An Assistant for Reading
Ngthm Proof Output

Matt Kaufmann

Technical Report 85 November, 1992

Computational Logic Inc.
1717 W. 6th St. Suite 290
Austin, Texas 78703
(512) 322-9951

This work was supported in part at Computational Logic,
Inc., by the Defense Advanced Research Projects Agency,
ARPA Order 7406. The views and conclusions contained
in this document are those of the author(s) and should not
be interpreted as representing the official policies, either
expressed or implied, of Computational Logic, Inc., the
Defense Advanced Research Projects Agency or the U.S.
Government.

ABSTRACT: Inspection of the output of failed proof attempts is crucial to the successful use of the
Boyer-Moore theorem prover. We introduce a utility that assists with the navigation of the prover’s
output in an Emacs environment. This utility should be a major help to beginning users of the Boyer-
Moore prover, and should also be a timesaver for more advanced users.

Experienced users of the Boyer-Moore prover ‘Ngthm’ [1] have a knack for getting information from the
output of a failed proof attempt, by focusing on the most useful parts of that (often voluminous) output.
Such information can be crucia in formulating appropriate lemmas that can help the proof to succeed.
This report documents a utility that should help al Ngthm users get such information. Although the
primary beneficiaries of this technology may well be novice users, the utility can also be a timesaver for
experienced users.

We make the following assumptions of the user of this facility (and reader of this report).
* Theuser isat least dightly familiar with Ngthm.

e Theuser is at least dightly familiar with Emacs[2].

 The user is prepared to run Ngthm inside Emacs.

The utility is based on the notion of a‘*‘checkpoint,’” roughly as defined in Chapter 9 of [1]. Theideais
that when the prover tries certain of itstricks (heuristics), we should consider saying to ourselves, ‘‘ Gee, |
wonder if it could avoid that trick if only | first prove a suitable rewrite rule’’ This is an important
guestion to ask, because its tricks often turn out not to be helpful. The way this utility works is to modify
dlightly the way proofs are printed out so as to mark some checkpoints, and to help the user to peruse
them, starting with the ‘‘best’”” one first and then working through the others if that’s desired. The
implementation actually includes Common Lisp code for modifying the output by placing certain text
above some *‘ checkpoints,”” aswell as Emacs code that ‘*knows’ how to search for that text.

The first section is a very brief summary that probably is sufficient preparation for using the facility. The
second section contains detailed documentation. The third section contains a demonstration of how the
facility works on a particular example. We conclude with a brief discussion of how to modify some
parameters of the system, followed by appendices with the Lisp and Emacs code.

Finally, let us recognize that there is likely to be room for lots of improvement in this facility. While we
do expect it to be useful in its present form, it may also be appropriate to view this as a first step toward
providing more useful interfaces to Ngthm and its interactive enhancement Pc-Ngthm.

1. Brief summary.

Hereis avery brief summary of what is needed in order to start using the utility. If you intend to read the
entire document, then you can skip this section.

Of course, the filenames below need to be adjusted if they are not in your current directory.
First start up Ngthm or Pc-Ngthm [3], and then compile as follows.
(conpile-file "checkpoints.lisp")

Then to use the system, either right away or at any time in the future, submit the following form to
(Pc-)Ngthm.

(l oad "checkpoints")

Next, load the Emacs file "checkpoints.el" (again, with an appropriate pathname if this file is not in the
current directory):

nmeta-x | oad-file checkpoints. el

You may also want to load an optional Emacs file that defines the cont r ol -t key bindings, described
later. Thisisdone with the command:

meta-x | oad-file checkpoints-keys. el

Now try a proof, and follow that with any of the following commands. (If you don’t load the optional file
shown above, you'll have to give Emacs commands the long way, for example
nmeta-x first-checkpoint insteadof control -t 1))

control -t 1 [thenumber 1]: first-checkpoi nt
Goto thefirst (**best’’) checkpoint in the proof

control-t n : next-checkpoint
Go to the ** next-best’” checkpoint in the proof

control-t p : previous-checkpoint
Goto the ** next-worst’” checkpoint in the proof

control-t g : goto-checkpoint-|evel
Goto the“‘best”” checkpoint at the indicated level

control-t ¢ : checkpoint-options
Used interactively to set checkpoint options

At this point you can just experiment with the system. Or you can read on for details.

2. Documentation

2.1 Definitions.

Intuitively a checkpoint is a point in an Ngthm proof at which some *‘daring’’ transition happens, for
example one that can turn a provable goa into one that is not provable (such as generalization). That is, a
checkpoint is a point in the proof that may well bear some careful inspection by the user. Actualy, what
we call a ‘‘checkpoint’”” below will be the goal printed just before such a transition takes place, for
example just before a non-simplification step (such as elimination, generalization, or induction) istried for
the first time.

In order to define the notion of a checkpoint, we first need a notion of a goal segment. And for that
purpose, let us say that a critical goal is one that has been pushed for proof by induction. Then a goal
segment is a sequence of printed goals concluding with a critical goal, or with a failed or aborted proof,
and extending backwards toward the beginning of a proof up to (but not including) the preceding critical
goa (if any). For example, in the example in the next section, Cases 2 and 2.2 together constitute a goal
segment, and Case 2.1 all by itself constitutes a goal segment.

Thelevel of agoal issimply the number of critical goals that precedeit.

A checkpoaint is any member of a goal segment satisfying at least one of the conditions below. In each
case, a priority is assigned, where 0 is the highest priority. Checkpoints are ordered is first by level (as
defined above) and then by priority, as follows. (Note that we abuse terminology dlightly in that the
“‘priority 4 checkpoint’’ shown below is not really a member of agoal segment.)
* Priority 0: The goal is about to have destructor elimination applied to it, and the only
previous steps in this goal segment (if any) have been simplification.

* Priority 1: The goal is about to be generalized.

« Priority 2. Thegoal isacritical goa (one being pushed for proof by induction).

* Priority 3: The goal is about to have cross-fertilization or elimination of irrelevance applied
toit, and the only previous stepsin this goal segment (if any) have been either simplification
or elimination.

* Priority 4: The prover is about to start proving a goal by induction. (When this happens, a
message is printed that describes the induction scheme. For our purposes, we think of that
message as being a checkpoint with priority 4.)

In the final section we'll see how to change this assignment of priorities.

