summed over all the L1

caches. Finally, an L2-hit (L2-miss) occurs if a proces-
sor requests a block not in its L1 cache that is either
(neither) in the L2 cache or (nor) in another L1 cache
at the time of the request. (This definition reflects the
fact that in real-world CMPs, a processor can grab a
block residing in another L1 cache without paying the
cost of going to memory.) The L2-cache complexity is
the number of L2-misses.

Although we do not explicitly compute an overall
running time that incorporates all three metrics, we
note that typical CMP latencies are roughly one cycle
for an L1-hit, 20 cycles for an L1-miss that is an L2-hit,
and 300 cycles for a memory access (i.e., an L2-miss).

In this paper, our goal is to design a parallel sched-
uler for the multicore-cache model that is competitive
with the standard sequential scheduler for the standard
3-level (L1/L2/memory) sequential cache model, in the
following sense. Given any computation DAG, the cache
complexity under our parallel scheduler is within a con-
stant factor of the sequential cache complexity for both
L1 and L2, while the time complexity is within a con-
stant factor of the sequential time complexity divided
by p. Here, both models have the same cache sizes C1

and C2. This paper presents the first such results, for
a broad class of DAGs defined by divide-and-conquer
algorithms.

Related Work. While there have been a number
of systems papers addressing the combined effects of
private and shared caches on CMPs [28, 20, 30], prior
theory papers have considered only private caches or
shared caches in isolation. Our (3-level) multicore-
cache model, in contrast, models both. Previous multi-
level (i.e., > 2-level) cache hierarchy models [5, 8]
have studied one of two extremes: either all the levels
are shared or all the levels (except for the last) are
private. The former is amenable to study under the
cache-oblivious framework [21], which shows that by
optimizing for a simple 2-level sequential cache model
with unknown cache size M and unknown block size
B, one can optimize for an arbitrary sequential multi-
level cache hierarchy. The latter reduces to independent
sequential hierarchies sharing a memory, which again is
amenable to cache-oblivious treatment. In contrast, it
is an open question whether the combination of private
and shared caches in CMPs, which we seek to model
in our multicore-cache model, is amenable to a cache-

oblivious framework. We observe, however, that the
divide-and-conquer algorithms studied in this paper
are indeed cache-oblivious—only the scheduler needs to
know the machine’s cache parameters, as detailed later.

Bender et al. [11] proposed a concurrent cache-
oblivious model, which provides a 2-level parallel
private-cache model comprised of p processors each with
a private cache of unknown size M/p, and an unknown
block size B. However, shared caches were not consid-
ered, and optimizing for this model has not been shown
to optimize for a more multi-level hierarchy. Acar et
al. [4] provided a strong bound on the private cache
complexity of work-stealing (ws). Other 2-level private-
cache models [15, 22, 23] assume a consistency model
for data blocks that is significantly weaker than nearly
all existing multiprocessors. As these models only re-
duce the number of misses compared to the model we
propose, the upper bounds we show hold under such
weaker consistency models.

Note that our multicore-cache model, which applies
to the 3 levels of private-L1/shared-L2/shared-memory,
also applies to the 3 levels of private-cache/shared-
memory/shared-disk. Narlikar [27] presented a sched-
uler for this latter context, which combined pdf and ws

to get the provably small memory usage of pdf together
with the good cache performance of work-stealing (ws).
However, the cache performance was only shown exper-
imentally, for certain benchmarks, and it is possible to
construct DAGs for which the scheduler will suffer ex-
cessive cache misses.

The challenge for scheduling in CMPs (and our
multicore-cache model) is that the private and shared
caches have sometimes competing demands. For good
shared-cache performance, it is desirable to have the
processors working on the same cache blocks at the
same time—that way, the processors re-use blocks cur-
rently in the shared cache, instead of incurring misses
caused by evicting one another’s blocks. For good
private-cache performance, in contrast, it is desirable to
have the processors working on disjoint sets of cache
blocks at any given time (unless all processors are
reading) —this avoids misses caused by “ping-ponging”
cache blocks back and forth between the private caches.
None of the prior work showed how to achieve both
provably-good shared-cache and private-cache perfor-
mance from a single scheduler, which is the result we
present in this paper for a large class of divide-and-
conquer algorithms.

3 Cache-Efficient Scheduling for DC Algorithms

3.1 Hierarchical Divide-and-Conquer Algo-

rithms. Divide-and-conquer (DC) algorithms often
have good parallelism, and here we consider hierarchical
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DC, where the divide and combine steps are themselves
solvable using the divide-and-conquer technique. Thus,
the sequential time complexity, Tk(n), and the sequen-
tial cache complexity, Qk(C, n), of these algorithms
can be described by the following set of Hierarchical
Recurrence Relations (HR) of type k, for some k ≥ 1.

