SARDSRN: A Neural Network
Shift-Reduce Par ser

Marshall R. Mayberry, |11 Risto Miikkulainen
Department of Computer Sciences Department of Computer Sciences
The University of Texas The University of Texas
Austin, TX, 78712, USA Austin, TX, 78712, USA
martym@cs.utexas.edu risto@cs.utexas.edu

Technical Report Al98-275
Septermber 1998

Abstract

Simple Recurrent Networks (is) have been widely used in natural language tasksRDSRN extends
the RN by explicitly representing the input sequence inARSNET self-organizing map. The distributed
SRN component leads to good generalization and robust cogrmtigperties, whereas thea®DNET map
provides exact representations of the sentence congstu@his combination allows 8RDSRN to learn to
parse sentences with more complicated structure than eg@rthalone, and suggests that the approach could
scale up to realistic natural language.

1 Introduction

The subsymbolic approach (i.e. neural networks with distdéd representations) to processing language is
attractive for several reasons. First, it is inherentlyusib the distributed representations display graceful
degradation of performance in the presence of noise, daraagéncomplete or conflicting input (Miikkulai-
nen 1993; St. John and McClelland 1990). Second, becaugeutation in these networks is constraint-based,
the subsymbolic approach naturally combines syntactimas¢ic, and thematic constraints on the interpre-
tation of linguistic data (McClelland and Kawamoto 1986hir@l, subsymbolic systems can be lesioned in
various ways and the resulting behavior is often strikirgiigilar to human impairments (Miikkulainen 1993,
1996; Plaut 1991). These properties of subsymbolic systeans attracted many researchers in the hope
of accounting for interesting cognitive phenomena, suchoksbinding and lexical errors resulting from
memory interference and overloading, aphasic and dysieyiairments resulting from physical damage, and
biases, defaults and expectations emerging from trainstgrly (Miikkulainen 1997, 1996, 1993)

1

Since its introduction in 1990, the simple recurrent nefw(@RN; Elman 1990) has become a mainstay
in connectionist natural language processing tasks sutéx@sl disambiguation, prepositional phrase at-
tachment, active-passive transformation, anaphorautse) and translation (Allen 1987; Chalmers 1990;
Munro et al. 1991; Touretzky 1991). This paper describesxéension to the standardrS, which utilizes
SARDNET (James and Miikkulainen 1995), a self-organizing map algar designed to represent sequences.
SARDNET permits the sequence information to remain explicit, ystritiuted in the sense that similar se-
guences result in similar patterns on the maprSSRN, the combination of the &\ and S\RDNET, effec-
tively solves the fundamental memory accuracy limitatiohhie RN, and allows the processing of sentences
of realistic length.

This paper shows howARDSRN improves upon the performance of thersin a nontrivial syntactic
shift-reduce parsing task. The results show thaRISSRN outperforms the 8N in this task by providing
an effective solution to the memory problemar® SRN therefore forms a solid foundation for building a
subsymbolic parser of realistic language.

2 TheTask: Shift-Reduce Parsing

The task taken up in this study, shift-reduce (SR) parsiagynie of the simplest approaches to sentence
processing that nevertheless has the potential to handllestasitial subset of English (Marcus 1980; Tomita
1986). Its basic formulation is based on the pushdown autfoaparsing context-free grammars, but it can
be extended to context-sensitive grammars as well.

The parser consists of two data structures: the input beftees the sequence of words remaining to be
read, and the partial parse results are kept on the stackgfigu Initially the stack is empty and the entire
sentence is in the input buffer. At each step, the parserchdsdide whether to shift a word from the buffer
to the stack, or to reduce one or more of the top elements dftétok into a new element representing their
combination. For example, if the top two elements are ctigrddiP and VP, the parser reduces them irffp
corresponding to the grammar ride— NP VP(step 17 in figure 1). The process stops when the elements in
the stack have been reduced to S, and no more words remaia inpilt. The reduce actions performed by
the parser in this process constitute the parse result,agittte syntactic parse tree (line 18 in figure 1).

The sequential scanning process and incremental formipgraél representations is a plausible cognitive
model for language understanding. SR parsing is also véipjegft, and lends itself to many extensions. For
example, the parse rules can be made more context sengitte&ibg more of the stack and the input buffer
into account. Also, the partial parse results may consisynfactic or semantic structures.