Finally, the checkpointed goal sequence for a proof is the sequence of all its checkpoints, ordered first by
level and then by priority. That is, one checkpoint precedes ancther in this sequence if and only if either
the first has a smaller level than the second, or else they have the same level and the first has a higher
priority (i.e. smaller priority number) than the second.

2.2 Theproof region and other display issues

The various commands are not sensitive to the current cursor position, as long as the cursor is ‘‘inside’”’
the current proof. That is, the cursor be in the current proof region; and for that, it suffices that the cursor
be strictly after the line with the prompt ">" or "->:" on which the proof was begun, and before or on the
next line starting with either of these prompts. See the top of Appendix A for esoteric details. Note that
the akcl break prompt, ‘>>", does not play any role in defining the proof region. Infact, in order for ‘>’ to
define the final line of a proof region, this character must be preceded by a carriage return and followed
by a character other than another *>’. Note however that the end of the buffer always defines the last line
of the current proof region.

In particular, if you have attempted a proof and wish to explore the output using this facility, but you have
already submitted other Lisp commands since the completion of the proof, then you'll need to move the
cursor inside the current proof region before proceeding.

If you are running the theorem prover in a Common Lisp other than kcl or akcl, then you'll probably need
to tell Emacs about the Lisp prompt. Simply submit the expression

(setq lisp-pronpt <string>)

to Emacsin that case, where <st r i ng> isthe prompt enclosed in double quotes. In fact <string> can be
a regular expression, so for example, to get back the akcl prompt, you could execute the following in
emacs.

(setq lisp-prompt ">[~>]")

After al this emphasis on the Lisp prompt, we should also mention that the Pc-Ngthm prompt ‘->" also
serves to begin and end proof regions in the same way that the Lisp prompt does. Hence, this facility can
be used to inspect prover output arising from the PROVE and REDUCE commands in Pc-Ngthm.

For each of the cont r ol -t commands displayed above, if the requested checkpointed goal exists then
that goal will be the one displayed just below the cursor. If not, the system will beep at you and print an
appropriate message in the Emacs mode line at the bottom of the Emacs screen.

2.3 Using the system

We give relative pathnames below, which need to be adjusted if the files are not in the current directory.

In order to use the system, you need to start up Nqthm-1992 or Pc-Ngthm-1992 (i.e. pc-nqthm) and issue
the following command:

(1 oad "checkpoints.lisp")
Thiswill load the compiled file for a Sun 3 or a Sparc, depending on your machine' s architecture.

Also, you'll need to load an Emacsfile, as follows.!

meta-x | oad-file checkpoints. el

There is also an optional Emacs file you may want to load. This file defines an Emacs keymap?, hung on
the key control -t, and defines several keys for the keymap. If you aready use this keymap?, this
should be harmless except that the keys shown below will be redefined. If not, and you’ve been using
control -t to transpose characters, you'll want to hit two control -t characters for that purpose
henceforth.

meta-x | oad-fil e checkpoint-keys. el

This file defines certain keyboard stroke sequences as follows. |f you don’t load it, then you can till give
these commands, eg. met a-x first-checkpoint insteadof control -t 1.

control -t 1 [thenumber 1]: first-checkpoi nt
Gotothefirst (**best’’) checkpoint in the proof

control-t n : next-checkpoint
Go to the ** next-best’” checkpoint in the proof

control-t p : previous-checkpoint
Go to the ** next-worst’” checkpoint in the proof

control-t g : goto-checkpoint-Ievel
Gotothe ‘‘best’” checkpoint at the indicated level

control-t ¢ : checkpoint-options
Used interactively to set checkpoint options

In order to use this utility, type control -t 1 if you've loaded the optional file checkpoints-keys as
discussed above; or, type net a- x first-checkpoi nt.# The cursor will be positioned just above
thefirst (**best’”) checkpoint, i.e. the first checkpoint in the checkpointed goal sequence, as defined at the
end of the preceding subsection. To advance to the next checkpointed goal that is marked, type
control -t n;tomove to the previous checkpointed goal, typecontrol -t p.

1S0me Emacs users may wish to byte-compile this file, though it's not clear to us that this makes much difference.

2A detailed knowledge of Emacs is not necessary here; in particular, it is not necessary to know anything about keymaps. The
interested reader is welcome, however, to refer to the Emacs manual, [2]

Sthanks to Bob Boyer for defining this keymap

“That's the number 1’, not the letter ‘1.

Currently, our system does not print a note above every checkpoint. Instead, it only prints a note above
selected checkpoints. To keep it simple, the checkpoints that are noted in a given goal segment are as
follows.

« goal pushed for induction;

« thefirst non-simplification;

« thefirst step other than simplification or elimination;
« thefirst generalization.

Remark. Certainly the hope here is that this ‘‘checkpoints’ assistant will provide a pleasant, helpful
interface. However, perhaps the word ‘*assistant’’ should be emphasized here. Userswill probably desire
to explore the prover’'s output from time to time in various ways other than what this facility offers. In
order to support such exploration, the various commands displayed above always push the new point as a
mark. That is, if you type control -t 1, say, and then scroll around in the Emacs buffer, you can
return to that first checkpoint by typing control-u control-@ (or on many terminals,
control -u control - <space>).

3. An example

Suppose we start up the theorem prover and load the appropriate file. Here is an example of what we
might see. (I’ll truncate the proof in order to avoid clutter.) Notice that some *‘‘checkpoints’ have been
printed out by the system. 1've indicated in italics what happens if you type control -t 1 and then
typecontrol -t n several times. Notice that the first checkpoint below (put on the screen when one
typescontrol -t 1)isnot thefirst checkpoint printed by the prover, because of the priorities.

t hunder : kauf nann[119] % nqt hm 1992
AKCL (Austin Kyoto Common Lisp) Version(l.615) Thu Oct 29 15:17:16 CST 1992
Cont ai ns Enhancenents by W Schelter

Ngt hm 1992.

Initialized with (BOOT- STRAP NQTHM on Novenber 9, 1992 08:32:18.
>(l oad "checkpoints.lisp")

Loadi ng checkpoints.lisp

Fi ni shed | oadi ng checkpoints.lisp

T

>(prove-lenmma times-comm (rewite)
(equal (times x y) (times y x)))

G ve the conjecture the name *1.

