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Abstract

Simple Recurrent Networks (SRNs) have been widely used in natural language tasks. SARDSRN extends
the SRN by explicitly representing the input sequence in a SARDNET self-organizing map. The distributed
SRN component leads to good generalization and robust cognitive properties, whereas the SARDNET map
provides exact representations of the sentence constituents. This combination allows SARDSRN to learn to
parse sentences with more complicated structure than can the SRN alone, and suggests that the approach could
scale up to realistic natural language.

1 Introduction

The subsymbolic approach (i.e. neural networks with distributed representations) to processing language is
attractive for several reasons. First, it is inherently robust: the distributed representations display graceful
degradation of performance in the presence of noise, damage, and incomplete or conflicting input (Miikkulai-
nen 1993; St. John and McClelland 1990). Second, because computation in these networks is constraint-based,
the subsymbolic approach naturally combines syntactic, semantic, and thematic constraints on the interpre-
tation of linguistic data (McClelland and Kawamoto 1986). Third, subsymbolic systems can be lesioned in
various ways and the resulting behavior is often strikinglysimilar to human impairments (Miikkulainen 1993,
1996; Plaut 1991). These properties of subsymbolic systemshave attracted many researchers in the hope
of accounting for interesting cognitive phenomena, such asrole-binding and lexical errors resulting from
memory interference and overloading, aphasic and dyslexicimpairments resulting from physical damage, and
biases, defaults and expectations emerging from training history (Miikkulainen 1997, 1996, 1993)
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Since its introduction in 1990, the simple recurrent network (SRN; Elman 1990) has become a mainstay
in connectionist natural language processing tasks such aslexical disambiguation, prepositional phrase at-
tachment, active-passive transformation, anaphora resolution, and translation (Allen 1987; Chalmers 1990;
Munro et al. 1991; Touretzky 1991). This paper describes an extension to the standard SRN, which utilizes
SARDNET (James and Miikkulainen 1995), a self-organizing map algorithm designed to represent sequences.
SARDNET permits the sequence information to remain explicit, yet distributed in the sense that similar se-
quences result in similar patterns on the map. SARDSRN, the combination of the SRN and SARDNET, effec-
tively solves the fundamental memory accuracy limitationsof the SRN, and allows the processing of sentences
of realistic length.

This paper shows how SARDSRN improves upon the performance of the SRN in a nontrivial syntactic
shift-reduce parsing task. The results show that SARDSRN outperforms the SRN in this task by providing
an effective solution to the memory problem. SARDSRN therefore forms a solid foundation for building a
subsymbolic parser of realistic language.

2 The Task: Shift-Reduce Parsing

The task taken up in this study, shift-reduce (SR) parsing, is one of the simplest approaches to sentence
processing that nevertheless has the potential to handle a substantial subset of English (Marcus 1980; Tomita
1986). Its basic formulation is based on the pushdown automata for parsing context-free grammars, but it can
be extended to context-sensitive grammars as well.

The parser consists of two data structures: the input bufferstores the sequence of words remaining to be
read, and the partial parse results are kept on the stack (figure 1). Initially the stack is empty and the entire
sentence is in the input buffer. At each step, the parser has to decide whether to shift a word from the buffer
to the stack, or to reduce one or more of the top elements of thestack into a new element representing their
combination. For example, if the top two elements are currently NP andVP, the parser reduces them intoS,
corresponding to the grammar ruleS! NP VP(step 17 in figure 1). The process stops when the elements in
the stack have been reduced to S, and no more words remain in the input. The reduce actions performed by
the parser in this process constitute the parse result, suchas the syntactic parse tree (line 18 in figure 1).

The sequential scanning process and incremental forming ofpartial representations is a plausible cognitive
model for language understanding. SR parsing is also very efficient, and lends itself to many extensions. For
example, the parse rules can be made more context sensitive by taking more of the stack and the input buffer
into account. Also, the partial parse results may consist ofsyntactic or semantic structures.