Tk(n) = tk(n)+ak ·Tk (n/bk)+
k−1
∑

i=1

ak,i · Ti (n/bi)(3.1)

Qk(C, n) = qk(C, n) + ak · Qk (C, n/bk)(3.2)

+

k−1
∑

i=1

ak,i · Qi (C, n/bi)

with base conditions Tk(n) = Θ (1) for n ≤ 1, and
Qk(C, n) = Θ (S(n)) for S(n) ≤ C, where S(n) is the
total space needed to hold the input and output of a DC
subproblem of size n, and C is the size of the cache. In
our results, we assume that a constant factor change in
the subproblem input size n results in a constant factor
change in space S(n), that is, S(Θ (n)) = Θ (S(n)).

In recurrences 3.1 and 3.2, ak ≥ 1, ak,i ≥ 0, bk > 1
and bi > 1 are integer constants, and ak,k−1 ≥ 1 if
k > 1. In the applications we present in this section
3, tk(n) and qk(n) are both O(1). However, Obser-
vation 3.1 below holds for the much larger values of

tk(n) = O
(

1 + nβ(k)−ǫ · logγ(k)−1 n
)

and qk(C, n) =

O
(

1 + C
(

n
S−1(C)

)β(k)−ǫ

logγ(k)−1
(

n
S−1(C)

)

)

, where

β(k) = maxi

{

logbi
ai

}

, γ(k) =
∑k

i=1

∣

∣logbi
ai = β(k)

∣

∣,
and ǫ > 0 is an arbitrarily small constant. Here, |E|
is used to denote the value of Boolean expression E .
These larger values are used in the algorithm for edge
separable graphs given in section 4.

Observation 3.1. The solutions to recurrences 3.1
and 3.2 are Tk(n) = Θ

(

nβ(k) · logγ(k)−1 n
)

, and

Qk(C, n) = Θ

(

C ·
(

n
S−1(C)

)β(k)

· logγ(k)−1
(

n
S−1(C)

)

)

.

Recurrences 3.1 and 3.2 describe DC algorithms
that invoke any finite number of other DC algorithms
as subroutines. This is more general than simple DC
algorithms that invoke at most two types of other DC
algorithms (for divide and combine steps). For instance,
FW-APSP (mentioned below) is an instance of this
more general class.

The HR class includes many important DC algo-
rithms, including recursive matrix addition (MA) and
cache-oblivious matrix multiplication (CO-MM) [21],
both type 1; divide-and-conquer merge (Merge) [7]
and Strassen’s matrix multiplication (St-MM) [29],

both type 2; and merge-sort (Msort), Strassen’s ma-
trix inversion (St-MI) [29] and cache-oblivious Floyd-
Warshall APSP (FW-APSP) [19], all type 3. In all of
these applications, tk(n) and qk(C, n) are O(1).

Performance on Multicores. In order for an
HR algorithm to perform well on multicores, three
ingredients are required:

1. Parallelism. Some of the recursive subproblems
should be computable in parallel with each other,
otherwise no speed-up is achievable.

In the multicore setting, the number of processors
p ≤ C2

C1
≪ input size, since we assume the input

does not fit in L2. Thus we are not concerned
here with the polylog time for parallel algorithms
considered in the NC setting, but rather with a
more moderate level of parallelism.

2. Space Usage. The space needed to solve the HR
algorithm with p processors should be within a
constant factor of the sequential space. Otherwise
not only would the space requirements for the
computation increase, but the cache complexity
would increase as well.

The naive parallelization of St-MM is an example
HR computation whose space usage increases as a
function of number of processors used.

3. Cache Efficiency. Given an HR algorithm with
good parallelism and parallel space efficiency, the
cache complexity of both L1 and L2 caches should
be comparable to the sequential cache complexity.

In the following, we will use the term multicore HR
algorithm to denote a parallel HR algorithm whose
parallel space complexity is within a constant factor of
its sequential space complexity.

All of the example HR algorithms mentioned ear-
lier have a fair amount of parallelism in them. All of
them, except for the straightforward parallelization of
Strassen’s MM and MI, also are multicore HR algo-
rithms, i.e., they have good parallel space complexity.
Table 1 lists the recurrences for sequential running time,
and the inherent parallelism (i.e., critical path length) in
the algorithms we consider. The parallel running time
of an algorithm with a given number of processors can
be obtained by combining the solutions to these recur-
rences using Brent’s principle [16].