'l CHECKPO NT LEVEL 1; PRIORITY 4; | D 3 <<< Checkpoint #2, obtained from C-t n>>>

We will appeal to induction. Two inductions are suggested by terns in
the conjecture, both of which are flawed. We limt our consideration to the
two suggested by the | argest nunber of nonprimtive recursive functions in the
conjecture. Since both of these are equally likely, we will choose
arbitrarily. W wll induct according to the follow ng schene:

(AND (I MPLIES (ZEROP X) (p X Y))
(I MPLIES (AND (NOT (ZERCP X)) (p (SUBL X) Y))
(P XY))).
Linear arithnetic, the | enma COUNT- NUMBERP, and the definition of ZEROP inform
us that the neasure (COUNT X) decreases according to the well-founded relation
LESSP in each induction step of the scheme. The above induction schene
produces the followi ng two new conj ectures:

Case 2. (I MPLIES (ZEROP X)

(EQUAL (TIMES X Y) (TIMES Y X))).

This sinplifies, expanding the functions ZEROP, EQUAL, and TIMES, to the
followi ng two new conj ectures:

Case 2. 2.
(I MPLI ES (EQUAL X 0)
(EQUAL 0 (TIMES Y 0))).

This again sinplifies, obviously, to:
I'I CHECKPO NT LEVEL 1; PRIORITY 2; I D 7 <<< Checkpoint #1, obtained from C-t 1>>>
(EQUAL O (TIMES Y 0)),
which we will nane *1.1.
'l CHECKPO NT LEVEL 2; PRIORITY 2; |ID 9 <<< Checkpoint #3>>>

Case 2.1.
(1 MPLI ES (NOT (NUMBERP X))
(EQUAL O (TIMES Y X))).

Name the above subgoal *1.2.

Case 1. (IMPLIES (AND (NOT (ZERCP X))
(EQUAL (TIMES (SUBL X))
(TIMES Y (SUBL X))))
(EQUAL (TIMES X Y) (TIMES Y X))).

This sinplifies, opening up ZEROP and TIMES, to the new conjecture:
I CHECKPOI NT LEVEL 3; PRIORITY 0; |ID 12 <<< Checkpoint #4>>>

(I MPLIES (AND (NOT (EQUAL X 0))
(NUMBERP X)
(EQUAL (TIMES (SUBL X) Y)
(TIMES Y (SUBL X))))
(EQUAL (PLUS Y (TIMES Y (SUBL X)))
(TIMES Y X))).

Applying the | emma SUBLl-ELIM replace X by (ADDL Z) to elimnate (SUBL X).
We enploy the type restriction | enma noted when SUBL was introduced to
restrict the new variable. This produces the new conjecture:

(I MPLI ES (AND (NUMBERP 2)
(NOT (EQUAL (ADDL Z) 0))
(EQUAL (TIMES Z Y) (TIMES Y 2)))
(EQUAL (PLUS Y (TIMES Y 2))
(TIMES Y (ADDL 2)))),

which further sinplifies, obviously, to:
' CHECKPO NT LEVEL 3; PRIORITY 3; |D 14 <<< Checkpoint #6>>>
(1 MPLI ES (AND (NUMBERP Z)
(EQUAL (TIMES Z Y) (TIMES Y 2)))
(EQUAL (PLUS Y (TIMES Y 2))
(TIMES Y (ADDL 2)))).

We now use the above equality hypothesis by substituting (TIMES Z Y) for
(TIMES Y 2Z2) and throwi ng away the equality. This generates:

|1 CHECKPOI NT LEVEL 3; PRIORITY 2; ID 15 <<< Checkpoint #5>>>
(I MPLI ES (NUMBERP Z)

(EQUAL (PLUS Y (TIMES Z Y))
(TIMES Y (ADDL 2)))).

Name the above subgoal *1.3.

' CHECKPO NT LEVEL 4; PRIORITY 4; |ID 16 <<< Last checkpoint (#3)>>>

We will appeal to induction. There are three plausible inductions. They
nmerge into two |ikely candidate inductions. However, only one is unflawed.
We will induct according to the follow ng schene:
(AND (I MPLIES (ZEROP Z) (p Y 2))
(I MPLIES (AND (NOT (ZEROP 2)) (p Y (SUBL 2)))

(pY2)).
Linear arithnetic, the | enma COUNT- NUMBERP, and the definition of ZEROP
establish that the measure (COUNT Z) decreases according to the well-founded
relation LESSP in each induction step of the schene. The above induction
schenme |l eads to the followi ng two new formul as:

Case 2. (I MPLIES (AND (ZEROP Z) (NUMBERP 2))
(EQUAL (PLUS Y (TIMES Z Y))
(TIMES Y (ADDL 2)))).

This sinplifies, expanding the functions ZEROP, NUMBERP, EQUAL, TIMES, and
ADD1, to:

(I MPLI ES (EQUAL Z 0)
(EQUAL (PLUS Y 0) (TIMES Y 1))),

which again sinplifies, trivially, to:
I'1 CHECKPO NT LEVEL 4; PRIORITY 2; |ID 20 <<< Checkpoint #7>>>
(EQUAL (PLUS Y 0) (TIMES Y 1)),
which we will name *1.3.1.

<<< etc. >>>

Sometimes the prover starts over, and attempts to prove the original goal by induction. When that is the
case, typing control -t 1 will cause the system to beep and print a message on the bottom of the
screen (the Emacs mode line). The message simply informs the user that this is what has happened, and
suggests that cont rol -t g can now be used to move to the ‘*best’” checkpoint that occurs after that
‘“‘starting over’’ takes place. This is often a good strategy, since often it is useful to think of the proof
attempt that precedes the induction attempt as being a ‘‘mistake.”” However, this is not always
appropriate; if you think that the prover shouldn’t have started over in some sense, then you'll want to
look at the checkpointsthat it prints out before it starts over.

4. Modifying the system’s behavior.

All you really have to remember if you want to modify the behavior of the system isto typecontr ol -t
¢ (assuming that you have loaded the file " checkpoi nt s- keys. el " in Emacs -- otherwise, type
net a- X checkpoi nt-options). This will cause Emacs to prompt you for some answers, as
explained below.

Toggl e ignoring of proved checkpoints (currently on)?