The general SR model can be implemented in many ways. A set of symbolic shift-reduce rules can be
written by hand or learned from input examples (Hermjacob and Mooney 1997; Simmons and Yu 1991; Zelle
and Mooney 1993, 1996). It is also possible to train a neural network to make shift/reduce decisions, based on
the current stack and the input buffer as input. If trained properly, the neural network can generalize well to
new sentences (Simmons and Yu 1992). Whatever correlationsthere exist between the word representations
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Stack Input Buffer Action
the boy who liked the girl chased the cat . 1 Shift

the boy who liked the girl chased the cat . 2 Shift
the boy who liked the girl chased the cat . 3 Reduce

NP[the,boy] who liked the girl chased the cat . 4 Shift
NP[the,boy] who liked the girl chased the cat . 5 Shift

NP[the,boy] who liked the girl chased the cat . 6 Shift
NP[the,boy] who liked the girl chased the cat . 7 Shift

NP[the,boy] who liked the girl chased the cat . 8 Reduce
NP[the,boy] who liked NP[the,girl] chased the cat . 9 Reduce

NP[the,boy] who VP[liked,NP[the,girl]] chased the cat . 10 Reduce
NP[the,boy] RC[who,VP[liked,NP[the,girl]]] chased the cat . 11 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 12 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 13 Shift

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 14 Shift
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased the cat . 15 Reduce

NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] chased NP[the,cat] . 16 Reduce
NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]] VP[chased,NP[the,cat]] . 17 Reduce

S[NP[NP[the,boy],RC[who,VP[liked,NP[the,girl]]]],VP[chased,NP[the,cat]]] 18 Stop

Figure 1:Shift-Reduce Parsing a Sentence. Each step in the parse is represented by a line from top to bottom. The
current stack is at left, the input buffer in the middle, and the parsing decision in the current situation at right. At
each step, the parser either shifts a word into the stack, or reduces the top elements of the stack into a higher-level
representation, such asthe boy! NP[the,boy] (step 3).

and the appropriate parsing decisions, the network will learn to utilize them.

Another important extension is to implement the stack as a neural network. This way the parser can have
access to the entire stack at once, and interesting cognitive phenomena in processing complex sentences can
be modeled. The SPEC system (Miikkulainen 1996) was a first step in this direction. The stack was rep-
resented as a compressed distributed representation, formed by a RAAM auto-encoding network (Recursive
Auto-Associative Memory; Pollack 1990). The resulting system was able to parse complex relative clause
structures. When the stack representation was artificiallylesioned by adding noise, the parser exhibited very
plausible cognitive performance. Shallow center embeddings were easier to process, as were sentences with
strong semantic constraints in the role bindings. When the parser made errors, it usually switched the roles of
two words in the sentence, which is what people also do in similar situations. A symbolic representation of
the stack would make modeling such behavior very difficult.

The SPEC architecture, however, was not a complete implementation of SR parsing; it was designed
specifically for embedded relative clauses. For general parsing, the SR stack needs to be encoded with neural
networks, to make it possible to parse much more varied linguistic structures. We believe that the general-
ization and robustness of subsymbolic neural networks willresult in powerful, cognitively valid performance.
However, the main problem of limited memory accuracy of the SRN parsing network must first be solved. An
architecture that will do that, SARDSRN, will be described next.
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Previous Hidden Layer

Compressed RAAM

Input Word

SARDNET

chased

[[the,boy],[who,[liked,[the,girl]]]]

the boy who liked the girl chased chased chased

Figure 2:The SARDSRN Network. This snapshot shows the network during step 11 of figure 1. The representation
for the current input word,chased, is shown at top left. Each word is input to the SARDNET map, which builds a
representation for the sequence word by word. At each step, the previous activation of the hidden layer is copied (as
indicated by the dotted line) to the Previous Hidden Layer assembly. This activation, together with the current input
word and the current SARDNET pattern, is propagated to the hidden layer of the SRN network. As output, the network
generates the compressed RAAM representation of the top element in the shift-reduce stack at this state ofthe parse (in
this case, line 12 in figure 1). SARDNET is a map of word representations, and it is trained through the Self-Organizing
Map algorithm (SOM; Kohonen 1997, 1990). All other connections are trained through backpropagation.