The general SR model can be implemented in many ways. A senabdic shift-reduce rules can be
written by hand or learned from input examples (HermjacabMooney 1997; Simmons and Yu 1991; Zelle
and Mooney 1993, 1996). Itis also possible to train a newelark to make shift/reduce decisions, based on
the current stack and the input buffer as input. If traineapprly, the neural network can generalize well to
new sentences (Simmons and Yu 1992). Whatever correlati@ns exist between the word representations

Stack Input Buffer Action
the boy who liked the girl chased the cat. 1 Shift
the boy who liked the girl chased the cat . 2 Shift
the boy who liked the girl chased the cat . 3 Reduce
NP[the,boy] who liked the girl chased the cat . 4 Shift
NP[the,boy] who liked the girl chased the cat . 5 Shift
NP[the,boy] who liked the girl chased the cat . 6 Shift
NP[the,boy] who liked the| girl chased the cat . 7 Shift
NP[the,boy] who liked the girl chased the cat . 8 Reduce
NP[the,boy] who liked NP[the,girl] chased the cat . 9 Reduce
NP[the,boy] who VP[liked,NP[the,girl]] chased the cat . 10 Reduce
NP[the,boy] RC[who,VP][liked,NP[the,girl]]] chased the cat . 11 Reduce
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 12 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chade| thecat. 13 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chadehe cat. 14 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chadehe cat . 15 Reduce
NP[NP[the,boy],RC[who,VP][liked,NP[the,qgirl]]]] chadeNP[the,cat] . 16 Reduce
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] VP[csed,NP[the,cat]] . 17 Reduce
S[NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]], Viehased,NP[the,cat]]] 18 Stop

Figure 1:Shift-Reduce Parsing a Sentence. Each step in the parse is represented by a line from top to bottom. The
current stack is at left, the input buffer in the middle, and the parsewsibn in the current situation at right. At
each step, the parser either shifts a word into the stack, or reduces thetogned of the stack into a higher-level
representation, such adie boy — NP[t he, boy] (step 3).

and the appropriate parsing decisions, the network withiéa utilize them.

Another important extension is to implement the stack asusah@etwork. This way the parser can have
access to the entire stack at once, and interesting cogpitienomena in processing complex sentences can
be modeled. The SPEC system (Miikkulainen 1996) was a fiegt ist this direction. The stack was rep-
resented as a compressed distributed representationeddogna RAAM auto-encoding network (Recursive
Auto-Associative Memory; Pollack 1990). The resultingteys was able to parse complex relative clause
structures. When the stack representation was artifidiedipned by adding noise, the parser exhibited very
plausible cognitive performance. Shallow center embeyidimere easier to process, as were sentences with
strong semantic constraints in the role bindings. When énsegy made errors, it usually switched the roles of
two words in the sentence, which is what people also do inlairituations. A symbolic representation of
the stack would make modeling such behavior very difficult.

The SPEC architecture, however, was not a complete implati@m of SR parsing; it was designed
specifically for embedded relative clauses. For generaimpgrthe SR stack needs to be encoded with neural
networks, to make it possible to parse much more varied igtigustructures. We believe that the general-
ization and robustness of subsymbolic neural networksresililt in powerful, cognitively valid performance.
However, the main problem of limited memory accuracy of tRN$arsing network must first be solved. An
architecture that will do that, SARDSRN, will be describezkin

SARDNET
the boy who liked the girl chased chased chased
EEE
Input Word " o
chased

(]

Previous Hidden Layer

[[the,boy],[who,[liked,[the,girl]]]]
Compressed RAAM

Figure 2: The SARDSRN Network. This snapshot shows the network during step 11 of figure 1. Theseptation
for the current input wordghased, is shown at top left. Each word is input to thaf®NET map, which builds a
representation for the sequence word by word. At each step, the previouiactof the hidden layer is copied (as
indicated by the dotted line) to the Previous Hidden Layer assembly ddtivation, together with the current input
word and the current &RDNET pattern, is propagated to the hidden layer of tikei Betwork. As output, the network
generates the compressedAR representation of the top element in the shift-reduce stack at this stite pérse (in
this case, line 12 in figure 1).ARDNET is a map of word representations, and it is trained through the SeHrizigg
Map algorithm ($M; Kohonen 1997, 1990). All other connections are trained through bapkpgation.