The system is smart enough not to take you to a checkpointed goal that has ultimately been proved. In
fact, even if the goal has been pushed to be proved by induction, as long as that proof succeeds then the
goa may be considered proved. Really, we have a recursive definition here: agoa is considered proved
if either itisT or else all of its descendents have been proved. (We omit defining the reasonably intuitive

notion of descendents.) At any rate, the option printed above alows you to change this situation, by
having the system ignore the issue of whether a goal has been proved or not. Usually you'll want to
answer n to this question so that the status quo is preserved; an answer of y turns off the ‘‘ignore’’ feature
the first time, and then alternates between ‘‘ignoring’’ and *not ignoring’’ henceforth.

If you have turned off this ‘‘ignoring’’ feature, then until you toggle this feature again, the message
displayed above will of coursesay (currently of f) insteadof (currently on).

Set cursor |ine nunber for checkpoints?

Normally, when you go to a checkpoint using one of the commands provided, the cursor goes wherever
Emacs usually puts cursors at the end of searches. Typically, that’s in the middle of the screen, unless no
scrolling is necessary. However, you may find it convenient to have the cursor placed on a given line
every time. So for example, suppose you answer y to the above question, and then answer 7 to:

Enter |ine nunber:
Then you'll find that henceforth, the cursor isawayson line 7 (where line O is at the top of the screen).

Although these are typical queries, there are variations. For example, if you previously set the line
position and then hit control -t ¢, then you'll be given the option of cancelling that setting. Also,
when the line position is not set, the system will give you the option of having the cursor line always be
the center line in the window; except if that option is already set, then instead you'll have the option of
cancellingit. All of thisis straightforward and you' |l see what is going on whenyouusecontrol -t c.

When the queries end, the system will suggest that you submit the form (CHECKPO NT- OPTI ONS) to
Ngthm. Thisform will give you the ability to turn off (or, turn back on) the checkpointing facility. It will
also given you the option of having the system print the names of the Ngthm *‘process”’ that produces
each checkpoint, just below the checkpoint marker. Finally, it prints (upon request) information on how
to change the priorities assigned to these ‘* processes.”’

Acknowledgements. A number of my colleagues at Computational Logic, Inc. have given me feedback
on thisfacility, and | thank them. A special thanks goes to Rich Cohen, who made useful comments on an
earlier version of thisreport.

10

Appendix A
The Emacs code

Here isthe code for the Emacsfile” checkpoi nts. el .

1

1

v

Docunent ati on of proof regions:

A start is a carriage return followed by the Lisp pronpt (see
bel ow) or a Pc-Ngthm pronpt. The position associated with a

;;start is the beginning of the line immediately follow ng the

v

1

start, except that if there is no such line then it’s the end of
the line of the start.

(By default, the Lisp pronpt is ‘> followed by any character
besides ‘>, so that interrupts are ignored. However, this can be
reset by running the emacs command checkpoint-options.)

The previousstart i s the |ast start that ends before or on the

line of the current cursor, or else the buffer’s start if there is no
such start. The nextstart is the first start that begins after

the current cursor (and thus on a later line), or else the buffer’s
end if there is no such start. Notice that these notions only

depend on the line of the current cursor, not on where the cursor
appears on that |ine.

The current proof region ext ends fromthe position associated with

the previous start (inclusively) to the position associated with the
next start (exclusively). Notice that these regions are
non-overlapping. Also notice that the line containing a pronpt

bel ongs to the preceding proof region, not the next one. This seens
to be the sinplest way to deal with the regions i ssue if we want to
allow the search to start fromthe last line in the buffer when there
is a pronpt on that line. W could check for that, of course, but
then if we type a single carriage return this would change things,
which is probably bad.

(defvar proved-checkpoi nts-enabl ed t)
(defvar next-start-for-maxi mrum checkpoint-1|evel)
(defvar next-start-for-proved-checkpoints)

(defvar proved-checkpoints)

(defvar checkpoint-I|evel 0)

(defvar maxi mum checkpoint -1 evel)

(defvar checkpoint-priority 0)

v

*** Fix the following if we add nore priorities.

(defvar max-priority 4)

(defvar checkpoint-1ine-position t)

(defvar start-over-|evel)

1
v
1
v

1

| used to use

VAV F\NA ¥\ % Now entering the theorem prover *****:
but maybe that’'s not a good marker really when searchi ng backwards.
Maybe it's OK, but it seens that using pronpts and control -1 as
the only ‘separators’ is sinpler.

(defvar |isp-prompt ">[~>]")

(defvar find-marker-string-after-pronpt

"\

ANy
VG M)

(defvar find-narker-string

(format "\n%%" |isp-pronpt find-marker-string-after-pronpt))

(defun set-find-marker-string (pronpt-string)
(progn (setq lisp-pronpt pronpt-string)
(setq find-marker-string
(format "\n%%" |isp-pronpt find-marker-string-after-pronpt))))

(defun find-previous-marker ()
"Puts us just before the start of line with the previous narker."
(re-search-backward find-narker-string nil t))

(defun find-next-marker ()
"Puts on just after the next marker, hence on a strictly later line."
(re-search-forward find-marker-string nil t))

(defun previous-start ()
"Finds the previous start fromthe end of the current line."
(let* ((saved-point (point))
(success (progn (end-of-1ine)
(find-previous-narker)))
(ans (progn (if success
(progn (forward-1ine 2)
(begi nni ng-of-line)))
(point))))
(got o-char saved- poi nt)
(i f success
ans

(point-nin))))

(defun next-start ()
"Finds the next start lying on a strictly later line."
(let* ((saved-point (point))
(success (find-next-marker))
(ans (progn (backward-char) ;in case we’'ve already junped to the next line
(end-of -1ine)
(forward-1ine 1)
(begi nni ng- of - 1'i ne)
(point))))
(got o-char saved- poi nt)
(i f success
ans
(point-max))))

(defun go-to-begi nni ng- of - proof ()
(goto-char (previous-start)))

(defun cp-nmenber (x y)
;; from doct or - mrenber
"Li ke meng, but uses equal for conparison”
(while (and y (not (equal x (car y))))
(setgy (cdr y)))
y)

(defun proved-checkpoints ()
"Returns the list of all IDs of proved checkpoints."
(and proved- checkpoi nts-enabl ed
(let ((next-start (next-start)))
(if (equal next-start-for-proved-checkpoints next-start)
then presumably there’s no change in proof output since
;7 the last call of this function, so we return that sane answer
proved- checkpoi nts
(let ((saved-point (point)))
(setq proved-checkpoints nil)
(setq next-start-for-proved-checkpoi nts next-start)
(go-t o- begi nni ng- of - pr oof)
(while (search-forward "!!NOTE PROVED CLAUSES " next-start t)
(setq proved- checkpoints
(append (read (current-buffer))
proved- checkpoi nts)))
(got o-char saved- poi nt)
proved- checkpoints)))))

(defun next-checkpoint ()

"Part of the Ngthm checkpoint facility, this puts the cursor just above
the checkpoi nt of next-lower significance relative to the checkpoi nt
nost recently visited."