3 The SARDSRN parser architecture

3.1 Simple Recurrent Network

The starting point for SARDSRN (figure 2) is the simple recurrent network. The network readsa sequence of
input word representations into output patterns representing the parse results, such as syntactic or case-role
assignments for the words. At each time step, a copy of the hidden layer is saved and used as input during the
next step, together with the next word. In this way each new word is interpreted in the context of the entire
sequence so far, and the parse result is gradually formed at the output.

The SRN architecture can be used to implement a shift-reduce parserin the following way: the network is
trained to step through the parse (such as that in figure 1), generating a compressed distributed representation
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of the top element of the stack at each step (formed by a RAAM network: section 4.1). The network reads
the sequence of words one word at a time, and each time either shifts the word onto the stack (by passing it
through the network, e.g. step 1), or performs one or more reduce operations (by generating a sequence of
compressed representations corresponding to the top element of the stack: e.g. steps 8-11). After the whole
sequence is input, the final stack representation is decodedinto a parse result such as a parse tree. Such
an architecture is powerful for two reasons: (1) During the parse, the network does not have to guess what
is coming up later in the sentence, as it would if it always hadto shoot for the final parse result; its only
task is to build a representation of the current stack in its hidden layer and the top element in its output. (2)
Instead of having to generate a large number of different stack states at the output, it only needs to output
representations for a relatively small number of common substructures. Both of these features make learning
and generalization easier.

A well-known problem with the SRN model is its low memory accuracy. It is difficult for it to remem-
ber items that occurred several steps earlier in the input sequence, especially if the network is not required
to produce them in the output layer during the intervening steps (Stolcke 1990; Miikkulainen 1996). The
intervening items are superimposed in the hidden layer, obscuring the traces of earlier items. Nor has simply
increasing the size of the hidden layer been found to offer much advantage. As a result, parsing with an SRN

has been limited to relatively simple sentences with shallow structure.

3.2 SARDNET

The solution described in this paper is to use an explicit representation of the input sequence as additional
input to the hidden layer. This representation provides more accurate information about the sequence, such
as the relative ordering of the incoming words, and it can be combined with the weak hidden layer represen-
tation to generate accurate output that retains all the advantages of distributed representations. The sequence
representation must be explicit enough to allow such cleanup, but it must also be compact and generalize well
to new sequences.

The SARDNET (Sequential Activation Retention and Decay NETwork; James and Miikkulainen 1995)
self-organizing map for sequences has exactly these properties. SARDNET is based on the Self-Organizing
Map neural network (SOM; Kohonen 1990, 1997), and organized to represent the space of all possible word
representations. As in a conventional self-organizing mapnetwork, each input word is mapped onto a par-
ticular map node called the maximally-responding unit, or winner. The weights of the winning unit and all
the nodes in its neighborhood are updated according to the standard adaptation rule to better approximate the
current input. The size of the neighborhood is set at the beginning of the training and reduced as the map
becomes more organized.

In SARDNET, the sequence of words is represented as a distributed activation pattern on the map (figure 2).
For each word, the maximally responding unit is activated toa maximum value of 1.0, and the activations of
units representing previous words are decayed according toa specified decay rate (e.g. 0.9). After a unit is
activated, it is removed from competition and cannot represent later words in the sequence. In this manner
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Noun(0)! boy Noun(1)! girl Noun(2)! dog Noun(3)! cat
Verb(0,0)! liked, saw Verb(0,1)! liked, saw Verb(0,2)! liked
Verb(0,3)! chased Verb(1,0)! liked, saw Verb(1,1)! liked, saw
Verb(1,2)! liked Verb(1,3)! chased Verb(2,0)! bit
Verb(2,1)! bit Verb(2,2)! bit Verb(2,3)! bit, chased
Verb(3,0)! saw Verb(3,1)! saw Verb(3,3)! chased
S! NP(n) VP(n,m) VP(n,m)! Verb(n,m)NP(m) NP(n)! Noun(n)
RC(n)! who VP(n,m) NP(n)! Noun(n) RC(n) RC(n)! whom NP(m) Verb(m,n)

Figure 3: Grammar. This phrase structure grammar generates sentences with subject- and object-extracted relative
clauses. Agreement between subject and object depend on the verb in the clause as encoded in the rule arguments.

each unit may represent different words depending on the context, which allows for an efficient representation
of sequences, and also generalizes well to new sequences.