Under the multicore-cache model, the number of
misses for these algorithms for either the L1 or L2

cache could be quite large unless the parallel tasks are
properly scheduled. In the next section we describe
the controlled-pdf scheduler for multicore HR algo-
rithms which schedules tasks on multicore processors so
that both the L1 and L2 cache complexities are within
a constant factor of the sequential cache complexity,
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Algorithm
HR

Type
Recurrences for Running Time

MA 1 T MA
1 (n) = 4TMA

1

(

n
2

)

, T MA
1,∞(n) = TMA

1,∞

(

n
2

)

CO-MM 1 T CO-MM
1 (n) = O (1) + 8TCO-MM

1

(

n
2

)

, T CO-MM
1,∞ (n) = O (1) + 2T CO-MM

1,∞

(

n
2

)

St-MM
St-MI

2
3

see Section 3.3.1

n3-MI 2 T2(n) = 4TMA
1

(

n
2

)

+ 6T CO-MM
1

(

n
2

)

+ 2T2

(

n
2

)

, T2,∞(n) = 4TMA
1,∞

(

n
2

)

+ 5T CO-MM
1,∞

(

n
2

)

+ 2T2,∞

(

n
2

)

T1(n) = O (1) + 8T1

(

n
2

)

, T1,∞(n) = O (1) + 2T1,∞

(

n
2

)

FW-APSP 3 T2(n) = O (1) + 4T1

(

n
2

)

+ 4T2

(

n
2

)

, T2,∞(n) = O (1) + 2T1,∞

(

n
2

)

+ 2T2,∞

(

n
2

)

(IGEP) T3(n) = O (1) + 2T1

(

n
2

)

+ 4T2

(

n
2

)

+ 2T3

(

n
2

)

, T3,∞(n) = O (1) + 2T1,∞

(

n
2

)

+ 2T2,∞

(

n
2

)

+ 2T3,∞

(

n
2

)

Merge 2 T1(n) = O (1) + T1

(

n
2

)

, T1,∞(n) = O (1) + T1,∞

(

n
2

)

T
Merge

2 (n) = T1

(

n
2

)

+ 2T
Merge

2

(

n
2

)

, T
Merge

2,∞ (n) = T1,∞

(

n
2

)

+ T
Merge

2,∞

(

n
2

)

Msort 3 T3(n) = O (1) + T
Merge

2

(

n
2

)

+ 2T3

(

n
2

)

, T3,∞(n) = O (1) + T
Merge

2,∞

(

n
2

)

+ T3,∞

(

n
2

)

Table 1: Recurrences for time bounds of the DC algorithms considered in this section. Here, Tk,∞(n) is the
inherent parallelism in a DC algorithm of type k, i.e., the number of parallel steps executed by the algorithm,
when given an unlimited number of processors (ignoring caching effects). As shown in recurrences 3.1 and 3.2
(Section 3.1), recurrence for Qk(C, n) has structure similar to Tk(n), and hence not included in this table.

and where optimal parallelism is achieved provided the
multicore HR algorithm has sufficient parallelism. We
show that this scheduler achieves optimal speed-up and
cache-efficiency for several HR algorithms, including the
ones mentioned earlier. For Strassen’s algorithms, we
achieve this by presenting an alternate parallelization
to the naive method.

3.2 Controlled-PDF Scheduler for Multicore

HR Algorithms. Consider the multicore-cache model
in which C2 ≥ α · C1 (the model requires α ≥ p). The
scheduling algorithm uses knowledge of C1 and p, but
the algorithm written by the user does not make use
of these parameters, and specifies parallelism through
forks and joins. The user needs to specify the space
complexity function S(n) mentioned earlier as well as r,
the ratio between the parallel and sequential space usage
of the algorithm, which is assumed to be a constant.

Let G denote the computation DAG of the given HR
algorithm. The scheduler first transforms G as follows
which can be performed on-the-fly during execution.

Let µ = 1/r. The scheduler chooses n1 = S−1 (C1)
and n2 = S−1 (α · µ · S(n1)). It contracts each sub-
DAG of G corresponding to a recursive function call
on an input of size n2 to an L2-supernode. We denote
the contracted graph by C2(G). During this process
the scheduler contracts all subDAGs corresponding to
type-j recurrence before contracting any subDAG cor-
responding to type-(j − 1), for any j. For each L2-
supernode v the scheduler considers its corresponding
subDAG in G, and contracts each subsubDAG of this
subDAG corresponding to a recursive function call on
an input of size n1 to an L1-supernode. The contracted

subDAG is denoted by C1(v). As before, it contracts all
type-j subsubDAGs before contracting any type-(j − 1)
subsubDAG.