(interactive)

(if (not (and (boundp ’'maxi mum checkpoint-1evel)

maxi mum checkpoi nt -1 evel))
(error "You nust go to the first checkpoint before asking for the next.")
(let ((current-checkpoint-Ievel checkpoint-Ievel)
(current-checkpoint-priority checkpoint-priority))
(catch ' next-checkpoi nt
(while (<= checkpoint-Ievel (maxi mum checkpoint-Ievel))
(i ncrenent - checkpoi nt-1 evel -and-priority)
(let ((ans (next-checkpoint-at-current-level)))
(if ans
(throw ' next-checkpoint ans))))
(progn (setq checkpoint-1evel current-checkpoint-I|evel)
(setq checkpoint-priority current-checkpoint-priority)
(beep)
(message "No nore checkpoints.")

nil)))))

(defun next-checkpoint-at-current-|evel ()
(catch ' next-checkpoint-at-current-|evel -exit
(progn (while (not (find-one-checkpoint))
(if (= checkpoint-priority max-priority)
(throw ' next-checkpoint-at-current-level-exit nil)
(setq checkpoint-priority (+ 1 checkpoint-priority))))
t)))

(defun increnent-checkpoint-|evel-and-priority ()
(if (= checkpoint-priority max-priority)
(progn (setq checkpoint-priority 0)
(setqg checkpoint-level (+ 1 checkpoint-level)))
(setqg checkpoint-priority (+ 1 checkpoint-priority))))

(defun previous-checkpoint ()
"Part of the Ngqthm checkpoint facility, this puts the cursor just above
the checkpoi nt of next-higher significance relative to the checkpoint
nost recently visited."
(interactive)
(if (not (and (boundp ’'maxi mum checkpoint-1evel)
mexi mum checkpoi nt -1 evel))
(error "You nust go to the first checkpoint before asking for the previous.")
(et ((current-checkpoint-Ievel checkpoint-Ievel)
(current-checkpoint-priority checkpoint-priority))
(catch ' previous-checkpoi nt
(while (>= checkpoint-1evel 0)
(decrenent - checkpoi nt-1 evel -and-priority)
(let ((ans (previous-checkpoint-at-current-level)))
(if ans
(throw ' previous-checkpoint ans))))
(progn (setq checkpoint-1evel current-checkpoint-I|evel)
(setq checkpoint-priority current-checkpoint-priority)
(beep)
(message "No precedi ng checkpoints.")

nil)))))

(defun previous-checkpoint-at-current-Ilevel ()
(catch ' previous-checkpoint-at-current-|level-exit
(progn (while (not (find-one-checkpoint))
(if (= checkpoint-priority 0)
(throw ' previous-checkpoint-at-current-level-exit nil)
(setq checkpoint-priority (- checkpoint-priority 1))))
t)))

(defun decrenent-checkpoint-1evel-and-priority ()
(if (= checkpoint-priority 0)
(progn (setq checkpoint-priority max-priority)
(setq checkpoint-level (- checkpoint-level 1)))
(setqg checkpoint-priority (- checkpoint-priority 1))))

(defun find-one-checkpoint ()
(interactive)
(let ((saved-point (point))
(done nil))
(go- t o- begi nni ng- of - pr oof)
(let ((next-start (next-start)))
(if (progn
(while (and (not done)
(search-forward
(format "!!CHECKPO NT LEVEL %; PRIORITY %; ID"

12

checkpoi nt-1evel checkpoint-priority)
next-start t))
(setqg done (not (meng (read (current-buffer)) (proved-checkpoints)))))
done)
(progn (push-mark saved- point)

(backwar d- char)

(begi nni ng- of - 1'i ne)

(if (or (eq checkpoint-line-position nil)
(nunber p checkpoi nt-1ine-position))

(recenter checkpoint-Iline-position))
t)
(progn (goto-char saved- point)

nil)))))

(def un maxi mum checkpoi nt-1level ()
;; returns nil if there are no checkpoints
(let ((saved-pointl (point)))
(forward-1ine -1)
(let ((next-start (next-start)))
(if (and (equal next-start-for-nmaxi mum checkpoint-level next-start)
maxi mum checkpoi nt - | evel)
;7 ... then we have a good guess; let’'s go with it.
(progn (goto-char saved- point1)
maxi mum checkpoi nt -1 evel)
(let ((ans nil))
(setqg next-start-for-maxi num checkpoint-1evel next-start)
(goto-char next-start)
;7 we nay be aline too late, so let’s be sure not sinply
to find the ‘start’ we're already |ooking at
(forward-1ine -1)
(begi nni ng- of - l'i ne)
(let ((newpoint (point)))
(let ((marker (progn (find-previous-narker)
(point))))
(got o-char new- point)
(if (and marker (search-backward "!!CHECKPO NT LEVEL" marker t))
(progn (forward-char 19)
(setq ans (read (current-buffer)))))
(got o-char saved- poi nt 1)
(setqg maxi mum checkpoint-level ans))))))))

(defun | ook-for-start-over ()
(let ((saved-point (point))
(next-start (next-start)))
(go- t o- begi nni ng- of - pr oof)
(setq start-over-level nil)
(if (search-forward "disregard" next-start t)
(let ((next-level (if (search-forward "!!CHECKPO NT LEVEL " next-start t)
(read (current-buffer))
nil)))
(beep)
(setq start-over-level next-Ievel)
(if next-Ievel
(nmessage
(format "Note: the prover is inducting on the input, starting at |evel
next -1 evel))
(message (format "Note: the prover is inducting on the input."
next-level)))))
(got o-char saved-point)))

(defun first-checkpoint ()

"Part of the Ngthm checkpoint facility, this starts the search for checkpoints
ina failed (or failing) Ngthmproof. It puts the cursor just above the nost
significant checkpoint."