In the SARDSRN architecture, a SARDNET representation of the input word sequence is formed at the
same time as the SRN hidden layer representation, and used together with the previous hidden layer repre-
sentation and the next input word as input to the hidden layer(figure 2). This architecture allows the SRN to
perform its task with significantly less memory degradation. The sequence information remains accessible in
SARDNET, and the SRN is able to focus on capturing correlations relating to sentence constituent structure
during parsing.

4 Experiments

4.1 Input Data, Training, and System Parameters

The data used to train and test the SRN and SARDSRN networks were generated from the phrase structure
grammar in figure 3, adapted from a grammar that has become common in the literature (Elman 1991; Miik-
kulainen 1996). Since our focus was on shift-reduce parsing, and not processing relative clauses per se,
sentence structure was limited to one relative clause per sentence. From this grammar training targets corre-
sponding to each step in the parsing process were obtained. For shifts, the target is simply the current input.
In these cases, the network is trained to auto-associate, which these networks are good at. For reductions,
however, the targets consist of representations of the partial parse trees that result from applying a gram-
matical rule. For example, the reduction of the sentence fragmentwho liked the girl would produce the
partial parse resultRC[who,VP[liked,NP[the,girl]]]. Two issues arise: how should the parse trees be
represented, and how should reductions be processed duringsentence parsing?

The approach taken in this paper is the same as in SPEC (section 2), as well as in other connectionist
parsing systems (Miikkulainen 1996; Berg 1992; Sharkey andSharkey 1992). Compressed representations of
the syntactic parse trees using RAAM are built up through auto-association of the constituents.This training
is performed beforehand separately from the parsing task. Once formed, the compressed representations can
be decoded into their constituents using just the decoder portion of the RAAM architecture.
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the 10000000 who 01010000
whom 01100000 . 11111111
boy 00101000 dog 00100010
girl 00100100 cat 00100001
chased 00011000 saw 00010010
liked 00010100 bit 00010001

Figure 4:Lexicon. Each word representation is put together from a part-of-speech identifier (first four components) and
a unique ID tag make up (last four). This encoding is then repeated eight times to form a 64-unit word representation.
Such redundancy makes it easier to identify the word.

In shift-reduce parsing, the input buffer after each “Reduce” action is unchanged; rather, the reduction
occurs on the stack. Therefore, if we want to perform the reductions one step at a time, the current word must
be maintained in the input buffer until the next “Shift” action. Therefore, the input to the network consists of
the sequence of words that make up the sentence with the inputword repeated for each reduce action, and the
target consists of representations of the top element of thestack (as shown in figure 1).

Word representations were hand-coded to provide basic part-of-speech information together with a unique
ID tag that identified the word within the syntactic category(figure 4). The basic encoding of 8 units was
repeated eight times to form a 64-unit representation. Suchredundant long representations were found to
facilitate learning in general.

Four data sets of 20%, 40%, 60%, and 80% of the 436 sentences generated by the grammar were randomly
selected to train both parsers, and each parser was trained on each dataset four times. Training on all thirty-two
runs was stopped when the error on a 22-sentence (5%) validation set began to level off. The same validation
set was used for all the simulations and was randomly drawn from a pool of sentences that did not appear
in any of the training sets. Testing was then performed on theremaining sentences that were neither in the
training set nor in the validation set.

