
Annotated
AVA 95 Reference Manual

Language and Standard Libraries

Modifications by
Michael K. Smith and Robert L. Akers

5 October 1995

Derived from ISO/IEC JTC1/SC22 WG9 N 193, AARM Version 6.0

CLI Technical Report 113

Computational Logic, Inc.
1717 W. 6th, Suite 290
Austin, Texas 78703

(512) 322-9951

Modifications Copyright 1992,1993,1994,1995 Computational Logic, Inc.

Copyright 1992,1993,1994,1995 Intermetrics, Inc.

This copyright is assigned to the U.S. Government. All rights reserved.

This document may be copied, in whole or in part, in any form or by any means, as is
or with alterations, provided that (1) alterations are clearly marked as alterations

and (2) this copyright notice is included unmodified in any copy. Compiled copies of
standard library units and examples need not contain this copyright notice so long as

the notice is included in all copies of source code and documentation.

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION ELECTROTECHNICAL COMMISSION

Original text published by
Intermetrics, Inc.

733 Concord Avenue
Cambridge, Massachusetts 02138

Modified for AVA by
Computational Logic, Inc.

1717 W. 6th, Suite 290
Austin, Texas 78703

Copyright 1992,1993,1994,1995 Intermetrics, Inc.

This copyright is assigned to the U.S. Government. All rights reserved.

This document may be copied, in whole or in part, in any form or by any
means, as is or with alterations, provided that (1) alterations are clearly

marked as alterations and (2) this copyright notice is included unmodified in
any copy. Compiled copies of standard library units and examples need not
contain this copyright notice so long as the notice is included in all copies

of source code and documentation.
Foreword

Modifications Copyright Computational Logic, Inc.

Reprinting permitted if accompanied by this statement

AVA modifications were supported in part at Computational Logic, Inc., by the
Defense Advanced Research Projects Agency, ARPA Order 7406. The views

and conclusions contained in this document are those of the author(s)
and should not be interpreted as representing the official policies,

either expressed or implied, of Computational Logic, Inc., the Defense
Advanced Research Projects Agency or the U.S. Government.

AVARM;1.0 Contents

i 5 October 1995 Contents

Contents
1. General .. 1

1.1 Scope . 2
1.1.1 Extent of the Standard . 2
1.1.2 Structure . 3
1.1.3 Conformity of an Implementation with the Standard . 6
1.1.4 Method of Description and Syntax Notation . 8
1.1.5 Classification of Errors . 9

1.2 Normative References . 11
1.3 Definitions . 11

2. Lexical Elements .. 13
2.1 Character Set . 13
2.2 Lexical Elements, Separators, and Delimiters . 14
2.3 Identifiers . 16
2.4 Numeric Literals . 16

2.4.1 Decimal Literals . 17
2.4.2 Based Literals . 17

2.5 Character Literals . 18
2.6 String Literals . 19
2.7 Comments . 19
2.8 Pragmas -- Removed . 20
2.9 Reserved Words . 21
2.10 Annotations -- New . 22

3. Declarations and Types ... 23
3.1 Declarations . 23
3.2 Types and Subtypes . 26

3.2.1 Type Declarations . 28
3.2.2 Subtype Declarations . 29
3.2.3 Classification of Operations . 31

3.3 Objects and Named Numbers . 32
3.3.1 Object Declarations . 33
3.3.2 Number Declarations . 36

3.4 Derived Types and Classes -- Largely Removed . 37
3.4.1 Derivation Classes . 37

3.5 Scalar Types . 38
3.5.1 Enumeration Types . 41
3.5.2 Character Types . 43
3.5.3 Boolean Types . 44
3.5.4 Integer Types . 44
3.5.5 Operations of Discrete Types . 46
3.5.6 Real Types -- Removed . 47
3.5.7 Floating Point Types -- Removed . 47
3.5.8 Operations of Floating Point Types -- Removed . 47
3.5.9 Fixed Point Types -- Removed . 47
3.5.10 Operations of Fixed Point Types -- Removed . 47

3.6 Array Types . 47
3.6.1 Index Constraints and Discrete Ranges . 49
3.6.2 Operations of Array Types . 51
3.6.3 String Types . 52

3.7 Discriminants -- Removed . 52
3.8 Record Types . 53

Contents AVARM;1.0

Contents 5 October 1995 ii

3.8.1 Variant Parts and Discrete Choices -- Removed . 55
3.9 Tagged Types and Type Extensions -- Removed . 55
3.10 Access Types -- Removed . 55
3.11 Declarative Parts . 55

3.11.1 Completions of Declarations . 56
3.12 Annotation Declarations -- New . 57

4. Names and Expressions .. 61
4.1 Names . 61

4.1.1 Indexed Components . 62
4.1.2 Slices -- Removed . 63
4.1.3 Selected Components . 63
4.1.4 Attributes . 64

4.2 Literals . 66
4.3 Aggregates . 68

4.3.1 Record Aggregates . 68
4.3.2 Extension Aggregates -- Removed . 70
4.3.3 Array Aggregates . 71

4.4 Expressions . 74
4.5 Operators and Expression Evaluation . 75

4.5.1 Logical Operators and Short-circuit Control Forms . 77
4.5.2 Relational Operators and Membership Tests . 78
4.5.3 Binary Adding Operators . 80
4.5.4 Unary Adding Operators . 82
4.5.5 Multiplying Operators . 82
4.5.6 Highest Precedence Operators . 83

4.6 Type Conversions . 84
4.7 Qualified Expressions . 87
4.8 Allocators -- Removed . 88
4.9 Static Expressions and Static Subtypes . 88

4.9.1 Statically Matching Constraints and Subtypes . 91
4.10 Logical Expressions . 92

5. Statements .. 95
5.1 Simple and Compound Statements - Sequences of Statements 95
5.2 Assignment Statements . 96
5.3 If Statements . 98
5.4 Case Statements . 99
5.5 Loop Statements . 101
5.6 Block Statements . 103
5.7 Exit Statements . 104
5.8 Goto Statements -- Removed . 105
5.9 Assert Annotations -- New . 105

6. Subprograms .. 107
6.1 Subprogram Declarations . 107
6.2 Formal Parameter Modes . 109
6.3 Subprogram Bodies . 110

6.3.1 Conformance Rules . 111
6.3.2 Inline Expansion of Subprograms -- Removed . 112

6.4 Subprogram Calls . 112
6.4.1 Parameter Associations . 114

6.5 Return Statements . 115
6.6 Overloading of Operators -- Removed . 116

AVARM;1.0 Contents

iii 5 October 1995 Contents

7. Packages... 117
7.1 Package Specifications and Declarations . 117
7.2 Package Bodies . 118
7.3 Private Types . 120

7.3.1 Private Operations . 121
7.4 Deferred Constants . 123
7.5 Limited Types -- Removed . 124
7.6 Assignment and Finalization . 124

7.6.1 Completion and Finalization . 125

8. Visibility Rules .. 127
8.1 Declarative Region . 127
8.2 Scope of Declarations . 129
8.3 Visibility . 131
8.4 Use Clauses . 133
8.5 Renaming Declarations . 135

8.5.1 Object Renaming Declarations . 136
8.5.2 Exception Renaming Declarations -- Removed . 136
8.5.3 Package Renaming Declarations . 136
8.5.4 Subprogram Renaming Declarations . 137
8.5.5 Generic Renaming Declarations -- Removed . 138

8.6 The Context of Overload Resolution . 138

9. Tasks and Synchronization -- Removed .. 143
10. Program Structure and Compilation Issues .. 145

10.1 Separate Compilation . 145
10.1.1 Compilation Units - Library Units . 146
10.1.2 Context Clauses - With Clauses . 149
10.1.3 Subunits of Compilation Units -- Removed . 150
10.1.4 The Compilation Process . 150
10.1.5 Pragmas and Program Units -- Removed . 152
10.1.6 Environment-Level Visibility Rules . 152

10.2 Program Execution . 153
10.2.1 Elaboration Control -- Removed . 155

11. Exceptions .. 157
11.1 Exception Declarations . 157
11.2 Exception Handlers . 158
11.3 Raise Statements . 159
11.4 Exception Handling . 159