3 The SARDSRN parser architecture

3.1 Simple Recurrent Network

The starting point for BRDSRN (figure 2) is the simple recurrent network. The network remdsquence of
input word representations into output patterns reprasgtihe parse results, such as syntactic or case-role
assignments for the words. At each time step, a copy of thaehithyer is saved and used as input during the
next step, together with the next word. In this way each newdviminterpreted in the context of the entire
sequence so far, and the parse result is gradually formée atitput.

The RN architecture can be used to implement a shift-reduce parsiee following way: the network is
trained to step through the parse (such as that in figure hgrgeng a compressed distributed representation

of the top element of the stack at each step (formed byaaMRnetwork: section 4.1). The network reads
the sequence of words one word at a time, and each time elitiex the word onto the stack (by passing it
through the network, e.g. step 1), or performs one or morecedperations (by generating a sequence of
compressed representations corresponding to the top mlenthe stack: e.g. steps 8-11). After the whole
sequence is input, the final stack representation is decintiedh parse result such as a parse tree. Such
an architecture is powerful for two reasons: (1) During thesp, the network does not have to guess what
is coming up later in the sentence, as it would if it always t@dhoot for the final parse result; its only
task is to build a representation of the current stack inidddn layer and the top element in its output. (2)
Instead of having to generate a large number of differertksstates at the output, it only needs to output
representations for a relatively small number of commorssubtures. Both of these features make learning
and generalization easier.

A well-known problem with the 8N model is its low memory accuracy. It is difficult for it to reme
ber items that occurred several steps earlier in the ingyuesee, especially if the network is not required
to produce them in the output layer during the intervenirgpst(Stolcke 1990; Miikkulainen 1996). The
intervening items are superimposed in the hidden layecwbg) the traces of earlier items. Nor has simply
increasing the size of the hidden layer been found to offesinadvantage. As a result, parsing with &&nNS
has been limited to relatively simple sentences with sheditsucture.

3.2 SARDNET

The solution described in this paper is to use an explicitaggntation of the input sequence as additional
input to the hidden layer. This representation providesenamcurate information about the sequence, such
as the relative ordering of the incoming words, and it candeliined with the weak hidden layer represen-
tation to generate accurate output that retains all therdagas of distributed representations. The sequence
representation must be explicit enough to allow such cleabut it must also be compact and generalize well
to new sequences.

The SARDNET (Sequential Activation Retention and Decayiwork; James and Miikkulainen 1995)
self-organizing map for sequences has exactly these piepeSARDNET is based on the Self-Organizing
Map neural network (8M; Kohonen 1990, 1997), and organized to represent the spadiepossible word
representations. As in a conventional self-organizing metpvork, each input word is mapped onto a par-
ticular map node called the maximally-responding unit, amner. The weights of the winning unit and all
the nodes in its neighborhood are updated according to dinelatd adaptation rule to better approximate the
current input. The size of the neighborhood is set at thenbdégg of the training and reduced as the map
becomes more organized.

In SARDNET, the sequence of words is represented as a distributed@mtiypattern on the map (figure 2).
For each word, the maximally responding unit is activated toaximum value of 1.0, and the activations of
units representing previous words are decayed accordiagspecified decay rate (e.g. 0.9). After a unit is
activated, it is removed from competition and cannot regrefater words in the sequence. In this manner

Nour(0) — boy Nour(1) — girl Noun(2) — dog Nour(3) — cat
Verl(0,0) — liked, saw Verh(0,1) — liked, saw Verh(0,2) — liked
Verb(0,3) — chased Verb(1,0) — liked, saw Verb(1,1) — liked, saw
Verh(1,2) — liked Verh(1,3) — chased Verh(2,0) — bit
Verb(2,1) — bit Verh(2,2) — bit Verb(2,3) — bit, chased
Verh(3,0) — saw Verh(3,1) — saw Verh(3,3) — chased
S— NP(n) VP(n,m) VP(n,m)— Verb(n,m)NP(m) NP(n) — Nour(n)

RQn) — who VP(n,m) NP(n) — Nour(n) RQO(n) RQn) — whom NP(m) Verk(m,n)

Figure 3: Grammar. This phrase structure grammar generates sentences with subject- and oiofeteexelative
clauses. Agreement between subject and object depend on the verb in the clauseediertbedule arguments.

each unit may represent different words depending on thiexpnvhich allows for an efficient representation
of sequences, and also generalizes well to new sequences.