The SRN network architecture consisted of a 64-unit input layer, 200-unit hidden and context layers, and
64-unit output and target layers. SARDSRN added a 144-unit feature map (SARDNET) to the SRN setup. A
learning rate of 0.2 was used to train both networks, while the learning and decay rates for the SARDNET fea-
ture map input in SARDSRN were set to 0.8 and 0.9, respectively. The neighborhood was set at 5 initially and
gradually reduced to 0. These parameters were found experimentally to result in the best general performance
for both parsers.

4.2 Results

Three different performance measures were used to obtain a thorough characterization of the relative perfor-
mances of the SRN and SARDSRN architectures.

The first measure, theepoch error, is the average error per output unit during each epoch. Thismeasure
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0.000.020.040.060.08
20 40 60 80SARDSRN33 3 3 3SRN22 2 2 2 0.000.010.020.030.040.05

20 40 60 80SARDSRN33 3 3 3SRN22 2 2 2 0.02.04.06.08.010.0
20 40 60 80SARDSRN33 3 3 3SRN22 2 2 2

Figure 5: Results. Averages over four simulation runs using the three performance measures,epoch error(left),
leaf error (middle), andaverage mismatches(right) on the test data. The graphs all show the same result: the SRN’s
performance in all 16 runs bottomed out at a much higher error than SARDSRN, while it was still unable to parse all of
the training and test sentences. SARDSRN, on the other hand, did learn to parse the training sentences, and showed very
good generalization to the test sentences. These differences are statistically significant withp < 0:00005.

tells us how closely the output representations matched thetarget representations during parsing. Presumably,
if the epoch error is low, the output representations still permit accurate decoding into the correct parse tree.
However, because this measure only reports the average performance over an entire epoch, it gives us no sense
of the network’s performance at each step in the parsing process. For example, there remains the danger that
a low epoch error could also be achieved by learning the shiftoperations very accurately, with lower accuracy
on the reductions, resulting in an incorrect decoding of thecompressed representations of the parse tree.

The second measure, theleaf error, applies the first measure on the leaves of the RAAM representations.
Each RAAM representation encountered during parsing was decoded andthe errors at the leaves accumulated
and averaged. The leaf error tends to be lower than the epoch error because the leaves are always binary
representations, which are easier for the networks to get right than the continuous representations (Noelle
et al. 1997). Because the identity of the word representations depends on only a few units (the ID tag: see
figure 4), it is possible to generate low error over the part-of-speech part of the representation without correctly
identifying the word.

The final measure,average mismatches, therefore, reports the average number of leaf representations that
could not be correctly identified by nearest match in Euclidean distance from the lexicon. As an example,
if the target isRC[who,VP[liked,NP[the,girl]]]], (step 11 of figure 1), but the network output is
RC[who,VP[saw,NP[the,girl]]]], then a mismatch would occur at the leaf labelledsaw once the RAAM

representation was decoded. Average mismatches provide a measure of the correctness and utility of the
information in the RAAM representation.

Training took about four days on a 200 MHz Pentium Pro workstation, with SARDSRN taking about 1.5
times as long per epoch as the SRN alone. The validation error in the SRN runs quickly leveled off, and
continued training did nothing to improve it. On the other hand, the SARDSRN simulation runs were still
showing slight improvements when they were cut off. Figure 5plots these performance measures averaged
over the four simulation runs against the test sentences.

By all measures, SARDSRN performed significantly–even qualitatively–better than the standard SRN. On
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the training datasets, there was roughly an order of magnitude difference in both the epoch errors and the leaf
errors between SARDSRN and SRN, and at least two orders of magnitude difference in the average number
of mismatches per sentence. These results suggest that the SRN could not even learn the training data to any
useful extent, whereas SARDSRN does not appear to be nearing its limit. On the test sets, the epoch error
and leaf error for the SRN never fell below 0.05 and 0.03, respectively, and there werenearly 7 mismatches
per sentence on average. Even in the most difficult case for the SARDSRN (on the 20% test dataset, in which
the networks were trained on just 89 sentences, and tested on325), these errors never reached half that level.
These results show that SARDSRN forms a promising starting point for parsing sentences of realistic length
and complexity.