11.4.1 The Package Exceptions -- Removed . 160
11.4.2 Example of Exception Handling . 160

11.5 Suppressing Checks -- Removed . 161
11.6 Exceptions and Optimization -- Removed . 162

12. Generic Units -- Removed.. 163
13. Representation Issues ... 165

13.1 Representation Items -- Removed . 165
13.2 Pragma Pack -- Removed . 165
13.3 Representation Attributes -- Removed . 165
13.4 Enumeration Representation Clauses -- Removed . 165
13.5 Record Layout -- Removed . 165
13.6 Change of Representation -- Removed . 165

Contents AVARM;1.0

Contents 5 October 1995 iv

13.7 The Package System . 165
13.8 Machine Code Insertions -- Removed . 166
13.9 Unchecked Type Conversions -- Removed . 166
13.10 Unchecked Access Value Creation -- Removed . 166
13.11 Storage Management -- Removed . 166
13.12 Pragma Restrictions -- Removed . 166
13.13 Streams -- Removed . 166
13.14 Freezing Rules . 166

The Standard Libraries .. 171
A. Predefined Language Environment ... 173

A.1 The Package Standard . 173
A.2 The Package Ada . 177
A.3 Character Handling -- Removed . 177
A.4 String Handling -- Removed . 177
A.5 The Numerics Packages -- Removed . 177
A.6 Input-Output . 177
A.7 External Files and File Objects . 177
A.8 Sequential and Direct Files . 178

A.8.1 The Generic Package Sequential_IO . 179
A.8.2 File Management . 179
A.8.3 Sequential Input-Output Operations . 179
A.8.4 The Generic Package Direct_IO -- Removed . 179
A.8.5 Direct Input-Output Operations -- Removed . 180

A.9 The Generic Package Storage_IO -- Removed . 180
A.10 Text Input-Output . 180

A.10.1 The Package AVA_IO . 180
A.10.2 Text File Management . 181
A.10.3 Default Input, Output, and Error Files . 181
A.10.4 Specification of Line and Page Lengths -- Removed . 182
A.10.5 Operations on Columns, Lines, and Pages . 182
A.10.6 Get and Put Procedures . 182
A.10.7 Input-Output of Characters and Strings . 182
A.10.8 Input-Output for Integer Types -- Removed . 183
A.10.9 Input-Output for Real Types -- Removed . 184
A.10.10 Input-Output for Enumeration Types -- Removed . 184

A.11 Wide Text Input-Output -- Removed . 184
A.12 Stream Input-Output -- Removed . 184
A.13 Exceptions in Input-Output . 184
A.14 File Sharing -- Removed . 185
A.15 The Package Command_Line -- Removed . 185

B. Interface to Other Languages -- Removed .. 187
C. Systems Programming -- Removed ... 189
D. Real-Time Systems -- Removed ... 191
E. Distributed Systems -- Removed.. 193
F. Information Systems -- Removed ... 195
G. Numerics -- Removed.. 197
H. Safety and Security.. 199

AVARM;1.0 Contents

v 5 October 1995 Contents

I. Obsolescent Features ... 201
I.1 Renamings of Ada 83 Library Units -- Removed . 201
I.2 Allowed Replacements of Characters -- Removed . 201
I.3 Reduced Accuracy Subtypes -- Removed . 201
I.4 The Constrained Attribute -- Removed . 201
I.5 ASCII . 201
I.6 Numeric_Error -- Removed . 202
I.7 At Clauses -- Removed . 202

I.7.1 Interrupt Entries -- Removed . 202
I.8 Mod Clauses -- Removed . 202
I.9 The Storage_Size Attribute -- Removed . 202

J. Language-Defined Attributes .. 203
K. Language-Defined Pragmas -- Removed... 205
L. Implementation-Defined Characteristics ... 207
M. Glossary ... 209
N. Syntax Summary.. 213
Index .. 229

Forward to the AVA Revision AVARM;1.0

Forward to the AVA Revision 5 October 1995 vi

AVARM;1.0 Forward to the AVA Revision

vii 5 October 1995 Forward to the AVA Revision

Forward to the AVA Revision
1 AVA (A Verifiable Ada) is an attempt to formally define a subset of the Ada programming language

sufficient for reasonably sized programming projects. Such a formal definition is a prerequisite to the
production of provably correct Ada programs. This document in general is a subset of [ISO 94] and
represents the informal description of AVA. The formal dynamic semantic definition is described in
[Smith 95].

2 We have removed or constrained various language elements. Not all of these changes were motivated by
the needs of formal definition. Some constructs were removed just to simplify this effort. Certain
constructs, while amenable to formal definition, were removed because it was not clear how such a
formalization would be used to prove properties about programs.

3 We have indicated those places where we have deleted or re-worded text. Large blocks of text (like
chapters and sections) that have been deleted are indicated by ‘‘removed’’. Sections and subsections that
have been added are marked with ‘‘new’’. Paragraphs, sentences, and portions thereof that have been
removed are indicated by a ‘‘♦’’. The deletion of a series of paragraphs can be detected by observing the
discontinuity in paragraph numbers. In some places we have modified or added text for clarification or to
state stronger restrictions than Ada. This text appears in facecode Helvetica. Changes to syntactic cate-
gory names, which in the Ada manual are sans-serif, e.g. parameter_association, are indicated by bold
sans-serif, inner_declaration. The Ada Manual uses roman italics to indicate semantic constraints on
syntactic categories, e.g. procedure_name. If we change these, we use Helvetica italics, e.g
function_name. Deletions in Appendices other than Appendix A have not been scrupulously tracked.

4 This document is based on the on-line version of Programming Language Ada, Language and Standard
Libraries, Annotated Version 6.0 [ISO 94] available at ajpo.sei.cmu.com as well as the online ascii ver-
sion, Ada 95 Reference Manual available through
http://lglwww.eplf.ch/Ada/LRM/9X/RM/Text/aarm.doc
(hereafter AARM). Our thanks to Tucker Taft and Intermetrics for making available the Scribe input for
draft version 5.0 of the manual, as well as the assorted macros that handle paragraph numbering and
appendix creation.

5 This modified version was created by Michael K. Smith and Robert L. Akers of Computational Logic,
Inc. Substantial discussions on the details of restrictions as they applied to the language described in the
original Ada Reference Manual language [DoD 83] (hereafter ARM83) were carried out with Dan
Craigen and Mark Saaltink (now of Odyssey Research Associates). Many of the detailed modifications
were inspired by the extensive discussions available in the accumulated Ada Interpretations.

6 Predictability and critical systems

7 Computational Logic, Inc. is concerned with the ultimate goal of fielding highly predictable systems.
Eventually we expect that all of the links in the chain of system development, from high level language to
hardware, will be amenable to predictability analysis. (See for example the December 89 issue of Journal
of Automated Reasoning which contains four articles describing the ‘‘Computational Logic Short
Stack’’.) One of the requirements for predicting the behavior of a program written in a high level lan-
guage is a precise understanding of the expected behavior of language constructs. This manual represents
an effort to carve out a predictable subset of the Ada programming language.

Forward to the AVA Revision AVARM;1.0

Forward to the AVA Revision 5 October 1995 viii

8 Applications with a requirement for high predictability include security oriented and safety critical sys-
tems. Real-time applications have a significant need for detailed predictability in order to assess the
capability of the application to meet hard timing deadlines. Eventually we would hope that predictability
would be a requirement of all Ada programs.

9 Other work

10 There have been two motivations for work on Ada subsets.
11 1. To define a dialect with predictable behavior for safety and security critical systems.

12 2. To carve out a subset for which a reasonably tractable formal definition can be provided.

13 The second is ultimately in support of the first.

14 In addition there have been efforts to provide a complete formal definition of Ada [DDC 87] in confor-
mance with the published standard [DoD 83].

15 A SETL interpreter for Ada was developed at NYU [Courant 84, Courant 83]. However, it appears that
the requirement of reasonable efficiency makes the definition more opaque than we would like a formal
definition to be.

