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Abstract. UT Austin Villa has participated in seven RoboCup@Home
competitions, performing respectably in each. What is more exciting,
however, is that we have begun a strong program of research that has
been in part inspired by our efforts in this competition. It is our intention
to build a comprehensive service robot system which is used in our labo-
ratories, in real-world deployments, and to compete in RoboCup@Home.
In this Team Description Paper, you will find the highlights of our efforts
in 2024 and our plans for 2025.

1 Introduction

Using the RoboCup@Home team as a focal point for inter-department and inter-
laboratory collaboration, UT Austin Villa@Home has pursued an ambitious re-
search program towards the goal of the development of a comprehensive service
robot system. We want to enter RoboCup@Home not with a suite of different
programs for each round, but with a single program which is capable of compet-
ing and winning.

UT Austin Villa@Home is a collaborative effort between PIs and students
in the Computer Science, Mechanical Engineering and Aerospace Engineering
departments at the University of Texas at Austin, with a diverse set of research
interests driving our team. We have competed in seven RoboCup@Home events.
In 2007, we took second place. In 2017, we entered into the newly-formed Do-
mestic Standard Platform League (DSPL) and took third place, having received
our robot only a couple of months before the competition. In 2018, the team
developed a design intended to allow us to develop a single system which would
enter into all of the stages of the competition, encompassing knowledge repre-
sentation, mapping, and architectural aspects. The team advanced to the second
stage and was able to score in difficult tasks such as Enhanced General Purpose
Service Robot (EGPSR). In 2019, we improved the system with better percep-
tion and manipulation modules. In 2021, we continued to develop our object
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recognition and manipulation capabilities using the HSR simulator, and finished
in the 3rd place in the 2021 competition. In 2022, we continued to strengthen
our perception pipeline and re-designed the person tracking module, and quali-
fied for the second stage in Bangkok. In 2023, we explored methods to combine
LLMs with task and motion planning for interactive mobile manipulation. In
2024, we upgraded our architecture with state-of-the-art models in perception,
manipulation, and command understanding, leading to better task performance
in various RoboCup@Home tests and our advancement to Stage 2. In particu-
lar, we scored one of the highest GPSR and EGPSR points in RoboCup@Home
DSPL, demonstrating the robustness and flexibility of our system. Our efforts
have resulted in seven publications [1,2,3,4,5,6,7], with more in progress. Going
into 2025, we plan to further improve the core components of our system and
develop more rigorous approaches to the tasks. We will also extend our research
efforts in knowledge representation and task-and-motion planning.

2 Software and Scientific Contributions

This section describes the component technologies we developed across multiple
tasks for our robot architecture, knowledge representation, semantic perception,
object manipulation, and person following on top of the HSR software stack.
The underlying architecture [6] is designed in a manner consistent with our
ongoing Building-Wide Intelligence project [8]. While using a different hardware
platform, many of the objectives and capabilities are the same.

2.1 Robot Architecture

Our architecture is designed for service robots to handle dynamic interactions
with humans in complex environments. The three-layer architecture, as shown in
Figure 1, outlines integration of the robot’s skill components, such as perception
and manipulation, with high-level reactive and deliberative controls. The top
layer sequences and executes skills, and is reactive during execution to respond
to changes. A central knowledge base facilitates knowledge sharing from all the
components. The deliberative control layer uses the knowledge base to reason
about the environment, and can be invoked to plan for tasks that cannot be
statically decomposed. Details on implementation of these layers can be found
in our recent paper [6].

2.2 Knowledge Representation and Planning

Our knowledge representation subsystem stores grounded robot knowledge in
a SQL database in order to allow for fast access and easy querying. Queries
can be formed using custom C++ and Python libraries. For instance, in the
Storing Groceries and GPSR tasks, the knowledge base is used to query object
properties such as categories and default locations. The knowledge base can be
dynamically updated by our perception system described below. Fig. 2 shows
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Fig. 1: Implementation of our robot architecture on HSR.

the knowledge base after the robot has detected a ketchup bottle on the dining
table.

The knowledge base can be interfaced through a simple predicate logic form
which can be then imported for task planning. Core to our KR subsystem is
the ability to reason about hypothetical objects that are requested by users but
unseen by the robot. This capability is crucial to our solution of the incomplete
commands in earlier versions of the EGPSR test. Details on our knowledge
representation and planning system can be found in our paper [2].
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Fig. 2: Visualization of a knowledge base grounded in the robot’s perception.