In the SARDSRN architecture, a SRDNET representation of the input word sequence is formed at the
same time as the\ hidden layer representation, and used together with theéque hidden layer repre-
sentation and the next input word as input to the hidden Igfigarre 2). This architecture allows therS to
perform its task with significantly less memory degradatidhe sequence information remains accessible in
SARDNET, and the &N is able to focus on capturing correlations relating to ssggeconstituent structure
during parsing.

4 Experiments

4.1 Input Data, Training, and System Parameters

The data used to train and test theNsand S\RDSRN networks were generated from the phrase structure
grammar in figure 3, adapted from a grammar that has becommoarim the literature (EIman 1991; Miik-
kulainen 1996). Since our focus was on shift-reduce parsaing not processing relative clauses per se,
sentence structure was limited to one relative clause peersee. From this grammar training targets corre-
sponding to each step in the parsing process were obtaiedhkts, the target is simply the current input.
In these cases, the network is trained to auto-associatehwhese networks are good at. For reductions,
however, the targets consist of representations of théapaxrse trees that result from applying a gram-
matical rule. For example, the reduction of the sentenagmiemtwho | i ked t he gi r| would produce the
partial parse resulkC] who, VP[| i ked, NP[t he, gi r1]]]. Two issues arise: how should the parse trees be
represented, and how should reductions be processed cerignce parsing?

The approach taken in this paper is the same as in SPEC (s&jti@s well as in other connectionist
parsing systems (Miikkulainen 1996; Berg 1992; Sharkey@imatkey 1992). Compressed representations of
the syntactic parse trees using A are built up through auto-association of the constituenkss training
is performed beforehand separately from the parsing taske @rmed, the compressed representations can
be decoded into their constituents using just the decodéiopmf the RAAM architecture.

6

the 10000000|| who | 01010000
whom | 01100000 . 11111111
boy 00101000| dog | 00100010
girl 00100100|| cat | 00100001
chased| 00011000|| saw | 00010010
liked 00010100|| bit | 00010001

Figure 4:L exicon. Each word representation is put together from a part-of-speech identii¢fgfir components) and
a unique ID tag make up (last four). This encoding is then repeated aigs to form a 64-unit word representation.
Such redundancy makes it easier to identify the word.

In shift-reduce parsing, the input buffer after each “Reduaction is unchanged; rather, the reduction
occurs on the stack. Therefore, if we want to perform thectolos one step at a time, the current word must
be maintained in the input buffer until the next “Shift” awti Therefore, the input to the network consists of
the sequence of words that make up the sentence with thevimdtrepeated for each reduce action, and the
target consists of representations of the top element dfttek (as shown in figure 1).

Word representations were hand-coded to provide basiopapeech information together with a unique
ID tag that identified the word within the syntactic categ@figure 4). The basic encoding of 8 units was
repeated eight times to form a 64-unit representation. $edtndant long representations were found to
facilitate learning in general.

Four data sets of 20%, 40%, 60%, and 80% of the 436 sentencesaged by the grammar were randomly
selected to train both parsers, and each parser was trairesth dataset four times. Training on all thirty-two
runs was stopped when the error on a 22-sentence (5%) validat began to level off. The same validation
set was used for all the simulations and was randomly draam ft pool of sentences that did not appear
in any of the training sets. Testing was then performed omrdh@ining sentences that were neither in the
training set nor in the validation set.

The RN network architecture consisted of a 64-unit input layef)-26it hidden and context layers, and
64-unit output and target layersABDSRN added a 144-unit feature mapADNET) to the RN setup. A
learning rate of 0.2 was used to train both networks, whitgdélarning and decay rates for theRbNET fea-
ture map input in 8RDSRN were set to 0.8 and 0.9, respectively. The neighborhood eta § initially and
gradually reduced to 0. These parameters were found expetatty to result in the best general performance
for both parsers.

4.2 Results

Three different performance measures were used to obtaoreugh characterization of the relative perfor-
mances of the &\ and S\RDSRN architectures.