16 The Ada Runtime Environment Working Group (ARTEWG) produced a Catalogue of Ada Runtime Im-
plementation Dependencies [ARTEWG 87].

The main goal of this catalogue is to be the one place where all the areas of the Ada Reference Manual
(RM) which permit implementation flexibilities can be found.

This effort was primarily in aid of predictability and portability.

17 The European Economic Community supported an attempt to provide a complete formal definition of
Ada [DDC 87] in conformance with the published standard, the Reference Manual for the Ada Program-
ming Language [DoD 83] (ARM83). Conformance to the complete ARM83 presents some unsolvable
problems. The EEC definition was unable to define parts of the language because the definition em-
bodied in the ARM83 is ambiguous. It does a great service by detailing these problems. One drawback
to the EEC definition is its size. The definition is contained in 8 loose leaf binders and depends on
several supporting documents.

18 We have two observations with regard to the EEC definition.

19 • It clearly indicates that a formal definition of a programming language as complex as Ada is
possible. If the research team had been able to depart from the ARM83 and make some
minor modifications, they would have been able to complete their definition.

20 • Building tools to support formal reasoning from a definition this complex is problematic. We
believe that any successful tool of this sort will need to be based on a simpler formal descrip-
tion, presumably for a subset of the language.

21 ORA has produced the "Penelope System" [Ramsey 88, Polak 88] which has been used to prove
properties of some significant Ada programs. It is based on a formal definition for a language that
corresponds to a substantial subset of Ada 83. This language has a more regular semantics than a literal
Ada definition would.

22 Carre has developed a subset, SPARK (SPADE Ada Kernel) [Carre 88], which is an ‘‘annotated sublan-
guage of Ada, intended for use in safety-critical applications’’. It is supported by tools in the SPADE

AVARM;1.0 Forward to the AVA Revision

ix 5 October 1995 Forward to the AVA Revision

system, available from PRAXIS PVL. Of recent note is the publication of a formal semantics for the
SPARK subset written in the Z notation [Marsh 94, O’Neill 94].

Foreword to the Original Annotated Ada Reference Manual AVARM;1.0

Foreword to the Original Annotated Ada Reference Manual 5 October 1995 x

AVARM;1.0 Foreword to the Original Annotated Ada Reference Manual

xi 5 October 1995 Foreword to the Original Annotated Ada Reference Manual

Foreword to the Original Annotated Ada Reference
Manual

1 ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees es-
tablished by the respective organization to deal with particular fields of technical activity. ISO and IEC
technical committees collaborate in fields of mutual interest. Other international organizations,
governmental and non-governmental, in liaison with ISO and IEC, also take part in the work.

2 In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to
national bodies for voting. Publication as an International Standard requires approval by at least 75 % of
the national bodies casting a vote.

3 International Standard ISO/IEC 8652 was prepared by Joint Technical Committee ISO/IEC JTC 1, Infor-
mation Technology.

4 This document is an annotated subset of the second edition which canceled and replaced the
first edition (ISO 8652:1987), of which it constituted a technical revision.

Introduction AVARM;1.0

Introduction 5 October 1995 xii

AVARM;1.0 Introduction

xiii 5 October 1995 Introduction

Introduction

1 This is version 1.0 of the Annotated AVA 95 Reference Manual (AAVARM). Comments on this
document are welcome; see the Instructions for Comment Submission below.

2 Other available Ada documents include:

3 • Rationale for the Ada Programming Language -- 1995 edition, which gives an introduction to
the new features of Ada, and explains the rationale behind them. ♦

4 • The Ada Reference Manual (RM). This is the International Standard — ISO/IEC
8652:1995(E).

5 • The Annotated Ada Reference Manual (AARM). The AARM [ISO 94] contains all of
the text in the RM, plus various annotations. It is intended primarily for compiler
writers, validation test writers, and others who wish to study the fine details. The
annotations include detailed rationale for individual rules and explanations of some
of the more arcane interactions among the rules.

6 • Changes to Ada -- 1987 to 1995. This document lists in detail the changes made to the 1987
edition of the standard.

Design Goals -- Removed

Introduction AVARM;1.0

Introduction 5 October 1995 xiv

Language Summary
11 An AVA program is composed of one or more program units. Program units may be subprograms (which

define executable algorithms) or packages (which define collections of entities) ♦. Each program unit
normally consists of two parts: a specification, containing the information that must be visible to other
units, and a body, containing the implementation details, which need not be visible to other units. Most
program units can be compiled separately.

12 This distinction of the specification and body, and the ability to compile units separately, allows a
program to be designed, written, and tested as a set of largely independent software components.

13 An AVA program will normally make use of a library of program units of general utility. The language
provides means whereby individual organizations can construct their own libraries. All libraries are
structured in a hierarchical manner; this enables the logical decomposition of a subsystem into individual
components. The text of a separately compiled program unit must name the library units it requires.

14 Program Units

15 A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the means of invoking a series of actions. For example, it may
read data, update variables, or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call. A function is the means of
invoking the computation of a value. It is similar to a procedure, but in addition will return a result.

16 A package is the basic unit for defining a collection of logically related entities. For example, a package
can be used to define a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

17 Subprogram and package units may be compiled separately and arranged in hierarchies of parent and
child units giving fine control over visibility of the logical properties and their detailed implementation.

18 ♦

19 ♦

20 Declarations and Statements

21 The body of a program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a sequence of statements, which defines the execution of the
program unit.

22 The declarative part associates names with declared entities. For example, a name may denote a
subtype, a constant, or a variable ♦. A declarative part also introduces the names and parameters of ♦
nested subprograms or packages♦ to be used in the program unit.

23 The sequence of statements describes a sequence of actions that are to be performed. The statements are
executed in succession (unless a transfer of control causes execution to continue from another place).

AVARM;1.0 Introduction

xv 5 October 1995 Introduction

24 An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any actual parameters provided at the call with the corresponding formal
parameters.

25 Case statements and if statements allow the selection of an enclosed sequence of statements based on the
value of an expression or on the value of a condition.

26 The loop statement provides the basic iterative mechanism in the language. A loop statement specifies
that a sequence of statements is to be executed repeatedly as directed by an iteration scheme, or until an
exit statement is encountered.

27 A block statement comprises a sequence of statements preceded by the declaration of local entities used
by the statements.

28 ♦

29 Certain declarations and statements in AVA are assertions. These establish logical requirements
for various program states. These assertions are statements in the ACL2 logic with respect to
program states. The formal definition provides the means to link these assertions to program
behavior. In addition to assertions, AVA provides a means to define axioms, conjectures, and
logical functions in the ACL2 logic for use in program proof.

30 Execution of a program unit may encounter error situations in which normal program execution cannot
continue. For example, an arithmetic computation may exceed the maximum allowed value of a number,
or an attempt may be made to access an array component by using an incorrect index value. To deal with
such error situations, the statements of a program unit can be textually followed by exception handlers
that specify the actions to be taken when the error situation arises. Exceptions can be raised explicitly by
a raise statement.

31 Data Types

32 Every object in the language has a type, which characterizes a set of values and a set of applicable
operations. The main classes of types are elementary types (comprising enumeration and numeric♦) and
composite types (including array and record types).

33 An enumeration type defines an ordered set of distinct enumeration literals, for example a list of states or
an alphabet of characters. The enumeration types Boolean and Character♦ are predefined.

34 Numeric types provide a means of performing exact ♦ numerical computations. Exact computations use
integer types, which denote sets of consecutive integers. ♦ The numeric type Integer♦ is predefined.

35 Composite types allow definitions of structured objects with related components. The composite types in
the language include arrays and records. An array is an object with indexed components of the same type.
A record is an object with named components of possibly different types. ♦ The array type String ♦ is
predefined.

36 ♦

37 ♦

Introduction AVARM;1.0

Introduction 5 October 1995 xvi

38 Private types permit restricted views of a type. A private type can be defined in a package so that only
the logically necessary properties are made visible to the users of the type. The full structural details that
are externally irrelevant are then only available within the package and any child units.