Now the controlled-pdf scheduler is defined on
G as follows. The scheduler considers the nodes (i.e.,
L2-supernodes) of C2(G) one at a time, in order of a
1df-schedule. Within each L2-supernode v, it schedules
the L1-supernodes of C1(v) according to a pdf-schedule,
using all p processors. Each L1-supernode scheduled
on a processor is executed entirely on that processor.
After all L1-supernodes of an L2-supernode have been
executed, the scheduler moves on to the next L2-
supernode.

We now show that under this schedule, the number
of cache misses in both the L1 and L2 caches is within
a constant factor of the sequential cache complexity.
Lemma 3.1. Consider the multicore-cache model in
which C2 ≥ α · C1, where α ≥ p is a constant. If a
multicore HR algorithm of type k ≥ 1 incurs QL1

(n)
L1 cache-misses and QL2

(n) L2 cache-misses under
the controlled-pdf-scheduler, then (a) QL1

(n) =
O(Qk (C1, n)), and (b) QL2

(n) = O(Qk (C2, n)).

Proof. (a) The proof is by induction on k. For
the base case k = 1, consider recurrence 3.2 for
sequential cache misses, unraveled to a subproblem
of size n1: Q1(C, n) = (n/n1)

logb1
a1 · Q1(C1, n1) +

∑logb1
(n/n1)−1

j=0 aj
1 · q1(C1, n/b1

j).
The controlled-pdf scheduler schedules each

subproblem of size n1 entirely within the L1 cache
of a single processor, hence the total number of
cache misses for these problems, which is equal to
the cache misses incurred by the computation cor-
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responding to first term in the recurrence above, is
the same in both the sequential execution and in the
controlled-pdf schedule. The second term repre-
sents computation outside the L1 supernodes in the
controlled-pdf schedule. However, by assumption,

q1(C1, n) = O
(

1 + C1

(

n
S−1(C1)

)(logb1
a1)−ǫ

)

, hence the

summation in the second term is O (Q1(C1, n)). Hence,
QL1

(n) = O (Q1 (C1, n))
Assume inductively that any HR algorithm of

type up to k − 1 satisfies part (a) of the Lemma.
Then, if we again unravel recurrence 3.2 for a type k
HR algorithm down to size n1, we can partition the
terms into two parts: (i) (n/n1)

logbk
ak · Qk(C1, n1) +

∑logbk
(n/n1)−1

j=0 aj
k · qk(C1, n/bk

j); plus (ii) a large num-
ber of terms that are a linear combination of terms
for HR of type k − 1 or less. By the induction hy-
pothesis, computations corresponding to part (ii) have
cache complexity under the controlled-pdf sched-
uler bounded by their sequential cache complexity. The
terms in part (i) are of the same form as in the base case,
and by that same argument the number of L1 misses un-
der the controlled-pdf schedule is the same as in the
sequential case.

(b) Observe that while S(n2) = α · µ · C1 space
in the L2 cache suffices for the sequential exe-
cution on a subproblem of size n2, we will need
(r − 1) · S(n2) = (1 − µ) · α · C1 additional L2 cache
space for its parallel execution. By our choice of
n2, we have C2 ≥ α · C1 = S(n2) + (r − 1) · S(n2),
and hence the cache is large enough to accommodate
the extra space needed by the parallel algorithm.
Therefore, the parallel L2 cache complexity of the
algorithm is given by recurrence 3.2 for Qk on a cache
of size C2 − (r − 1) · S(n2) ≥ µ · C2. Hence, using
Observation 3.1, and letting S∗ = S−1 (µ · C2),
we obtain, QL2

(n) = O (Qk (µ · C2, n)) =

O
(

µ · C2 · (n/S∗)
β(k) · logγ(k)−1 (n/S∗)

)

=

O
(

C2 ·
(

n/S−1(C2)
)β(k) · logγ(k)−1

(

n/S−1(C2)
)

)

=

O (Qk(C2, n)) (since S(Θ (n)) = Θ (S(n))). ⊓⊔

Note that unlike pdf and ws, controlled-pdf

is not a greedy schedule—processors may idle (waiting
for the completion of an L2-supernode) in order to
guarantee the bounds in Lemma 3.1. We show next
that under certain general conditions, this idling does
not effect the parallel time complexity by more than a
constant factor. Given the high cost of cache misses
(e.g., 300 cycles for fetching from memory), reducing
misses can often lead to faster overall execution times in
practice, even with a modest amount of imposed idling.

With controlled-pdf a p-fold speed-up is achiev-

able provided the HR algorithm has sufficient parallelism
within it to counteract the slowdown caused by the se-
rialization within the L1 supernodes. To achieve this, it
is necessary to have a sufficiently large n2, i.e., a suffi-
ciently large α, as described below.

In recurrence 3.1, let fk(n) = tk(n) +
∑k−1

i=1 ak,i · Ti

(

n
bi

)

(hence Tk(n) = fk(n)+ak ·Ti

(

n
bk

)

).