4.3 Example Parse

Adding SARDNET to the SRN architecture made it possible for the network to learn the parsing task. This can
be shown clearly by contrasting the performances of SARDSRN and the SRN on a typical sentence, such as
the one in figure 1. Neither SARDSRN nor SRN had any trouble with the shift targets. Not surprisingly, early
in training the networks would master all the shift targets in the sentence before they would get any of the
reductions correct. The first reduction (NP[the,boy] in our example) also poses no problem for either net-
work. Nor, in general, does the second,NP[the,girl], because the constituent information is still fresh in
memory. However, the ability of the SRN to generate the later reductions accurately degrades rapidly because
the information about earlier constituents is smothered bythe later steps of the parse. Interestingly, the struc-
tural information survives much longer. For example, instead ofRC[who,VP[liked,NP[the,girl]]]],
the SRN might produceRC[who,VP[bit,NP[the,dog]]]]. The structure of this representation is correct;
what is lost are the particular instantiations of the parse tree. This is where SARDNET makes a difference. The
lost constituent information remains accessible in the feature map. As a result, SARDSRN is able to capture
each constituent even through the final reductions.

5 Discussion

These results demonstrate a practicable solution to the memory degradation problem of simple recurrent
networks. The SRN does not have to maintain specific information about the sequence constituents, and can
instead focus on what it is best at:capturing structure. Although the sentences used in these experiments are
still relatively uncomplicated, they do exhibit enough structure to suggest that much more complex sentences
could be tackled with SARDSRN.

The operation of SARDSRN on the shift-reduce parsing task isa nice demonstration of holistic compu-
tation. The network is able to learn how to generate each RAAMparse representation during the course of
sentence processing without ever having to decompose and recompose the constituent representations. Par-
tial parse results can be built up incrementally into increasingly complicated structures, which suggests that
training could be performed incrementally. Such a trainingscheme is especially attractive given that training
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in general is still relatively costly.

An important extension of the SARDSRN idea, currently beinginvestigated by our group, is an archi-
tecture where SARDNET is combined with a RAAM network. RAAM,although having many desirable
properties for a purely connectionist approach to parsing,has long been a bottleneck during training. Its oper-
ation is very similar to the SRN, and it suffers from the same memory accuracy problem: with deep structures
the superimposition of higher-level representations gradually obscure the traces of low-level items, and the
decoding becomes inaccurate. This degradation makes it difficult to use RAAM to encode/decode parse re-
sults of realistic language. Our expectation is that the explicit representation of a compressed structure formed
on a SARDNET feature map, when coupled with the distributed representations of the RAAM, will result in
an architecture able to represent much richer linguistic structure.

The SARDSRN idea is not just a way to improve the performance of subsymbolic networks; it is an explicit
implementation of the idea that humans can keep track of identities of elements, not just their statistical
properties (Miikkulainen 1993). The subsymbolic networksare very good with statistical associations, but
cannot distinguish between representations that have similar statistical properties. People can; whether they
use a map-like representation is an open question, but we believe the SARDNET representation suggests
a way to capture a lot of the resulting behavior. It is useful for building powerful subsymbolic language
understanding systems, but it is also a plausible cognitiveapproach.

6 Conclusion

We have described an extension of the SRN called SARDSRN that combines the subsymbolic distributed
properties of the SRN with the localist properties of SARDNET. The distributed component leads to good
generalization and robust cognitive properties, whereas the map provides exact representations of the sentence
constituents. The results in this paper demonstrate a practicable solution to the memory degradation problem
of SRNs. With SARDNET keeping track of the sequence constituents, the SRN is able to learn the structure
representation necessary to perform shift-reduce parsing. This combination allows SARDSRN to learn to
parse longer and more complex sentences than the SRN alone. Future research will focus on extending this
approach to the RAAM architecture, with the expectation that the representative properties of SARDNET will
allow RAAM to encode deeper structures, such as the feature-value matrices used in the lexicalist, constraint-
based grammar formalisms of contemporary linguistics theory, that are a prerequisite to handling realistic
natural language.
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