39 ♦

40 The concept of a type is further refined by the concept of a subtype, whereby a user can constrain the set
of allowed values of a type. Subtypes can be used to define subranges of scalar types and arrays with a
limited set of index values♦.

41 Other Facilities

42 ♦

43 The predefined environment of the language provides for input-output and other capabilities (such as
string manipulation ♦) by means of standard library packages. Input-output is supported for values of ♦
Character and String types. ♦

44 ♦

Language Changes
♦

AVARM;1.0 Introduction

xvii 5 October 1995 Introduction

Acknowledgements
(from the Original Annotated Ada Reference Manual)

67 This International Standard was prepared by the Ada 9X Mapping/Revision Team based at Intermetrics,
Inc., which has included: W. Carlson, Program Manager; T. Taft, Technical Director; J. Barnes (consult-
ant); B. Brosgol (consultant); R. Duff (Oak Tree Software); M. Edwards; C. Garrity; R. Hilliard; O. Pazy
(consultant); D. Rosenfeld; L. Shafer; W. White; M. Woodger.

68 The following consultants to the Ada 9X Project contributed to the Specialized Needs Annexes: T. Baker
(Real-Time/Systems Programming — SEI, FSU); K. Dritz (Numerics — Argonne National Laboratory);
A. Gargaro (Distributed Systems — Computer Sciences); J. Goodenough (Real-Time/Systems Program-
ming — SEI); J. McHugh (Secure Systems — consultant); B. Wichmann (Safety-Critical Systems —
NPL: UK).

69 This work was regularly reviewed by the Ada 9X Distinguished Reviewers and the members of the Ada
9X Rapporteur Group (XRG): E. Ploedereder, Chairman of DRs and XRG (University of Stuttgart:
Germany); B. Bardin (Hughes); J. Barnes (consultant: UK); B. Brett (DEC); B. Brosgol (consultant);
R. Brukardt (RR Software); N. Cohen (IBM); R. Dewar (NYU); G. Dismukes (TeleSoft); A. Evans
(consultant); A. Gargaro (Computer Sciences); M. Gerhardt (ESL); J. Goodenough (SEI); S. Heilbrunner
(University of Salzburg: Austria); P. Hilfinger (UC/Berkeley); B. Källberg (CelsiusTech: Sweden);
M. Kamrad II (Unisys); J. van Katwijk (Delft University of Technology: The Netherlands); V. Kaufman
(Russia); P. Kruchten (Rational); R. Landwehr (CCI: Germany); C. Lester (Portsmouth Polytechnic: UK);
L. Månsson (TELIA Research: Sweden); S. Michell (Multiprocessor Toolsmiths: Canada); M. Mills (US
Air Force); D. Pogge (US Navy); K. Power (Boeing); O. Roubine (Verdix: France); A. Strohmeier (Swiss
Fed Inst of Technology: Switzerland); W. Taylor (consultant: UK); J. Tokar (Tartan); E. Vasilescu
(Grumman); J. Vladik (Prospeks s.r.o.: Czech Republic); S. Van Vlierberghe (OFFIS: Belgium).

70 Other valuable feedback influencing the revision process was provided by the Ada 9X Language Preci-
sion Team (Odyssey Research Associates), the Ada 9X User/Implementer Teams (AETECH, Tartan,
Telesoft), the Ada 9X Implementation Analysis Team (New York University) and the Ada community-at-
large.

71 Special thanks go to R. Mathis, Convenor of ISO/IEC JTC1/SC22 Working Group 9.

72 The Ada 9X Project was sponsored by the Ada Joint Program Office. Christine M. Anderson at the Air
Force Phillips Laboratory (Kirtland AFB, NM) was the project manager.

Introduction AVARM;1.0

Introduction 5 October 1995 xviii

Instructions for AVA Comment Submission
73 Comments should be sent via one of the following methods:

74

US Mail: Micheal K. Smith
Computational Logic, Inc.
1717 W. 6th, Suite 290
Austin, Texas 78703

Phone: (512) 322-9951
FAX: (512) 322-0565

Attn: Micheal K. Smith

E-Mail: mksmith@cli.com

75 Please use e-mail if at all possible.

76 Comments should use the following format:

77

!topic Title summarizing comment on AVARM
!reference AVARM-ss.ss(pp);1.0
!from Author Name yy-mm-dd
!keywords keywords related to topic
!discussion

78 where ss.ss is the section, clause or subclause number, pp is the paragraph number where applicable, and
yy-mm-dd is the date the comment was sent. The date is optional, as is the !keywords line. References to
multiple sections, clauses and/or subclauses can be made by including additional !reference lines in the
comment. As noted above the version of this Reference Manual is 1.0.

79 ♦

80 Multiple related comments per e-mail message are acceptable, but in any case be sure that your e-mail
‘‘Subject’’ line says something specific like ‘‘Private Type Issues’’ rather than something general like
‘‘Comment on AVARM.’’

81 When correcting typographical errors or making minor wording suggestions, please put the correction
directly as the topic of the comment; use square brackets [] to indicate text to be omitted and curly braces
{ } to indicate text to be added, and provide enough context to make the nature of the suggestion self-
evident or put additional information in the body of the comment, for example:

82

!topic [c]{C}haracter
!topic it[’]s meaning is not defined

83 Thank you for your help.

AVARM;1.0 General

1 5 October 1995 General 1

1. General
1Ada is a programming language designed to support the construction of long-lived, highly reliable

software systems. The language includes facilities to define packages of related types, objects, and opera-
tions. ♦ The operations may be implemented as subprograms using conventional sequential control
structures♦. The language treats modularity in the physical sense as well, with a facility to support
separate compilation. AVA (A Verifiable Ada) is a subset of Ada. The purpose of AVA is to
promote specification and proofs of properties of programs written within this subset.

2♦ In AVA, errors can be signaled as exceptions and handled explicitly. ♦ Finally, a predefined environ-
ment of standard packages is provided, including facilities for, among others, input-output♦.

2.aDiscussion: The Annotated AVA 95 Reference Manual (AAVARM) contains the entire text of the AVA 95 Reference
Manual (AVARM), plus certain annotations. In order to produce the above documents we began by modifying
Annotated AVA 95 Reference Manual to produce the AAVARM, which by construction contains the entire
text of the AVARM. The annotations give a more in-depth analysis of the language. They describe the reason for
each non-obvious rule, and point out interesting ramifications of the rules and interactions among the rules (interesting
to language lawyers, that is). ♦ (The text you are reading now is an annotation.) Just as AVA83 [Smith 92] is a
subset of Ada83, AVA95 is a subset of Ada95, and the AVARM is, for the most part, an annotated subset of
RM95. Hereafter, unless we are specifically discussing issues particular to AVA83 or contrasting AVA95
with AVA83, we will refer generically to AVA95 as AVA and to Ada95 as Ada.

2.bThe AAVARM stresses detailed correctness and uniformity over readability and understandability. We’re not trying to
make the language ‘‘appear’’ simple here; on the contrary, we’re trying to expose hidden complexities, so we can more
easily detect language bugs. ♦

2.cThe annotations in the AAVARM are as follows:

2.d• The rules of the language (and some AAVARM-only text) are categorized, and placed under certain
sub-headings that indicate the category. For example, the distinction between Name Resolution Rules and
Legality Rules is particularly important, as explained in 8.6.

2.e• Text under the following sub-headings appears in both documents:
2.f• The unlabeled text at the beginning of each clause or subclause,

2.g• Syntax,
2.h• Name Resolution Rules,
2.i• Formal Name Resolution Rules, AVA
2.j• Legality Rules,
2.k• Static Semantics,
2.l• Abstract Syntax, AVA

2.m• Formal Static Semantics, AVA
2.n• Post-Compilation Rules,
2.o• Dynamic Semantics,
2.p• Formal Dynamic Semantics, AVA
2.q• Bounded (Run-Time) Errors,
2.r• Erroneous Execution,
2.s• Implementation Requirements,
2.t• Documentation Requirements,

2.u• Metrics,
2.v• Implementation Permissions,
2.w• Implementation Advice,
2.x• NOTES,
2.y• Examples.