Let Ti,∞ denote the inherent parallelism in the type-
i HR and let fi,∞ represent the inherent parallelism in
its divide and combine steps. Then, Ti,∞ will satisfy
the following recurrence for some ai,∞ ≤ ai:

Ti,∞(n) = ai,∞Ti,∞(n/bi) + fi,∞(n)

On p processors this type-i HR will run in time
O (Ti(n)/p + Ti,∞(n)) using a standard Brent-type
schedule. We now analyze the number of parallel steps
under the controlled-pdf-schedule.

Let Ti,∞(n2, n1) denote the inherent parallelism
of a type-i L2-supernode, 1 ≤ i ≤ k, under the
controlled-pdf scheme. Then we have

Ti,∞(n, n1) ≤
{

Ti(n) if n ≤ n1,
ai,∞Ti,∞(n/bi) + fi,∞(n) otherwise

On p processors the controlled-pdf-scheduler will
execute this type-i L2-supernode in Ti,p(n2) =
Ti(n2)/p + Ti,∞(n2, n1) parallel steps. Thus the
controlled-pdf scheduler achieves optimal parallel
speed-up if

Ti(n2)

p
= Ω (Ti,∞(n2, n1)) .(3.3)

All of the parallelism is realized during the pro-
cess of reducing the input size from n2 to n1, and
subproblems of size n1 are executed sequentially un-
der the controlled-pdf schedule. Since n2 depends
on α · C1, the ability to achieve optimal speed-up de-
pends on whether α is sufficiently large to satisfy equa-
tion 3.3, and is dependent on the inherent parallelism in
the HR algorithm. The multi-core cache model requires
C2 ≥ α · C1 for α = p, and we may sometimes need to
use a value of α > p in order to achieve full parallelism,
as we shall see in some of the applications considered
below. It should be noted that in practice α is much
larger than p.

3.3 Applications. Applications of our scheme for
HR algorithms include the following.
Type 1:

• MA: Recursive matrix addition

• CO-MM: Cache-oblivious matrix multiplication
(does not assume associativity of additions)

Type 2:

• St-MM: Strassen’s matrix multiplication
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Algorithm
HR

Type
T (n) Q(C, n) T∞(n) S(n) n1 T∞(n2 , n1) α ≥

MA 1 n2 n2

B
1 n2

√
C1 C1 + log α p

CO-MM 1 n3 n3

B
√

C
n n2

√
C1 C

3
2
1 ·

√
α p

St-MM 2 nζ nζ

B
√

C

nζ−2+ǫ = n.81

arb. ǫ > 0
n2

√
C1 C1

ζ
2 · α

ζ−2+ǫ
2 p1+ǫ, arb. ǫ > 0

St-MI 3 nζ nζ

B
√

C
n n2

√
C1 C1

ζ
2 ·

√
α p

2
ζ−1

n3-MI 2 n3 n3

B
√

C
n log n n2

√
C1 C1

3
2 ·

√
α · log α p log p

FW-APSP
(IGEP)

3 n3 n3

B
√

C
n log2 n n2

√
C1 C

3
2
1 ·

√
α · log2 α p log2 p

Merge 2 n n
B

log2 n n C1 C1 + log α · log(αC1) p ·
(

1 + log α·log(αC1)
C1

)

Msort 3 n log n n
B

log n
B

log3 n n C1
C1 log C1

+ log2 α · log(αC1)
p ·

(

1 + log2 α

C1

)

Table 2: Parameter values for the applications mentioned Section 3.3. The expression for n2 is the same as that
for n1 with C1 replaced by α · C1. The dependence of the cache complexity on block size B is given for clarity.
All values are to within a constant factor, and ζ = log2 7.

• n3-MI: Strassen’s associative matrix inversion
method using CO-MM and MA for the matrix mul-
tiplications and additions.

• Merge: Divide & conquer merge of two sorted lists

Type 3:

• St-MI: Strassen’s associative matrix inversion

• Msort: Merge-sort using the type-2 Merge.

• FW-APSP: Cache-oblivious Floyd Warshall
APSP, Gaussian elimination without pivoting, and
certain other applications of IGEP.

The key parameters for these applications are summa-
rized in Tables 1 and 2. All of these are multicore HR
algorithms that achieve optimal L1 and L2 cache effi-
ciency as well as full p-fold speed-up using linear space.
There is some variation in the value of α needed to
achieve full parallelism: MA and CO-MM achieve opti-
mal performance for any α ≥ p. Merge and Msort have
additional requirements on α to achieve full parallelism
that depend inversely on C1, but these are very likely
to be much smaller than p in practice; all other applica-
tions need α to be at most an O(p1+ǫ), where ǫ < 0.11
for St-MI, and ǫ is an arbitrarily small constant > 0 for
the other algorithms.