2.3 Command Understanding

To solve commands that are generated on the fly in GPSR and EGPSR tests,
the robot has to accurately transcribe the operator’s speech and parse it to a
structured format for the downstream controller. Our command understanding
pipeline performed well in the 2024 competition, successfully parsing all seven
GPSR and EGPSR commands that were encountered. Our team’s qualification
video highlights one of our GPSR runs in Eindhoven, where the robot understood
both commands and executed the correct steps to solve them.
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Due to the unreliable network connectivity and speed for audio uploads at
RoboCup, we deployed local models of OpenAI Whisper [9] and Vosk1 for speech
recognition. When the robot listens for a command, the audio is streamed from
the HSR’s microphone using ROS and recorded on the backpack laptop. Our
speech-to-text node integrates a Vosk model to detect the end of speech, pro-
cesses the full audio recording by Whisper, and outputs the text.

For speech parsing, we leverage the ability of large language models (LLMs)
like GPT-4o to translate natural language into structured outputs. We define
a JSON schema according to the grammar of the current command generator,
and prompt GPT-4o to parse the instruction into a valid JSON object while
applying common-sense corrections to speech transcription errors. For GPSR
tests, a state machine is assembled based on the task type and the parameters
to execute the command. For arbitrary tasks given in natural language, we have
shown that our framework is able to parse the commands to other formats such
as PDDL problem definitions which can then be solved by planners [7].

2.4 Semantic Perception

We employ a semantic perception module whose purpose is to process raw video
and depth data from the robot’s sensors and extract information that can be
processed by the manipulation, navigation, and knowledge reasoning modules.
The main output representations are a query-able scene graph of objects in the
environment and a partial 3D map of the world.

The main input to our semantic perception module is RGBD camera data.
Compressed RGB and depth images from the robot are streamed to an offboard
computer that runs the perceptual system. This image data is then consumed
by finding objects via the YOLO object detection network [10]. We annotate the
set of objects during set-up days with labels while adjusting segmentation masks
from Segment Anything [11], and fine-tune YOLOv8 segmentation models [12].
Next, semantic information about the world is synthesized in two main ways: an
instance-level 3D segmentation of the local point cloud and a global scene graph.
For the former, a 3D point cloud is integrated as the robot scans a location (e.g.
kitchen table), and regions of the point cloud corresponding to detected objects
are fused together from 2D to 3D based on geometric and semantic information.
The scene reconstruction is implemented in the Open3D library [13] and the
2D-to-3D instance fusion is based on a recent approach [14]. For the latter,
the objects are stored in a scene graph and wrapped with an efficient querying
interface that integrates with our knowledge representation system.

The synthesized semantic information is then made available to plugins in an
event-based model, where a plugin can request access to semantic information
that it wants to operate on. Supported plugins include custom RANSAC plane
detectors used to detect surfaces, and point cloud cropping with bounding box
fitting for use in manipulation. Figure 3a shows a visualization of the synthesized

1 https://github.com/alphacep/vosk
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(a) Object and plane detections (b) Successful grasp of a bowl

point cloud with object labels and the detected plane after a table is scanned by
our semantic perception module.

A significant limitation is the partial nature of the 3D environmental map.
Only a partial map is constructed due to the realtime processing constraint;
namely, full views of the world cannot be stitched together. Alternatively, GPU-
based techniques for combining full point clouds could potentially overcome this
limitation, and thus provides a direction for future development. Benefits of
having full 3D environmental maps include the ability to directly localize objects
with respect to the robot for task and motion planning. In 2024, we improved
our semantic perception framework with state-of-the-art approaches to generate
open-vocabulary 3D scene graphs. Specifically, our semantic perception has the
ability to leverage open-vocabulary detection models like Detic instead of YOLO.
This improvement will enable our system to handle unknown objects and open-
vocabulary queries.

2.5 Manipulation

The purpose of our manipulation system is to pick up diverse objects of different
shapes and sizes and put them down on various surfaces. Our manipulation stack
consists of three main components which we describe below: grasp and place pose
sampling, concurrent motion planning, and closed-loop correction.

Sampling Goal Poses Our semantic perception system provides instance-level
point clouds and 3D bounding boxes for objects of interest. We have integrated
two grasp pose generators. The first is a state-of-the-art model AnyGrasp [15].
The model is trained from table-top manipulator data, and we have found that
it works best for HSR after transforming the target object’s point cloud to look
like it came from a top-down camera pointed at the surface. We use AnyGrasp
to detect dense grasp poses on most objects including those with complex ge-
ometries. We post-process the poses and rank them according to their scores
provided by the model. Figure 3b shows that AnyGrasp generated a grasp pose
which pointed the gripper at the edge of the bowl, resulting in a successful grasp
in the Serve Breakfast test in RoboCup 2024.
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For flat objects (e.g. spoons and sponges), box-shaped objects (e.g. cereal
boxes), and some deformable objects (e.g. bags of chips), we have found that
sparse grasp poses can be computed from the bounding box with more consistent
results. Based on tight 3D bounding boxes, potential grasp poses are computed
that place the gripper on the top of the object as well as on all sides, with multiple
possible rotations of the wrist. For rigid objects, invalid poses are filtered out by
projecting the gripper onto the object and seeing if there is a collision.