2.z• ♦

2.aa• The AARM also includes the following kinds of annotations. These do not necessarily annotate the
immediately preceding rule, although they often do.

2.bbReason: An explanation of why a certain rule is necessary, or why it is worded in a certain way.

2.ccRamification: An obscure ramification of the rules that is of interest only to language lawyers. (If a ramification of
the rules is of interest to programmers, then it appears under NOTES.)

2.ddProof: An informal proof explaining how a given Note or marked-as-redundant piece of text follows from the other
rules of the language.

2.eeImplementation Note: A hint about how to implement a feature, or a particular potential pitfall that an implementer
needs to be aware of.

General AVARM;1.0

1 General 5 October 1995 2

2.ff Discussion: Other annotations not covered by the above.

2.gg To be honest: A rule that is considered logically necessary to the definition of the language, but which is so obscure or
pedantic that only a language lawyer would care. These are the only annotations that could be considered part of the
language definition.

2.hh Discussion: In general, RM95 text appears in the normal font, AVA RM95 changes in Helvetica, whereas
AARM-only and AAVARM-only text appears in a smaller font. Notes also appear in the smaller font, as recom-
mended by ISO/IEC style guidelines. AVA examples are also usually printed in a smaller font.

2.ii If you have trouble finding things, be sure to use the index. Each defined term appears there, and also in italics, like
this. Syntactic categories defined in BNF are also indexed.

2.jj A definition marked ‘‘[distributed]’’ is the main definition for a term whose complete definition is given in pieces
distributed throughout the document. The pieces are marked ‘‘[partial]’’ or with a phrase explaining what cases the
partial definition applies to.

1.1 Scope
1 AVA95 (A Verifiable Ada) is a subset of Ada95. This Reference Manual specifies the form and

meaning of programs written in AVA95. The purpose of the AVA subset is to promote formal
specification and proofs of properties of programs written within this subset.

1.1.1 Extent of the Standard
1 This Reference Manual specifies:

2 • The form of a program written in AVA;

3 • The effect of translating and executing such a program;

4 • The manner in which program units may be combined to form AVA programs;

5 • The language-defined library units that a conforming implementation is required to supply;

6 • The permissible variations within the standard, and the manner in which they are to be
documented;

7 • Those violations of the standard that a conforming implementation is required to detect, and
the effect of attempting to translate or execute a program containing such violations;

8 • ♦

9 • The form of logical annotations and assertions and the interpretation of such annota-
tions.

10 This Reference Manual does not specify:

11 • The means whereby a program written in Ada is transformed into object code executable by a
processor;

12 • The means whereby translation or execution of programs is invoked and the executing units
are controlled;

13 • The size or speed of the object code, or the relative execution speed of different language
constructs;

14 • The form or contents of any listings produced by implementations; in particular, the form or
contents of error or warning messages;

15 • ♦

AVARM;1.0 General

3 5 October 1995 Extent of the Standard 1.1.1

16• The size of a program or program unit that will exceed the capacity of a particular conform-
ing implementation.

17In some places this standard requires more specific behavior from a conforming implementation
than Ada does. For example, AVA specifies that on return from a procedure call the values of
all out parameters are converted to the subtype of their respective actuals and only then copied
back. Such places are marked with AVA Implementation Requirement. See section 1.1.5.

16We exclude some constructs that Ada admits, for example Wide_character. As a result, there
are some legal AVA programs that would not be legal Ada programs, for example due to use of
a name defined in package Standard that we have deleted. This minor inconsistency could be
corrected by preprocessing AVA programs. More difficult are type-related problems. For ex-
ample, by 3.5.2 (9.a):

The presence of Wide_Character in package Standard means that an expression such as
’a’ = ’b’

is ambiguous in Ada 95, whereas in Ada 83 both literals could be resolved to be of type Character.

The same lack of ambiguity exists in AVA.

1.1.2 Structure
1This Reference Manual contains various sections and annexes, numbered to conform to the cor-

responding sections of AARM95, and an index.

2The core of the AVA language consists of:

3• Sections 1 through 13

4• Annex A, ‘‘Predefined Language Environment’’

5• ♦

6• ♦

7The following Specialized Needs Annexes define features that are needed by certain application areas:

8• ♦

9• ♦

10• ♦

11• ♦

12• ♦

13• Annex H, ‘‘Safety and Security’’

14

15The core language and the Specialized Needs Annexes are normative, except that the material in each of
the items listed below is informative:

16• Text under a NOTES or Examples heading.

17• Each clause or subclause whose title starts with the word ‘‘Example’’ or ‘‘Examples’’.

General AVARM;1.0

1.1.2 Structure 5 October 1995 4

18 All implementations shall conform to the core language. In addition, an implementation may conform
separately to one or more Specialized Needs Annexes.

18.a Discussion: In AVA, there is only the Annex H, ‘‘Safety and Security’’ Annex.

19 The following Annexes are informative:

20 • Annex J, ‘‘Language-Defined Attributes’’

21 • ♦

22 • Annex L, ‘‘Implementation-Defined Characteristics’’

23 • Annex M, ‘‘Glossary’’

24 • Annex N, ‘‘Syntax Summary’’

♦

25 Each section is divided into clauses and subclauses that have a common structure. Each section, clause,
and subclause first introduces its subject. After the introductory text, text is labeled with the following
headings: ♦

Language Design Principles

25.a These are not rules of the language, but guiding principles or goals used in defining the rules of the language. In some
cases, the goal is only partially met; such cases are explained.

25.b This is not part of the definition of the language, and does not appear in the RM95.
Syntax

26 Syntax rules (indented).

Name Resolution Rules

27 Compile-time rules that are used in name resolution, including overload resolution.
27.a Discussion: These rules are observed at compile time. (We say ‘‘observed’’ rather than ‘‘checked,’’ because these

rules are not individually checked. They are really just part of the Legality Rules in Section 8 that require exactly one
interpretation of each constituent of a complete context.) The only rules used in overload resolution are the Syntax
Rules and the Name Resolution Rules.

27.b When dealing with non-overloadable declarations it sometimes makes no semantic difference whether a given rule is a
Name Resolution Rule or a Legality Rule, and it is sometimes difficult to decide which it should be. We generally
make a given rule a Name Resolution Rule only if it has to be. ♦

Formal Name Resolution Rules

28 A formalization of the compile-time rules used in name resolution, including overload resolution.

Legality Rules

27 Rules that are enforced at compile time. A construct is legal if it obeys all of the Legality Rules.
27.a Discussion: These rules are not used in overload resolution.

27.b Note that run-time errors are always attached to exceptions; for example, it is not ‘‘illegal’’ to divide by zero, it just
raises an exception.

Static Semantics

28 A definition of the compile-time effect of each construct.
28.a Discussion: The most important compile-time effects represent the effects on the symbol table associated with

declarations (implicit or explicit). In addition, we use this heading as a bit of a grab bag for equivalences, package
specifications, etc. For example, this is where we put statements like so-and-so is equivalent to such-and-such. ♦

AVARM;1.0 General

5 5 October 1995 Structure 1.1.2

Abstract Syntax

29The abstract syntax used to represent instances of the construct in the formal static and dynamic seman-
tics. Before overload resolution some of these will be ambiguous and will be so marked. For example:

apply ∈ Apply == apply expr apl Before overload resolution.

function-call ∈ FunctionCall == function-call uid expr* After overload resolution.

Thus, an occurence of function-call is of type FunctionCall, with a structure of the form function-call uid
expr*. We use * to indicate 0 or more occurences of a component.

Formal Static Semantics

30A formal definition of the compile-time effect of each construct.

Post-Compilation Rules

29Rules that are enforced before running a partition. A partition is legal if its compilation units are legal
and it obeys all of the Post-Compilation Rules.

29.aDiscussion: It is not specified exactly when these rules are checked, so long as they are checked for any given
partition before that partition starts running. An implementation may choose to check some such rules at compile time,
and reject compilation_units accordingly. Alternatively, an implementation may check such rules when the partition is
created (usually known as ‘‘link time’’), or when the partition is mapped to a particular piece of hardware (but before
the partition starts running).