The results given in Table 2 for CO-MM and FW-
APSP follow directly from their HR algorithms [21, 19],
while MA is a trivial recursive algorithm for matrix
addition. The results for n3-MI follow by considering
Strassen’s matrix inversion algorithm [29], and using
CO-MM for the matrix multiplications. The divide-and-
conquer Merge recursively divides a merge problem of
total size n into two merge problems of sizes ⌈n

2 ⌉ and
⌊n

2 ⌋ [7], which is then used in mergesort (Msort).

3.3.1 St-MM and St-MI. Strassen’s matrix mul-
tiplication algorithm [29], which recursively multiplies

seven matrices with half the number of rows is a type-2
HR algorithm that uses the trivial type-1 HR for matrix
addition in its divide and combine steps. Since all of the
seven recursive calls can be performed in parallel, the al-
gorithm achieves O(log n) parallel time given sufficient
number of processors. The time bounds T1(n) for MA
and T2(n) for St-MM and their parallel time bounds sat-
isfy the following recurrences: (i) T1(n) = 4 · T1(n/2);
(ii) T2(n) = 7 · T2(n/2) + c · T1(n/2); (iii) T1,∞(n) =
T1,∞(n/2); and (iv) T2,∞(n) = T2,∞(n/2) + T1,∞(n/2),

Hence the parameters of this computation are:

• T2(n) = O(nlog2 7) and T2,∞(n) = O(log n); and
sequential space requirement, S(n) = Θ(n2).

• On p processors T1,p(n) = n2/p and T2,p(n) =

O(nζ

p + log n), where ζ = log2 7.

This parallelization does not lead to a multicore
HR since the space requirement with p processors is

p1− 2
ζ n2. We consider instead the following alternate

parallelization of Strassen’s algorithm. We unravel the
recursion a constant number of times k so that we
recursively multiply n

2k × n
2k matrices. There are 7k

recursive matrix multiplications, which we perform in

τ = ⌈ 7k

4k−1⌉ steps, each step performing at most 4k − 1
matrix multiplications in parallel, with the matrices to
be multiplied chosen to maximize the number of matrix
additions that can be performed in that step. This leads
to the following recurrences for the parallel time T∞ and
parallel space complexity S∞:

T∞(n) = τ · T∞(n/2k) + c′ · T1(n/2k)

S∞(n) ≤ (4k − 1) · S∞(n/4k) + Θ(n2)

This leads to the solution S∞(n) = O(n2) for the space.
For T∞(n) we have

T∞(n) = O(n
1
k

log τ ) = O(nlog2 7−log2 4+ǫ)
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for an arbitrarily small constant ǫ > 0.

Hence this gives a multicore HR algorithm with
T∞(n) = O(n0.81).

We also need to investigate the constraint on α
implied by equation 3.3. Since S(n) = Θ(n2) we have
n1 =

√
C1 and n2 =

√
α · C1. Recall ζ = log2 7.

We have T2(n2) = (
√

α · C1)
ζ and T∞(n2 ; n1) =

(
√

α)
1
k

log τ (
√

C1)
ζ , hence since 1

k log τ = ζ − 2 + ǫ, by
equation 3.3 we need

(
√

α · C1)
ζ/p ≥ (

√
α)ζ−2+ǫ(

√

C1)
ζ or α ≥ p1+ǫ

for any arbitrarily small ǫ > 0 (using a suitable choice
of k).

In St-MI, Strassen’s divide-and-conquer algorithm
for matrix inversion, both divide and combine steps use
MA and St-MM and the matrix inversion complexity
T3 satisfies the following recurrences (where T2 and T1

are the sequential complexities of St-MM and MA given
above, and the ci and di are suitable constants).

T3(n) = 2 · T3(n/2) + c1 · T2(n/2) + c2 · T1(n/2)

T3,∞(n) = 2 · T3,∞(n/2)+ d1 · T∞(n/2)+ d2 · T1,∞(n/2)

Since the two recursive computations of inverses are
performed sequentially the space bound is given by
S(n) = S(n/2) + O(n2), and hence S(n) = O(n2).
Hence St-MI has the parameters listed in Table 2.

4 Cache Efficiency of Edge Separable Graphs

We consider the problem of multiplying a sparse matrix
by a dense vector. We describe a simple cache-oblivious
algorithm which has good cache performance when the
matrix (viewed as a graph) has small separators. We
then show that a parallel variant has good cache per-
formance under the multicore-cache model when us-
ing a controlled-pdf scheduler. Real-world matrices
(graphs) often have small separators because either they
are embedded in some low-dimensional space (e.g., pla-
nar graphs or 3d meshes), or they represent some form
of community or locality (e.g., a web graph).