(interactive)

(setqg checkpoint-level -1)

(setqg checkpoint-priority max-priority)

(setq next-start-for-proved-checkpoints nil)

(setqg next-start-for-maxi num checkpoint-1level nil)

(setqg maxi mum checkpoi nt -1 evel

(maxi mum checkpoi nt -1 evel))
(i f maxi mum checkpoint -1 evel
(progn (next-checkpoint)
(1 ook-for-start-over))
(error "No checkpoints appear in this proof")))

Y%s.

13

Try Gt g."

(defun checkpoi nt-options ()

"Used interactively to set options for the Ngthm checkpointing feature."
(interactive)
(if (y-or-n-p

(format "Toggle ignoring of proved checkpoints (currently %)? "

(i f proved-checkpoints-enabled "on ’off)))
(setqg proved- checkpoi nt s-enabl ed
(not proved- checkpoi nts-enabl ed)))

(if (y-or-n-p "Change what is considered to be the Lisp pronmpt? ")

(set-find-marker-string (read-frommnibuffer "Enter pronpt: ")))
(if (or (eq checkpoint-line-position t)

(eq checkpoint-line-position nil))
(if (y-or-n-p "Set cursor line nunber for checkpoints? ")

(setqg checkpoint-1ine-position (read-mnibuffer "Enter |ine nunber

(if (eq checkpoint-line-position t)
(if (y-or-n-p "Begin recentering cursor line for checkpoints? ")
(setqg checkpoint-1line-position nil))
(if (y-or-n-p "Stop recentering cursor line for checkpoints? ")
(setqg checkpoint-line-positiont))))
(if (y-or-n-p "Stop setting cursor |ine nunber for checkpoints? ")
(if (y-or-n-p "Begin recentering cursor |line for checkpoints? ")
(setqg checkpoint-1line-position nil)
(setqg checkpoint-line-positiont))))

(nmessage "Done. For a related utility, submt (CHECKPO NT-OPTIONS) to Ngthm "))

(defun got o-checkpoi nt-1evel ()
"Go to the ‘‘best’’ checkpoint at the indicated |evel."
(interactive)
(let ((n (read-frommnibuffer "Go to checkpoint at |evel
(if start-over-leve
(format "%" start-over-level)
nil)
nil t)))
(let ((saved-priority checkpoint-priority)
(saved-1 evel checkpoint-1level))
(setqg checkpoint-priority 0)
(setqg checkpoint-1evel n)
(if (next-checkpoint-at-current-I|evel)
(progn (setq start-over-level nil)
t)
(progn (beep)
(message (format "There is no checkpoint at level ¥%." n))
(setq checkpoint-priority saved-priority)
(setq checkpoint-1level saved-level))))))

14

Appendix B
The key bindings

Here isthe code for the emacs key bindings, i.e. thefile" checkpoi nt - keys. el ".

(if (not (boundp ’'ctl-t-keymap))
(progn
(defvar ctl-t-keymap)
(setq ctl-t-keymap (nmake-sparse-keymap))
(message "Redefining control-T;, fromnowon hit it twice to transpose characters.")
(define-key (current-global-map) "\CT" ctl-t-keynap)
(define-key ctl-t-keymap "\C-T" 'transpose-chars)
(define-key ctl-t-keymap "\C-t" 'transpose-chars)))

(define-key ctl-t-keymap "1" ’first-checkpoint)
(define-key ctl-t-keymap "n" ’next-checkpoint)
(define-key ctl-t-keymap "p" ' previous-checkpoint)
(define-key ctl-t-keymap "“c" ' checkpoi nt-options)
(define-key ctl-t-keymap "g" ’goto-checkpoint-I|evel)

15

16

Appendix C
The Common Lisp Code

Here isthe Common Lisp code, i.e. thefile" checkpoi nts. | isp".
7 At this point | need a pretty clear specification of what I'Il checkpoint.
;7 Note the following bit of code from Ngt hm and Nqt hm 1992:

:; (DEFUN ADD- PROCESS- HI ST (PROCESS PARENT PARENT- HI ST DESCENDANTS HI ST- ENTRY)
7 (10 PROCESS PARENT PARENT- HI ST DESCENDANTS HI ST- ENTRY)
:; (CONS (CONS PROCESS (CONS PARENT Hi ST-ENTRY)) PARENT- HI ST))

;7 To keep it sinple, we checkpoint each of the follow ng since the Iast
;5 goal pushed for induction (or the proof’s start):

;5 goals pushed for induction;

;; the first non-sinplification;

7, the first execute-process step other than sinplification or elinination;
;; the first generalization.

(def paranmeter process-print-flag nil)

(defvar total-hist)

;7 The following has entries of the form (clause id . dependent-cl auses),
;; except that here a ‘‘clause’’ can be sonething like *1.1.
(defvar hist-clause-alist)

7 Here is the list of all printed clause ids.
(defvar all-clause-ids)

(defvar *new y-proved-cl ause-ids*)
(defvar *saved-random seed*)

(defun initialize-total-hist ()
;;(format (or prove-file t) "~%<< Begi nning checkpointed proof >>>~%)
(setq hist-clause-alist nil)
(setq all-clause-ids nil)
(setqg total-hist nil))

(defun renpve- proved- cl auses-from hi st-clause-alist (proved-clauses a-hist-clause-alist)
;7 We want to renove all proved clauses, including the given ones
;; froma-hist-clause-alist. This assunes that a-hist-clause-alist respects
;; dependencies, in the sense that the dependents of a clause appear "towards
;; the front" fromthat clause. Note that here a ‘‘clause’’ can be sonething
i like *1.1.