Dynamic Semantics

30A definition of the run-time effect of each construct.
30.aDiscussion: This heading describes what happens at run time. Run-time checks, which raise exceptions upon failure,

are described here. Each item that involves a run-time check is marked with the name of the check.♦

Formal Dynamic Semantics

31A formal definition of the run-time effect of each construct.

Bounded (Run-Time) Errors

31Situations that result in bounded (run-time) errors (see 1.1.5).

31.aDiscussion: In Ada, the ‘‘bounds’’ of each such error are described here — that is, they characterize the set of all
possible behaviors that can result from a bounded error occurring at run time. We require that a conforming AVA
implementation honor the single behavior we have specified.

Erroneous Execution

32We do not allow situations that result in erroneous execution (see 1.1.5).

Implementation Requirements

33Additional requirements for conforming implementations.

33.aDiscussion: ...as opposed to rules imposed on the programmer. ♦

33.b♦

Documentation Requirements

34Documentation requirements for conforming implementations.
34.aDiscussion: These requirements are beyond those that are implicitly specified by the phrase ‘‘implementation

defined’’. The latter require documentation as well, but we don’t repeat these cases under this heading. Usually this
heading is used for when the description of the documentation requirement is longer and does not correspond directly
to one, narrow normative sentence.

General AVARM;1.0

1.1.2 Structure 5 October 1995 6

♦

NOTES
38 1 Notes emphasize consequences of the rules described in the (sub)clause or elsewhere. This material is informative.

Examples

39 Examples illustrate the possible forms of the constructs described. This material is informative.

1.1.3 Conformity of an Implementation with the Standard
Implementation Requirements

1 A conforming implementation shall:
1.a Discussion: The implementation is the software and hardware that implements the language. This includes compiler,

linker, operating system, hardware, etc.

1.b We first define what it means to ‘‘conform’’ in general — basically, the implementation has to properly implement the
normative rules given throughout the standard. ♦ Then we define what it means to ‘‘conform to the Standard’’♦.

2 • Translate and correctly execute legal programs written in AVA, provided that they are not so
large as to exceed the capacity of the implementation;

3 • Identify all programs or program units that are so large as to exceed the capacity of the
implementation (or raise an appropriate exception at run time);

3.a Implementation defined: Capacity limitations of the implementation.

4 • Identify all programs or program units that contain errors whose detection is required by this
Reference Manual;

4.a Discussion: Note that we no longer use the term ‘‘rejection’’ of programs or program units. We require that
programs or program units with errors or that exceed some capacity limit be ‘‘identified.’’ The way in which
errors or capacity problems are reported is not specified.

4.b An implementation is allowed to use standard error-recovery techniques. We do not disallow such techniques
from being used across compilation_unit or compilation boundaries.

4.c See also the Implementation Requirements of 10.2, which disallow the execution of illegal partitions.

5 • Supply all language-defined library units required by this Reference Manual;
5.a Implementation Note: An implementation cannot add to or modify the visible part of a language-defined

library unit, except where such permission is explicitly granted, unless such modifications are semantically
neutral with respect to the client compilation units of the library unit. An implementation defines the contents
of the private part and body of language-defined library units.

5.b ♦

5.c Wherever in the standard the text of a language-defined library unit contains an italicized phrase starting with
‘‘implementation-defined’’, the implementation’s version will replace that phrase with some implementation-
defined text that is syntactically legal at that place, and follows any other applicable rules.

5.d Note that modifications are permitted, even if there are other tools in the environment that can detect the
changes (such as a program library browser), so long as the modifications make no difference with respect to
the static or dynamic semantics of the resulting programs, as defined by the standard.

6 • ♦

7 • Specify all such variations in the manner prescribed by this Reference Manual.

8 The external effect of the execution of an AVA program is defined in terms of its interactions with its
external environment. The following are defined as external interactions:

9 • Any interaction with an external file (see A.7);

AVARM;1.0 General

7 5 October 1995 Conformity of an Implementation with the Standard 1.1.3

10• ♦

11• ♦

12• Any result returned or exception propagated from a main subprogram (see 10.2) ♦ to an
external caller;

12.aDiscussion: By ‘‘result returned’’ we mean to include function results and values returned in [in] out
parameters.

13• ♦

14• ♦

15A conforming implementation of this Reference Manual shall produce for the execution of a given AVA
program a set of interactions with the external environment whose order ♦ is consistent with the defini-
tions and requirements of this Reference Manual for the semantics of the given program.

15.aRamification: There is no need to produce any of the ‘‘internal effects’’ defined for the semantics of the program —
all of these can be optimized away — so long as an appropriate sequence of external interactions is produced.

15.bDiscussion: ♦

15.c♦ In AVA95 (as opposed to Ada95) programs have their effects defined exactly. ♦

16An implementation that conforms to this Standard shall support each capability required by the core
language as specified. ♦

16In some places the AVA standard requires more specific behavior from a conforming implemen-
tation than Ada does. For example, AVA specifies that all actual parameters be passed by
value in a subprogram call. Such places are marked with AVA Implementation Requirement.
See also Section 1.1.5.

17An implementation conforming to this Reference Manual may provide additional attributes and library
units♦. The specification of these units must adhere to the AVA subset. However, it shall not
provide any attribute or library unit ♦ having the same name as an attribute or library unit ♦ (respec-
tively) specified in a Specialized Needs Annex of ARM95♦. A program that attempts to use an unsup-
ported capability of an Annex shall either be identified by the implementation before run time or shall
raise an exception at run time.

17.aDiscussion: The last sentence of the preceding paragraph defines what an implementation is allowed to do when it
does not "conform" to a Specialized Needs Annex. In particular, the sentence forbids implementations from providing
a construct with the same name as a corresponding construct in a Specialized Needs Annex but with a different syntax
(e.g., an extended syntax) or quite different semantics. The phrase concerning "more limited in capability" is intended
to give permission to provide a partial implementation, such as not implementing a subprogram in a package or having
a restriction not permitted by an implementation that conforms to the Annex. ♦ This allows a partial implementation to
grow to a fully conforming implementation.

17.bA restricted implementation might be restricted by not providing some subprograms specified in one of the packages
defined by an Annex. In this case, a program that tries to use the missing subprogram will usually fail to compile. ♦
Alternatively, a subprogram body might be implemented just to raise Program_Error. The advantage of this approach
is that a program to be run under a fully conforming Annex implementation can be checked syntactically and
semantically under an implementation that only partially supports the Annex. Finally, an implementation might
provide a package declaration without the corresponding body, so that programs can be compiled, but partitions cannot
be built and executed.

17.cTo ensure against wrong answers being delivered by a partial implementation, implementers are required to raise an
exception when a program attempts to use an unsupported capability and this can be detected only at run time. ♦

General AVARM;1.0

1.1.3 Conformity of an Implementation with the Standard 5 October 1995 8

♦
Implementation Advice

20 If an implementation detects the use of an unsupported Ada95 Specialized Needs Annex feature at run
time, it should raise Program_Error ♦.

20.a Reason: ♦

21 ♦

1.1.4 Method of Description and Syntax Notation
1 The form of an AVA program is described by means of a context-free syntax together with context-

dependent requirements expressed by narrative rules.

2 The informal meaning of AVA programs is described by means of narrative rules defining both the
effects of each construct and the composition rules for constructs. The formal meaning of AVA
programs is described by means of logical forms defining both the effects of each construct and
the composition rules for constructs.

3 The context-free syntax of the language is described using a simple variant of Backus-Naur Form. In
particular:

4 • Lower case words in a sans-serif font, some containing embedded underlines, are used to
denote syntactic categories, for example:

5 case_statement

AVA modifications to these catagories are in bold sans-serif, for example:

6 inner_declaration

6 • Boldface words are used to denote reserved words, for example:

7 array

8 • Square brackets enclose optional items. Thus the two following rules are equivalent.