Let S be a class of graphs closed under the subgraph
relation. We say that S satisfies a f(n)-edge separator
theorem if there are constants a between 1

2 and 1 and b >
0 such that every graph G = (V, E) in S with n vertices
can be partitioned into two sets of vertices V1 and V2

each of size at most an such that |{(u, v) ∈ E|(u ∈
V1 ∧ v ∈ V2) ∨ (u ∈ V2 ∧ v ∈ V1)}| ≤ bf(n) [26]. Let
the support graph G = (V, E) of an n×n matrix be the
graph with V = {1, . . . , n} and E = {(i, j)|A[i, j] �= 0}.
We say that a matrix satisfies an f(n)-edge separator
theorem if its support graph satisfies such a theorem.
We say a π-reordering of a matrix is a permutation of

2 3 0 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 1 7 0 0 0
0 0 8 0 0 0 0 0

0 0 0 0 0 4 1 0
0 0 0 2 0 0 0

0 0 0 0 0 0 0 3
0 0 0 0 0 0

0

26

0 1 2 3 4 5 6 7

(1,1)
(0,2)
(1,3)
(2,8)
(3,1)
(4,7)
(3,2)
(5,4)
(6,1)
(5,6)
(6,2)
(7,3)

1

4
3

7
6

11
9

0

Av
Ao

1

3
2

5
4

7
6

0

columns

rows

(b) row−major representation(a) a sparse matrix

Figure 2: Row-major representation of a sparse matrix.

both the rows and columns by π. In the support graph
this corresponds to a permutation π of the vertex labels.
We note that graphs that belong to a class that satisfies
an nǫ-edge separator for ǫ < 1 have bounded degree.

The row-major representation of a sparse matrix A
is the pair (Av, Ao) where Av is a vector of all the non-
zero elements stored adjacently sorted first by row and
then by column, and each element Aij is stored as a pair
consisting of the value (Aij) and the column number
(j), as shown in Figure 2. Ao is a vector containing
the start location (index) of each row in Av. The row-
major matrix algorithm for multiplying a row-major
representation of a sparse matrix A by a dense vector x
is defined as follows:

for i = 1 to |Ao|
y[i] = 0
for k = Ao[i] to Ao[i + 1] − 1
(j, a) = Av[k];
y[i] = y[i] + a ∗ x[j];

We first consider the cache performance of this
sequential algorithm.
Lemma 4.1. Any n× n matrix A satisfying an nǫ-edge
separator theorem for ǫ < 1 can be reordered so that
the row-major algorithm generates at most O(n/B +
n/M1−ǫ) cache misses in the cache-oblivious model with
block size B and cache size M .

Proof. The row-major algorithms scans the rows in
order. The number of non-zeros is O(n) because of the
separator theorem. Since Av and Ao are laid out in
order, the number of cache misses caused by reading
these is O(n/B). Furthermore, y is scanned in order
creating another O(n/B) cache misses.

We now consider the accesses to x[j]. Let G be
the support graph for A. Consider a separator tree T
for G constructed by applying the separator theorem
to the whole graph to get two components, and then
recursively applying the separator theorem to each
component until only a single node remains at each leaf
of the tree. We refer to the left to right ordering of the
leaves as a separator ordering of the vertices of G. We
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show that the row-major algorithm π-reordered to the
separator ordering satisfies the desired bounds.

As we scan through the rows of the matrix in
the row-major algorithm consider keeping a window of
width M of the vector x loaded in the cache (technically
we need three additional blocks for Av, Ao and y). This
window is centered as the current row number. The
total number of misses to load the window as we scan
along the rows is n/B. Consider any subtree T ′ of T
that contains i and is of size (number of leaves) at most
M/2. When the algorithm is at a row i consider a non-
zero element Aij that is processed causing a read of
x[j]. This corresponds to an edge (i, j) in the graph.
If j is within the subtree then x[j] is a cache hit (i.e.,
j is within the window). We therefore only need to
consider edges that separate a tree that is larger than
M/2, and we assume all of these will cause a cache miss.
The number of such edges is bounded by the following
recurrence:

R(n) =







max1/2≤a′≤a{R(a′n) + R((1 − a′)n)
+bnǫ}, if n > M/2

0, otherwise,

where a and b are the parameters of the separator
theorem. By induction we can verify that R(n) ≤
k(n/(M/2)1−ǫ−nǫ), where k = b/(aǫ+(1−a)ǫ−1). The
total number of misses is therefore bounded by O(n/B)
for scanning A, y, and the window of x, and O(n/M1−ǫ)
for any accesses to x outside the window. Since we
assume an LRU cache we note that we can simply charge
each miss outside the window twice—once for accessing
the x[i] and once for refilling the window slot. ⊓⊔

This bound can be compared to the bounds pre-
sented by Bender et al. [10]. For their version that can
choose the memory layout and for m = O(n) the bounds

are Θ
(

min
{

n
B

(

1 + logM/B
n
M

)

, n
})

. They show this

is optimal. Because of the separator properties, how-
ever, our bounds are significantly better with only an
additive term with respect to the scanning time n/B
instead of the multiplicative term.