The first measure, thepoch error is the average error per output unit during each epoch. mbasure

7

0.08 0.05 10.0

0 oézl | 0.04:l__ — 8 0[1'. . |
oev-ns Eleee-n 0 e Clev-w.]
S @ 0.03F e ewns Llee e s o 6.0 S @_
0.04 ARD QRN — ARDSRN
gRND’ 0.021- SARD§EN%-— 4.0k gRND_
0.0QMQ 0.01F | 20k |
0.0G 2o 60 0.06 20 50 0.0 4 &

Figure 5: Results. Averages over four simulation runs using the three performance measps) error(left),

leaf error (middle), andaverage mismatchgsight) on the test data. The graphs all show the same result: Riv&s S
performance in all 16 runs bottomed out at a much higher error tag@mSrN, while it was still unable to parse all of

the training and test sentenceaR®D SRN, on the other hand, did learn to parse the training sentences, and showed ver
good generalization to the test sentences. These differences are statisticéilyasmt withp < 0.00005.

tells us how closely the output representations matchetiathet representations during parsing. Presumably,
if the epoch error is low, the output representations stithpit accurate decoding into the correct parse tree.
However, because this measure only reports the averagempearice over an entire epoch, it gives us no sense
of the network’s performance at each step in the parsingegsod-or example, there remains the danger that
a low epoch error could also be achieved by learning the spétations very accurately, with lower accuracy
on the reductions, resulting in an incorrect decoding ofctirapressed representations of the parse tree.

The second measure, theaf error, applies the first measure on the leaves of thea R representations.
Each RAAM representation encountered during parsing was decodeith@sedrors at the leaves accumulated
and averaged. The leaf error tends to be lower than the epoohbecause the leaves are always binary
representations, which are easier for the networks to ght than the continuous representations (Noelle
et al. 1997). Because the identity of the word represemsitdepends on only a few units (the ID tag: see
figure 4), itis possible to generate low error over the p&dpzech part of the representation without correctly
identifying the word.

The final measuregverage mismatchetherefore, reports the average number of leaf represamsathat
could not be correctly identified by nearest match in Eueliddistance from the lexicon. As an example,
if the target isRC[who, VP[| i ked, NP[the, girl]]]], (step 11 of figure 1), but the network output is
RC who, VP[saw, NP[t he, gi r1]1]]],thenamismatch would occur at the leaf labeBed/once the Ram
representation was decoded. Average mismatches provideaaume of the correctness and utility of the
information in the RAM representation.

Training took about four days on a 200 MHz Pentium Pro wotkstawith SARDSRN taking about 1.5
times as long per epoch as th@Nsalone. The validation error in therR® runs quickly leveled off, and
continued training did nothing to improve it. On the othenthathe IRDSRN simulation runs were still
showing slight improvements when they were cut off. Figumdis these performance measures averaged
over the four simulation runs against the test sentences.

By all measures, 8&RDSRN performed significantly—even qualitatively—better thia@ $standard SN. On

8

the training datasets, there was roughly an order of madmitifference in both the epoch errors and the leaf
errors between A&RDSRN and kN, and at least two orders of magnitude difference in the geeraumber

of mismatches per sentence. These results suggest thaktheo8ld not even learn the training data to any
useful extent, whereasaA B DSRN does not appear to be nearing its limit. On the test sets, gbeheerror
and leaf error for the 8N never fell below 0.05 and 0.03, respectively, and there wesgly 7 mismatches
per sentence on average. Even in the most difficult case d0B#RDSRN (on the 20% test dataset, in which
the networks were trained on just 89 sentences, and teste@x)nthese errors never reached half that level.
These results show thah8DSRN forms a promising starting point for parsing sentences aligéc length
and complexity.

4.3 ExampleParse

Adding SARDNET to the RN architecture made it possible for the network to learn thisipg task. This can
be shown clearly by contrasting the performances ARISSRN and the &N on a typical sentence, such as
the one in figure 1. NeitherARDSRN nor RN had any trouble with the shift targets. Not surprisinglylyea

in training the networks would master all the shift targetshie sentence before they would get any of the
reductions correct. The first reductiod(t he, boy] in our example) also poses no problem for either net-
work. Nor, in general, does the secom[t he, gi r |], because the constituent information is still fresh in
memory. However, the ability of ther8iI to generate the later reductions accurately degradedydgdause
the information about earlier constituents is smotherethbyater steps of the parse. Interestingly, the struc-
tural information survives much longer. For example, iadtef RC[who, VP[| i ked, NP[the, girl]]]],

the SRN might produceRC] who, VP[bi t, NP[t he, dog]]]] . The structure of this representation is correct;
what is lost are the particular instantiations of the pase. tThis is where &DNET makes a difference. The
lost constituent information remains accessible in théufeamap. As a result, &RDSRN is able to capture
each constituent even through the final reductions.