9 return_statement ::= return [expression];
return_statement ::= return; | return expression;

10 • Curly brackets enclose a repeated item. The item may appear zero or more times; the repeti-
tions occur from left to right as with an equivalent left-recursive rule. Thus the two follow-
ing rules are equivalent.

11 term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

12 • A vertical line separates alternative items unless it occurs immediately after an opening curly
bracket, in which case it stands for itself:

13 constraint ::= scalar_constraint | composite_constraint
discrete_choice_list ::= discrete_choice {| discrete_choice}

14 • If the name of any syntactic category starts with an italicized part, it is equivalent to the
category name without the italicized part. The italicized part is intended to convey some
semantic information. For example subtype_name ♦ is equivalent to name alone. AVA
modifications are indicated by bold italics, for example subtype_name.

14.a Discussion: The grammar given in the AVARM95 is not LR(1). In fact, it is ambiguous; the ambiguities are resolved
by the overload resolution rules (see 8.6).

AVARM;1.0 General

9 5 October 1995 Method of Description and Syntax Notation 1.1.4

14.bWe often use ‘‘if’’ to mean ‘‘if and only if’’ in definitions. For example, if we define ‘‘photogenic’’ by saying, ‘‘A
type is photogenic if it has the following properties...,’’ we mean that a type is photogenic if and only if it has those
properties. It is usually clear from the context, and adding the ‘‘and only if’’ seems too cumbersome.

14.cWhen we say, for example, ‘‘a declarative_item of a declarative_part’’, we are talking about a declarative_item
immediately within that declarative_part. When we say ‘‘a declarative_item in, or within, a declarative_part’’, we are
talking about a declarative_item anywhere in the declarative_part, possibly deeply nested within other declarative_parts.
(This notation doesn’t work very well for names, since the name ‘‘of’’ something also has another meaning.)

14.dWhen we refer to the name of a language-defined entity ♦, we mean the language-defined entity even in programs
where the declaration of the language-defined entity is hidden by another declaration. ♦

15A syntactic category is a nonterminal in the grammar defined in BNF under ‘‘Syntax.’’ Names of
syntactic categories are set in a different font, like_this.

16A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category defined under
‘‘Syntax.’’

16.aRamification: For example, an expression is a construct. A declaration is a construct, whereas the thing declared by a
declaration is an ‘‘entity.’’

♦

17A constituent of a construct is the construct itself, or any construct appearing within it.

18♦

NOTES
192 The syntax rules describing structured constructs are presented in a form that corresponds to the recommended

paragraphing. For example, an if_statement is defined as:

20if_statement ::=
if condition then

sequence_of_statements
{elsif condition then

sequence_of_statements}
[else

sequence_of_statements]
end if;

213 The line breaks and indentation in the syntax rules indicate the recommended line breaks and indentation in the
corresponding constructs. The preferred places for other line breaks are after semicolons.

1.1.5 Classification of Errors
Implementation Requirements

1The language definition classifies errors into several different categories:

2• Errors that are required to be detected prior to run time by every AVA implementation;

3These errors correspond to any violation of a rule given in this Reference Manual, other than
those listed below. In particular, violation of any rule that uses the terms shall, allowed,
permitted, legal, or illegal belongs to this category. Any program that contains such an error
is not a legal AVA program; on the other hand, the fact that a program is legal does not mean,
per se, that the program is free from other forms of error.

4The rules are further classified as either compile time rules, or post compilation rules,
depending on whether a violation has to be detected at the time a compilation unit is sub-
mitted to the compiler, or may be postponed until the time a compilation unit is incorporated
into a partition of a program.

General AVARM;1.0

1.1.5 Classification of Errors 5 October 1995 10

4.a Ramification: ♦ Implementations are allowed, but not required, to detect post compilation rules at compile
time when possible.

5 • Errors that are required to be detected at run time by the execution of an AVA program;

6 The corresponding error situations are associated with the names of the predefined excep-
tions. Every AVA compiler is required to generate code that raises the corresponding excep-
tion if such an error situation arises during program execution. If such an error situation is
certain to be raised in every execution of a construct, then an implementation is allowed
(although not required) to report this fact at compilation time.

7 • Bounded errors;

8 The Ada95 language rules define certain kinds of errors that need not be detected either prior
to or during run time, but if not detected, the range of possible effects shall be bounded.
The errors of this category are called bounded errors. In Ada95, the possible effects of a
given bounded error are specified for each such error, but in any case one possible effect of a
bounded error is the raising of the exception Program_Error. AVA95 has selected one of
the possible effects as the required behavior.

9 • ♦

10 Note the elimination of erroneous execution and bounded errors. This has been ac-
complished in two ways.

10 1. We have removed or restricted some constructs that permit the kinds of ambiguity
that lead to erroneous behavior.

10 2. We have specified one of the allowed Ada behaviors to be the allowed AVA be-
havior. These are marked with AVA Implementation Requirement in the text.

10 Order of evaluation in all important cases (e.g. state changing cases) is now specified. This
makes the semantics much simpler, even though it assigns meanings to erroneous programs. It
is our contention that virtually all substantial Ada applications that handle predefined exceptions
are erroneous, so we do not feel that this represents any loss. For purposes of formal reason-
ing, it is certainly preferable to Ada’s stance that the behavior of such programs is a priori unpre-
dictable. In addition, there exists a simple preprocessing step to guarantee consistency with the
AVA definition under any conforming Ada compiler.1 This involves an Ada to Ada transformation
that serializes those operations that have an undefined order in Ada so that their order of
elaboration/evaluation corresponds to that prescribed for AVA. In addition we require value-
result semantics for procedure calls. Again, this can be guaranteed by wrapping assignments to
temporary variables around procedure calls. In the text we label certain progamming practices
as resulting in programs whose ‘‘behavior will be dificult to predict’’. In general, these cor-
respond to practices that can lead to compiler dependent behavior, even when executing code
compiled by AVA conformant Ada compilers.

Implementation Permissions

11 An AVA 95 implementation may provide nonstandard modes of operation. Typically these modes would
be selected ♦ by a command line switch when the compiler is invoked. When operating in a nonstandard
mode, the implementation may reject compilation_units that do not conform to additional requirements

1Such transformations do require assumptions about the extent to which the compiler will optimize. An aggressive, optimizing
compiler that does not ensure the visible behavioral equivalence between the original code and the optimized object is dangerous
and unpredictable.

AVARM;1.0 General

11 5 October 1995 Classification of Errors 1.1.5

associated with the mode♦. In any case, an implementation shall support a standard mode that conforms
to the requirements of this Reference Manual; in particular, in the standard mode, all legal compilation_
units shall be accepted.

11.aDiscussion: These permissions are designed to authorize explicitly the support for alternative modes. Of course,
nothing we say can prevent them anyway, but this (redundant) paragraph is designed to indicate that such alternative
modes are in some sense ‘‘approved’’ and even encouraged where they serve the specialized needs of a given user
community, so long as the standard mode, designed to foster maximum portability, is always available.

♦

1.2 Normative References
1The following standards may contain provisions which, through reference in this text, constitute provi-

sions of this Reference Manual. At the time of original publication July, 1995, the editions indicated
were valid. All standards are subject to revision, and parties to agreements based on this Reference
Manual are encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 646 Information Processing — 7-bit Single-Byte Coded Character Set 2

♦ 3

♦ 4

ISO/IEC 6429:1992 5

Information Technology — Control Functions for Coded Character Sets

ISO/IEC 8859-1:1987 6

Information Processing — 8-bit Single-Byte Coded Character Sets — Part 1: Latin
Alphabet No. 1

♦ 7

ISO/IEC 10646-1:1993 8

Information Technology — Universal Multiple-Octet Coded Character Set (UCS) —
Part 1: Architecture and Basic Multilingual Plane

9♦
9.aDiscussion: POSIX, Portable Operating System Interface (POSIX) — Part 1: System Application Program Interface

(API) [C Language], The Institute of Electrical and Electronics Engineers, 1990.