We now consider the following simple divide-and-
conquer parallel version of the row major algorithm.
The parallel row-major algorithm divides the rows in
half (first n/2 and second n/2), and in parallel calculates
the results for each half. Recurse until there is a single
row. As in Section 3, we use a controlled-pdf to
schedule the algorithm. Here we use n1 and n2 to be
the number of rows that are grouped in an L1 and
L2 supernode, respectively. Specifically, we use a 1df-
schedule on the L2 supernodes until we reach a problem
of size n2 or less, then we use a pdf-schedule on the L1

supernodes, and within the L1 supernodes (n1 or fewer
rows) we use a sequential 1df-schedule. Lemma 3.1

can easily be extended to consider this algorithm, but
here we show the cache complexity directly using the
separator properties.
Lemma 4.2. Any n × n matrix A satisfying an nǫ-
edge separator theorem with ǫ < 1 can be re-
ordered so that parallel row-major algorithm using the
controlled-pdf-scheduler for some suitable choice of
supernode sizes, incurs O(n/B + n/C1−ǫ

1 ) L1 cache
misses and O(n/B + n/C1−ǫ

2 ) L2 cache misses.

Proof. We use the same reordering as in Lemma 4.1.
The bounds on the L1 cache follow from the Lemma
because we can apply the window argument as we sweep
the rows in individual processors in an L1 supernode,
but we need to account of the fact that each group
might start with an empty L1 cache and have to fill
the L1 cache. Since there are n/n1 L1 supernodes each
needing to load O(C1/B) blocks, the filling will create
O(nC1/(n1B)) L1 misses. If we pick n1 ≥ C1 this
O(n/B) term can be counted against scanning the rows
of the matrix. For the L2 cache we select n2 ≤ C2/2 and
can therefore fit the L2 supernode in half the cache. We
can make a similar argument as in Lemma 4.1 but with
the window centered at the middle of the L2 supernode
(in row order). If we consider the leftmost and rightmost
L1 supernode within the current L2 supernode they are
both at least C2/4 away from the end of the window.
Therefore their cache characteristics are no worse than
in the sequential case with a cache half as big (C2/2).
Furthermore as we move from one L2 supernode to the
next L2 supernode, the windows overlap so we do not
create additional misses during the transitions. ⊓⊔

Comparing Lemmas 4.1 and 4.2, we see that the
L1 and the L2 cache complexities on the multicore-
cache model are within constant factors of the sequential
L1 and L2 cache complexities. The parallel time for
the parallel row-major algorithm is efficient if we pick
n1 = C1 and n2 = C2/2 so n2/n1 = C2/(2C1) and as
long as α ≥ p(1 + log α

C1
).

In practice, the same matrix is typically used re-
peatedly, e.g., as part of an iterative solver or with dif-
ferent vectors. Thus, as in [10], we do not account for
the cost of preprocessing the matrix into a desired lay-
out, as this cost is amortized over many repeated uses.

5 Conclusion

In this paper we have proposed the multicore-cache
model, which captures the cache configuration of cur-
rent and proposed chip multiprocessors by including a
shared (L2) cache and associating a private (L1) cache
with each processor. Previous schedulers that tried
to optimize cache complexity in the parallel setting
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have worked very differently depending on whether the
caches are private or shared. We have presented the
controlled-pdf scheduler, which schedules a large
class of divide-and-conquer algorithms such that both
the private L1 and shared L2 cache misses match the
sequential cache complexity while maintaining full par-
allel speed-up. An important topic for further research
is to extend these results to other types of algorithms.

We note that current chip multiprocessors have sev-
eral levels of (off-chip) memory larger than the L1 and
L2 caches (e.g., RAM and disk). However, these larger
levels are all shared, and thus the hierarchy starting
at L2 can be modeled by the cache-oblivious model
[21]. All of the algorithms we have analyzed under
the controlled-pdf scheduler have good sequential
cache-oblivious bounds, and they maintain this prop-
erty for these larger levels of the memory hierarchy when
scheduled by the controlled-pdf scheduler. One can
also consider hierarchies of private and shared caches.
Modeling such caches and developing algorithms and
schedulers for them is left as a topic for further research.
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