For placing, we randomly sample poses on the target surface for the grasped
object and compute the desired gripper pose. Collisions are checked between the
placed bounding box with the bounding boxes of other objects already on the
surface. If the object is being placed in a cabinet with multi-level shelves, we
also check the height of bounding box against the vertical space above the target
shelf, and rotate the gripper if necessary.

Motion Planning Once the gripper’s target poses are determined, collision-
free joint trajectories need to be planned in order for the robot to achieve a
desired pose. Our solution is built on top of the HSR’s motion planning stack
with custom configurations for various pick and place scenarios. The bounding
boxes of collision objects and surfaces from the perception module are popu-
lated into the collision world. Since motion planning takes a significant amount
of time, reducing this bottleneck greatly improves the efficiency of the robot.
For tasks such as Storing Groceries, the robot has to repeatedly visit the same
location to manipulate objects. We have employed several strategies to speed up
the manipulation pipeline. First, we pick up the objects in the ascending order
of their distances to the edge, so the number of potential collisions are reduced.
Second, we wrap the motion planning module in a concurrence container of the
state machine, so that motion planners can be computed in parallel with exe-
cution. Our qualification video includes a demonstration of the Serve Breakfast
task.2 After placing the first object, the motion plans for the next object are
generated while the robot is traveling, and the pick and place locations are only
re-scanned if there is an execution failure.

Execution Next, executing a motion plan precisely is usually not feasible. This
is because, as the plan is executed, the software solely uses odometry to control
its position and the resultant drift can cause errors in how much the robot
thinks it has moved. To overcome this obstacle, we slightly modify desired grasp
poses by having the gripper be some offset away from the object. This way,
after a motion plan is generated and executed, the robot’s gripper is close to the
object, but there remains a small gap. We take advantage of this small gap by
employing a real-time, closed-loop grasp adjustment based on the fast YOLO
detections applied to images from the HSR’s hand camera. We use the position
of the generated 2D bounding box to align the gripper with the target object. A

2 Unfortunately, due to a hardware failure of our HSR’s arm lift joint, we were not
able to run full pick-and-place tasks in Eindhoven.
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proportional controller is used to publish a velocity command to the robot base
based on the distance between the center of the hand camera image and the
center of the bounding box. This practically means that the robot shifts slightly
to align the gripper perfectly with the centroid of the object. The gap is then
closed by moving in a straight line towards the object.

2.6 Person Tracking, and Following

A home service robot must be able to find and track people in crowded environ-
ments. In 2024, we improved our person recognition system for interactive tasks
such as Receptionist and EGPSR. Our successful Receptionist run at RoboCup
2024 can be found in our qualification video.

Person Tracking Our vision-based person tracking module implements the
BoT-SORT algorithm [16] with adaptations for a RGBD camera on a mov-
ing robot. Instead of tracking the detected persons’ bounding boxes in the
image frame, we estimate and track their 2D positions in the map frame. A
YOLOv8-pose model is used for detecting body keypoints. The keypoints are
post-processed for recognizing gestures such as waving, raising arms, and point-
ing. A person re-identification model is integrated when a person leaves the
robot’s view for some time and re-enters. Further, the module supports on-
demand re-identification from a list of candidates in Receptionist.

Person Following To achieve robust and efficient person following in the Carry
My Luggage task, perception, robot gaze control, and navigation must be effec-
tively integrated. Previously, we have developed person following capabilities
using sensor fusion, active search using trajectory and waypoints predictions,
and construct fully autonomous behaviors to follow people including temporary
losses of the target being followed. Details on our person following approach
can be found in our paper [3]. In 2025, we plan to upgrade this person following
framework for unknown environments and integrate with our new person tracker
described above.

3 Conclusion

UT Austin Villa@Home has been a strong competitor and has a tradition of
synergistic research our RoboCup@Home team and our other research efforts.
RoboCup@Home has become a driving force in robotics research at UT Austin.
We look forward to seeing everyone again in Salvador, Brazil in 2025.
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HSR Software and External Devices [DSPL]

Fig. 4: HSR

We use a standard Human Support Robot (HSR) from
Toyota. No modifications have been applied.

Robot’s Software Description

We are using the following 3rd party software:

– Object recognition: YOLOv8, SAM
– People and activity recognition: YOLOv8
– Manipulation: AnyGrasp
– Knowledge Base: PostgreSQL
– Planning and reasoning: Clingo, PDDLStream
– State Machine: SMACH (ROS)

External Devices

We are using the following external devices:

– Asus ROG Laptop (Backpack)

Cloud Services

We are using the following cloud services:

– Speech recognition: Google Cloud Speech API
– Large language model: GPT-4o

Robot software and hardware specification sheet
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