5 Discussion

These results demonstrate a practicable solution to theamyedegradation problem of simple recurrent
networks. The 8N does not have to maintain specific information about the esecpi constituents, and can
instead focus on what it is best agpturing structure Although the sentences used in these experiments are
still relatively uncomplicated, they do exhibit enougtusture to suggest that much more complex sentences
could be tackled with SRDSRN.

The operation of SARDSRN on the shift-reduce parsing taskrisce demonstration of holistic compu-
tation. The network is able to learn how to generate each RAYaKe representation during the course of
sentence processing without ever having to decompose anothp®se the constituent representations. Par-
tial parse results can be built up incrementally into insiregly complicated structures, which suggests that
training could be performed incrementally. Such a trairsngeme is especially attractive given that training

9

in general is still relatively costly.

An important extension of the SARDSRN idea, currently bdimgestigated by our group, is an archi-
tecture where SARDNET is combined with a RAAM network. RAARIthough having many desirable
properties for a purely connectionist approach to pardiag,long been a bottleneck during training. Its oper-
ation is very similar to the SRN, and it suffers from the saneemory accuracy problem: with deep structures
the superimposition of higher-level representations gmiy obscure the traces of low-level items, and the
decoding becomes inaccurate. This degradation makediduiito use RAAM to encode/decode parse re-
sults of realistic language. Our expectation is that théi@kpepresentation of a compressed structure formed
on a SARDNET feature map, when coupled with the distribuggmiesentations of the RAAM, will result in
an architecture able to represent much richer linguisticctire.

The SARDSRN idea is not just a way to improve the performance of subsyimibetworks; it is an explicit
implementation of the idea that humans can keep track oftittem of elements, not just their statistical
properties (Miikkulainen 1993). The subsymbolic netwoake very good with statistical associations, but
cannot distinguish between representations that havéasigtatistical properties. People can; whether they
use a map-like representation is an open question, but vieveghe 3\RDNET representation suggests
a way to capture a lot of the resulting behavior. It is useéul Building powerful subsymbolic language
understanding systems, but it is also a plausible cogrégpmroach.

6 Conclusion

We have described an extension of theNScalled S\RDSRN that combines the subsymbolic distributed
properties of the 8N with the localist properties of &RDNET. The distributed component leads to good
generalization and robust cognitive properties, whetgastap provides exact representations of the sentence
constituents. The results in this paper demonstrate aigabtg solution to the memory degradation problem
of SRNs. With SARDNET keeping track of the sequence constituents, tRs 8 able to learn the structure
representation necessary to perform shift-reduce parsiitgs combination allows &RDSRN to learn to
parse longer and more complex sentences than enea®ne. Future research will focus on extending this
approach to the RAAM architecture, with the expectation the representative properties cAFRONET will
allow RAAM to encode deeper structures, such as the featle> matrices used in the lexicalist, constraint-
based grammar formalisms of contemporary linguistics rihebat are a prerequisite to handling realistic
natural language.

Acknowledgments

This research was supported in part by the Texas Higher Edodcaoordinating Board under grant ARP-444,

10

References

Allen, R. B. (1987). Several studies on natural languagebaa#f-propagation. IRProceedings of the IEEE
First International Conference on Neural Networl&an Diego, CA), vol. Il, 335-341. Piscataway, NJ:
IEEE.

Berg, G. (1992). A connectionist parser with recursive esece structure and lexical disambiguation. In
Proceedings of the Tenth National Conference on Artifigigéélligence 32—-37. Cambridge, MA: MIT
Press.

Chalmers, D. J. (1990). Syntactic transformations onitigied representation&€onnection Scien¢®:53—
62.

Elman, J. L. (1990). Finding structure in tim€ognitive Sciencel4:179-211.

Elman, J. L. (1991). Distributed representations, simptirrent networks, and grammatical structuvia-
chine Learning7:195-225.