;5 This has the side effect of setting the global variable *new y-proved-cl ause-ids*
;; tothe list of all ids of clauses that have been renopved from a-hist-clause-alist.
(if a-hist-clause-alist
(let* ((entry (car a-hist-clause-alist))
(clause (car entry))
(id (cadr entry))
(descendants (cddr entry))
(new descendants (set-diff-eq descendants proved-clauses)))
(i f new descendants
(cons (list* clause id new descendants)
(remove- proved- cl auses-from hi st-cl ause-al i st
proved- cl auses
(cdr a-hist-clause-alist)))
(progn (setq *new y-proved-cl ause-i ds*
(cons id *new y-proved-cl ause-i ds*))
(renove- proved- cl auses-from hi st-cl ause-al i st
(cons cl ause proved-cl auses)
(cdr a-hist-clause-alist)))))

nil))

(DEFUN SETUP (FORM CLAUSES LEMVAS)

(initialize-total-hist)
(SETQ ORI GTHM FORM)
(SETQ EXPAND- LST HI NTED- EXPANSI ONS)
(SETQ TERMS- TO- BE- | GNORED- BY- REWRI TE NI L)
(SETQ 1 NDUCTI ON- HYP- TERVS NI L)
(SETQ | NDUCTI ON- CONCL- TERMS NI L)
(SETQ ALL- LEMVAS- USED LEMVAS)
(SETQ STACK NI L)
(SETQ FNSTACK NI L)
(SETQ LAST- PRI NT- CLAUSES NI L)
(SETQ TYPE- ALI ST NI L)
(SETQ LI TS- THAT- MAY- BE- ASSUMED- FALSE NI L)
(SETQ CURRENT-LIT 0)
(SETQ CURRENT- ATM 0)
(SETQ ANCESTORS NI L)
(COND (REWRI TE- PATH STK- PTR

(SETQ REWRI TE- PATH STK- PTR - 1)

(SETQ REWRI TE- PATH FRAME- CNT 0)

(SETQ REWRI TE- PATH- PERSI STENCE- ALI ST NIL)))
(1 NI T- LEMVA- STACK)
(I'NI'T- LI NEARI ZE- ASSUMPTI ONS- STACK)
(SETQ LAST- PRI NEVAL- CHAR (QUOTE |.]))
(RANDOM | NI TI ALI ZATI ON ORI GTHV)
(10 (QUCTE SETUP)

(LI ST ORI GTHM
NI L CLAUSES LEMVAS))

(DEFUN DEFN- SETUP (EVENT)
(initialize-total-hist)
(SETQ ORI GEVENT EVENT)
(SETQ LAST- PROCESS (QUOTE SETUP))
(SETQ EXPAND- LST HI NTED- EXPANSI ONS)
(SETQ TERMS- TO- BE- | GNORED- BY- REWRI TE NI L)
(SETQ | NDUCTI ON- HYP- TERMS NI L)
(SETQ 1 NDUCTI ON- CONCL- TERMS NI L)
(SETQ STACK NIL)
(SETQ FNSTACK NI L)
(SETQ TYPE- ALI ST NI L)
(SETQ LI TS- THAT- MAY- BE- ASSUMED- FALSE NI L)
(SETQ CURRENT-LIT 0)
(SETQ CURRENT- ATM 0)
(SETQ ANCESTORS NI L)
(COND (REWRI TE- PATH STK- PTR
(SETQ REWRI TE- PATH- STK- PTR - 1)
(SETQ REWRI TE- PATH FRAME- CNT 0)
(SETQ REWRI TE- PATH PERSI STENCE- ALI ST NIL)))
(1 NI T- LEMVA- STACK)
(1 NI T- LI NEARI ZE- ASSUMPTI ONS- STACK)
(SETQ LAST- PRI NEVAL- CHAR (QUOTE |.|))
(RANDOM | NI TI ALI ZATI ON ORI GEVENT)
EVENT)

(defun new hi st-clause-alist (id)
assurmes that we have a checkpointed goa
(cond
((eq process 'induct)
(cons (list* (car hist-entry) id descendants)
hi st-cl ause-alist))
((eq process ’store-sent)
(cons (list parent id (car hist-entry))
hi st-cl ause-alist))
(descendant s
(cons (list* parent id descendants)
hi st-cl ause-alist))
((not (eq process ’finished))
(renove- proved- cl auses-from hi st-cl ause-al i st
(setq *new y-proved-cl ause-ids* (list parent))
hi st-clause-alist))))

(defun io02 ()
(let* ((checkpoint-info (nmake-checkpoint process))
(id (length total -hist))
(*new y-proved-cl ause-ids* nil))

17

(setqg total - hist
(cons (list (cons PROCESS checkpoint-info) PARENT PARENT-H ST DESCENDANTS HI ST- ENTRY)
total -hist))
(setqg hist-clause-alist
(new hi st-clause-alist id))
(print-checkpoint-info process checkpoint-info)
(print-renoved-cl ause-i ds *new y-proved- cl ause-i ds*)

(i01)))
(setqg io-fn "io2)

(DEFUN RANDOM | NI TI ALl ZATI ON (EVENT)
(setqg *saved-random seed*
(SETQ * RANDOM SEED* (CONS- COUNT EVENT))))

;7 We nake a checkpoint when a goal is pushed for induction,
when we do our first non-sinplification, and when we do our
;; first non-sinplification&on-elimnation. The result is
to add a "label" to the process conponent of a history elenent.

(def paranet er non-sinplification-execute-processes
(QUOTE (;; Sl MPLI FY- CLAUSE SETTLED- DOWN- CLAUSE
FERTI LI ZE- CLAUSE
ELI M NATE- DESTRUCTCORS- CLAUSE GENERALI ZE- CLAUSE
ELI M NATE- | RRELEVANCE- CLAUSE STORE- SENT)))

(def paraneter non-sinplification-elimnation-execute-processes
(QUOTE (;; Sl MPLI FY- CLAUSE SETTLED- DOWN- CLAUSE
FERTI LI ZE- CLAUSE
;3 ELI M NATE- DESTRUCTORS- CLAUSE
CGENERALI ZE- CLAUSE
ELI M NATE- | RRELEVANCE- CLAUSE STORE- SENT)))

(def paraneter io-execute-processes
(QUOTE (Sl MPLI FY- CLAUSE
;3 SETTLED- DOAN- CLAUSE
FERTI LI ZE- CLAUSE
ELI M NATE- DESTRUCTORS- CLAUSE
GENERALI ZE- CLAUSE
ELI M NATE- | RRELEVANCE- CLAUSE STORE- SENT)))

(defun processes-not-seen-p (history processes)
(let (process)
(if (and history
(not (eq (setq process (caaar history)) 'store-sent)))
(and (not (menber-eq process processes))
(processes-not-seen-p (cdr history) processes))

t)))

(defun some-process-seen-p (history)
(if history
(or (menber-eq (caaar history) io-execute-processes)
(some- process-seen-p (cdr history)))

nil))

(defun current-store-sent-level ()
could make this nore efficient by storing the level, nost |ikely
(current-store-sent-level-rec total-hist))

(defun current-store-sent-level-rec (hist)
(if hist
(if (eq (caaar hist) 'store-sent)
(1+ (current-store-sent-level-rec (cdr hist)))
(current-store-sent-level-rec (cdr hist)))

0))

(defvar checkpoint-priority-alist
;5 Do not nodify this alist, except possibly to shuffle the nunbers.
;3 FERTI LI ZE- CLAUSE and ELI M NATE- | RRELEVANCE- CLAUSE nust both be
;; assigned the sane value, and other than that all processes nust
;5 be assigned different values, and all between O and 4, where 0O
;; 1s the nobst inportant. The only place we rely on this specification
;5 is in the emacs code, where there is a maxinumof 4 in the variable
;; max-priority, and where only the first priority at a given store-sent-|evel
;5 1s recognized.
" ((ELI M NATE- DESTRUCTORS- CLAUSE . 0)

(FERTI LI ZE- CLAUSE . 3)

(ELI M NATE- | RRELEVANCE- CLAUSE . 3)
(GENERALI ZE- CLAUSE . 1)

(STORE- SENT . 2)

(1

NDUCT . 4)))

(defun checkpoint-priority (process)

(or

(cdr (assoc-eq process checkpoint-priority-alist))
(er hard (process) |Attenpted| |to| |assign| |a
|priority| |to| |process| (!ppr process (quote |.[)))))

(defun checkpoint ()

(let

((id (length total -hist)))

(setqg all-clause-ids (cons id all-clause-ids))

(I

ist (current-store-sent-Ievel)
(checkpoint-priority process)
id ;unique identifier
(and process-print-flag process))))

(defun nake- checkpoi nt (process)
note that settl ed-down-clause and store-sent
;; should not be anpbng current-processes-seen

(if

(and (nenber-eq process execute-processes)
(sone- process-seen-p total -hist))
(case process
(ELI M NATE- DESTRUCTORS- CLAUSE
make checkpoint if this is the first non-sinplification
(when (processes-not-seen-p total-hist
non-si nplification-execute-processes)
(checkpoint)))
((SI MPLI FY- CLAUSE SETTLED- DOWN- CLAUSE)
nil)
((FERTI LI ZE- CLAUSE ELI M NATE- | RRELEVANCE- CLAUSE)
(when (processes-not-seen-p total-hist
non-si nplification-elimnation-execute-processes)
(checkpoint)))
(GENERALI ZE- CLAUSE
;5 always checkpoint a generalization
(checkpoint))
;; make checkpoint if this is the first non-sinplification-elimnmnation
(ot herwi se ; STORE- SENT
(checkpoint)))

(if (eq process ’induct)

(checkpoi nt)
nil)))

(defun process-print-nanme (process)

(or

(cdr (assoc-eq process
"((sinmplify-clause . sinplify)
(fertilize-clause . cross-fertilize)
(elimnate-destructors-clause . elimnate-destructors)
(generalize-clause . generalize)
(elimnate-irrelevance-clause . elimnate-irrel evance))))
process))

(defun print-checkpoint-info (process ci)
(when ci

(format (or prove-file t)
"~%% ! CHECKPO NT LEVEL ~s; PRIORITY ~s; ID ~s"
(car ci) (cadr ci)
(caddr ci) ;unique identifier
)
(when process-print-flag
(format (or prove-file t)
" _geg”
(process-print-name (cadddr ci))))))

(defun print-renoved-cl ause-ids (ids)

(let

((printed-ids (intersection ids all-clause-ids)))

(when printed-ids

(format (or prove-file t) "~&9 ! NOTE PROVED CLAUSES ~s" printed-ids))))

(def macro pf (form &optional (filenane "proof.out"))
‘(with-open-file (prove-file ,filename :direction :output)

,form)

(def macro checkpoint-y-or-n-p (nsg var yes-ans no-ans & est args)
“(progn
,(list* "format t nsg args)
(let ((ans (read t)))
(cond
((or (eq ans 'vy)
(eq ans 'yes))
(setq ,var ,yes-ans))
((or (eq ans 'n)
(eq ans ’'no))
(setq ,var ,no-ans))
((eq ans "a)
(throw ' checkpoi nt-options ’abort))
((eq ans 's)
(format t "~& No change. ~%))
(t (format t "~& Response unknown... no change.~%))))))

(defun checkpoi nt-options ()
(catch ' checkpoi nt-options
(format t "~&Pl ease answer each question with either Y (yes), N (no), A (abort queries), or~%
S (Skip) or any other character (if you don't want a change).~& %
For a simlar utility in emacs, do control-t c.~%%)
(checkpoint-y-or-n-p "Do you want checkpoint-printing on (currently ~a)?
io-fn io2 'iol
(if (eqio-fn 'io2) "off" "on"))
(checkpoint-y-or-n-p "Do you want process nanes printed with checkpoints (currently ~a)?
process-print-flag t nil
(if process-print-flag "on" "off"))
(let (ans)
(and (checkpoint-y-or-n-p "Wuld you like information about changing priorities?
ans t nil)
(format t "~% o change priorities, (setq checkpoint-priority-alist <newalist>)~%
where <new alist> |ooks |like the current value, ~%% ~s.~%%
Not e however that all priorities should be between 0 and 4 (or you'Il~%
have to nodify emacs), and that only the first checkpoint at a gi ven~%
priority will be read by enacs. ~%%
checkpoint-priority-alist)))))

20

21

Refer ences

R. S. Boyer and J S. Moore, A Computational Logic Handbook, Academic Press, Boston, 1988.
Richard M. Stallman, Free Software Foundation, GNU EMACS Manual, Sixth ed., 1987.

Matt Kaufmann, ‘A User’'s Manual for an Interactive Enhancement to the Boyer-Maoore Theorem
Prover’’, Technical Report 19, Computational Logic, Inc., May 1988.

Table of Contents

L oBrief SUMMary. ... e
2. D0oCUMENtation
2.0 DEfiNITIONS. . . .
2.2. The proof region and other display ISSUESt
2.3, Usingthe system
3 AN EXaMPIE . o e
4. Modifyingthesystem’sbehavior. i

COOOUThWWN

Appendix A. TheEmMacscodecooiiiiiii it 10
Appendix B. Thekey bindings i 15

Appendix C. TheCommonlLispCode ..., 16