Hermjacob, U., and Mooney, R. J. (1997). Learning parse @mstation decisions from examples with rich
context. InProceedings of the 35th Annual Meeting of the ACL

James, D. L., and Miikkulainen, R. (1995). SARDNET: A selffanizing feature map for sequences. In
Tesauro, G., Touretzky, D. S., and Leen, T. K., editgkdvances in Neural Information Processing
Systems,/A77-584. Cambridge, MA: MIT Press.

Kohonen, T. (1990). The self-organizing mafroceedings of the IEEE8:1464-1480.
Kohonen, T. (1997)Self-Organizing MapsBerlin; New York: Springer. Second edition.
Marcus, M. (1980) A Theory of Syntactic Recognition for Natural Langua@ambridge, MA: MIT Press.

McClelland, J. L., and Kawamoto, A. H. (1986). Mechanismseiitence processing: Assigning roles to
constituents. In McClelland, J. L., and Rumelhart, D. Eitaed, Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition, Volume 2:yekological and Biological Mode|272—-325.
Cambridge, MA: MIT Press.

Miikkulainen, R. (1993).Subsymbolic Natural Language Processing: An Integrateddfiof Scripts, Lexi-
con, and MemoryCambridge, MA: MIT Press.

Miikkulainen, R. (1996). Subsymbolic case-role analydisentences with embedded claus&3ognitive
Science20:47-73.

Miikkulainen, R. (1997). Dyslexic and category-specifigo@irments in a self-organizing feature map model
of the lexicon.Brain and Language59:334—366.

11

Munro, P., Cosic, C., and Tabasko, M. (1991). A network foragting, decoding and translating locative
prepositions.Connection Scien¢@:225-240.

Noelle, D. C., Cottrell, G., and Wilms, F. (1997). Extremé&aattion: The benefits of corner attractors.
Technical Report CS97-536, Department of Computer Sciandéngineering, UCSD, San Diego, CA.

Plaut, D. C. (1991)Connectionist Neuropsychology: The Breakdown and RegmfdBehavior in Lesioned
Attractor Networks PhD thesis, Computer Science Department, Carnegie Mélhversity, Pittsburgh,
PA. Technical Report CMU-CS-91-185.

Pollack, J. B. (1990). Recursive distributed represematiArtificial Intelligence 46:77-105.

Sharkey, N. E., and Sharkey, A. J. C. (1992). A modular defigoonnectionist parsing. In Drossaers, M.
F. J., and Nijholt, A., editorsTwente Workshop on Language Technology 3: ConnectionisiNatural

Language Processin®7-96. Enschede, the Netherlands: Department of ComBatence, University
of Twente.

Simmons, R. F., and Yu, Y.-H. (1991). The acquisition andliagfion of context sensitive grammar for
English. InProceedings of the 29th Annual Meeting of the ARlbrristown, NJ: Association for Com-
putational Linguistics.

Simmons, R. F., and Yu, Y.-H. (1992). The acquisition andafssontext dependent grammars for English.
Computational Linguistics18:391-418.

St. John, M. F., and McClelland, J. L. (1990). Learning anglgpg contextual constraints in sentence
comprehensionArtificial Intelligence 46:217—258.

Stolcke, A. (1990). Learning feature-based semantics wiitiple recurrent networks. Technical Report
TR-90-015, International Computer Science Institute kBlety, CA.

Tomita, M. (1986).Efficient Parsing for Natural Languagdordrecht; Boston: Kluwer.

Touretzky, D. S. (1991). Connectionism and compositioeah@ntics. In Barnden, J. A., and Pollack, J. B.,
editors,High-Level Connectionist Modelgol. 1 of Advances in Connectionist and Neural Computation
Theory,Barnden, J. A., series editor, 17—-31. Norwood, NJ: Ablex.

Zelle, J. M., and Mooney, R. J. (1993). Learning semantiengnars with constructive inductive logic pro-
gramming. InProceedings of the 11th National Conference on Atrtificiaklligence 817-822. Cam-
bridge, MA: MIT Press.

Zelle, J. M., and Mooney, R. J. (1996). Comparative resultssing inductive logic programming for corpus-
based parser construction. In Wermter, S., Riloff, E., atltefer, G., editorsConnectionist, Statistical,
and Symbolic Approaches to Learning for Natural LanguagecBssing 355—-369. Berlin; New York:
Springer.

12