1.3 Definitions
1Terms are defined throughout this Reference Manual, indicated by italic type. Terms explicitly defined in

this Reference Manual are not to be presumed to refer implicitly to similar terms defined elsewhere.
Terms not defined in this Reference Manual are to be interpreted according to the Webster’s Third New
International Dictionary of the English Language. Informal descriptions of some terms are also given in
Annex M, ‘‘Glossary’’.

1.aDiscussion: The index contains an entry for every defined term.

General AVARM;1.0

2 Lexical Elements 5 October 1995 12

AVARM;1.0 Lexical Elements

13 5 October 1995 Lexical Elements 2

2. Lexical Elements
1The text of a program consists of the texts of one or more compilations. The text of a compilation is a

sequence of lexical elements, each composed of characters; the rules of composition are given in this
section. ♦

2.1 Character Set
1The only characters allowed outside of comments are the graphic_characters and format_effectors.

1.aRamification: Any character, including an other_control_function, is allowed in a comment.

1.bNote that this rule doesn’t really have much force, since the implementation can represent characters in the source in
any way it sees fit. For example, an implementation could simply define that what seems to be a non-graphic,
non-format-effector character is actually a representation of the space character.

♦

Syntax

2character ::= graphic_character | format_effector | other_control_function

3graphic_character ::= identifier_letter | digit | space_character | special_character

Static Semantics

4The character repertoire for the text of an AVA program consists of the collection of characters specified
in ISO 8859-1, ♦ plus a set of format_effectors and, in comments only, a set of other_control_functions;
the coded representation for these characters is implementation defined (it need not be a representation
defined within ISO-10646-1).

4.aImplementation defined: The coded representation for the text of an AVA program.

5The description of the language definition in this Reference Manual uses the graphic symbols defined for
Row 00: Basic Latin and Row 00: Latin-1 Supplement of the ISO 10646 BMP; these correspond to the
graphic symbols of ISO 8859-1 (Latin-1); no graphic symbols are used in this Reference Manual for
characters outside of Row 00 of the BMP. The actual set of graphic symbols used by an implementation
for the visual representation of the text of an AVA program is not specified.

6The categories of characters are defined as follows:

identifier_letter upper_case_identifier_letter | lower_case_identifier_letter 7

7.aDiscussion: We use identifier_letter instead of simply letter because ISO 10646 BMP includes many other characters
that would generally be considered "letters."

upper_case_identifier_letter 8

Any character of Row 00 of ISO 10646 BMP whose name begins ‘‘Latin Capital
Letter’’.

lower_case_identifier_letter 9

Any character of Row 00 of ISO 10646 BMP whose name begins ‘‘Latin Small Let-
ter’’.

10

10.aTo be honest: The above rules do not include the ligatures AE and ae. However, the intent is to include these
characters as identifier letters. This problem was pointed out by a comment from the Netherlands.

digit One of the characters 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. 11

Lexical Elements AVARM;1.0

2.1 Character Set 5 October 1995 14

space_character The character of ISO 10646 BMP named ‘‘Space’’.12

special_character Any character of the ISO 10646 BMP that is not reserved for a control function, and13

is not the space_character, an identifier_letter, or a digit.
13.a Ramification: Note that the no break space and soft hyphen are special_characters, and therefore graphic_characters.

They are not the same characters as space and hyphen-minus.

format_effector The control functions of ISO 6429 called character tabulation or tab (HT), ♦ carriage14

return (CR), line feed (LF), and form feed or page (FF).

other_control_function15

Any control function, other than a format_effector, that is allowed in a comment; the
set of other_control_functions allowed in comments is implementation defined.

15.a Implementation defined: The control functions allowed in comments.

16 The following names are used when referring to certain special_characters:
16.a Discussion: These are the ones that play a special role in the syntax of AVA 95, or in the syntax rules; we don’t bother

to define names for all characters. The first name given is the name from ISO 10646-1; the subsequent names, if any,
are those used within the standard, depending on context.

symbol name

" quotation mark
number sign
& ampersand
’ apostrophe, tick
(left parenthesis
) right parenthesis
* asterisk, multiply
+ plus sign
, comma
– hyphen-minus, minus
. full stop, dot, point
/ solidus, divide

symbol name

: colon
; semicolon
< less-than sign
= equals sign
> greater-than sign
_ low line, underline
| vertical line
[left square bracket
] right square bracket
{ left curly bracket
} right curly bracket

AVA Implementation Inconsistency

16.b The existing AVA parser only accepts the ASCII character set.

♦

NOTES
17 1 ♦

18 2 The language does not specify the source representation of programs. ♦

2.2 Lexical Elements, Separators, and Delimiters
Static Semantics

1 The text of a program consists of the texts of one or more compilations. The text of each compilation is a
sequence of separate lexical elements. Each lexical element is formed from a sequence of characters, and
is either a delimiter, an identifier, a reserved word, a numeric_literal, a character_literal, a string_literal, or
a comment. The meaning of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding comments.

AVARM;1.0 Lexical Elements

15 5 October 1995 Lexical Elements, Separators, and Delimiters 2.2

2The text of a compilation is divided into lines. In general, the representation for an end of line is im-
plementation defined.

2.aImplementation defined: The representation for an end of line.

However, a sequence of one or more format_effectors other than character tabulation (HT) signifies at
least one end of line.

3In some cases an explicit separator is required to separate adjacent lexical elements. A separator is any
of a space character, a format effector, or the end of a line, as follows:

3.aDiscussion: It might be useful to define ‘‘white space’’ and use it here.

4• A space character is a separator except within a comment, a string_literal, or a character_
literal.

5• Character tabulation (HT) is a separator except within a comment.

6• The end of a line is always a separator.

7One or more separators are allowed between any two adjacent lexical elements, before the first of each
compilation, or after the last. At least one separator is required between an identifier, a reserved word, or a
numeric_literal and an adjacent identifier, reserved word, or numeric_literal.

8A delimiter is either one of the following special characters

9& ’ () * + , - . / : ; < = > |

10or one of the following compound delimiters each composed of two adjacent special characters

11=> .. ** := /= >= <= ♦ <>

12Each of the special characters listed for single character delimiters is a single delimiter except if this
character is used as a character of a compound delimiter, or as a character of a comment, string_literal,
character_literal, or numeric_literal.

13The following names are used when referring to compound delimiters:

14delimiter name

=> arrow
.. double dot
** double star, exponentiate
:= assignment (pronounced: ‘‘becomes’’)
/= inequality (pronounced: ‘‘not equal’’)
>= greater than or equal
<= less than or equal
♦
<> box

Implementation Requirements

15An implementation shall support lines of at least 200 characters in length, not counting any characters
used to signify the end of a line. An implementation shall support lexical elements of at least 200
characters in length. The maximum supported line length and lexical element length are implementation
defined.

15.aImplementation defined: Maximum supported line length and lexical element length.

Lexical Elements AVARM;1.0

2.2 Lexical Elements, Separators, and Delimiters 5 October 1995 16

15.b Discussion: From URG recommendation.

2.3 Identifiers
1 Identifiers are used as names.

Syntax

2 identifier ::=
identifier_letter {[underline] letter_or_digit}

3 letter_or_digit ::= identifier_letter | digit

4 An identifier shall not be a reserved word.

Abstract Syntax

5 Identifiers before overload resolution are just symbols. After overload resolution they have been uniquely
identified by an integer index. Uids are ‘‘unique identifiers’’.

sym ∈ Symbols ACL2 predicate: SYMBOLP(sym)
id ∈ Id == sym | symn Identifier | Unique Identifier

Static Semantics

6 All characters of an identifier are significant, including any underline character. Identifiers differing only
in the use of corresponding upper and lower case letters are considered the same. ♦

♦
Examples

7 Examples of identifiers:

8 Count X Get_Symbol Ethelyn Marion

Snobol_4 X1 Page_Count Store_Next_Item

Wording Changes From Ada 83

8.a We no longer include reserved words as identifiers. This is not a language change. In Ada 83, identifier included
reserved words. However, this complicated several other rules (for example, regarding implementation-defined
attributes ♦, etc.). We now explicitly allow certain reserved words for attribute designators, to make up for the loss.

8.b Ramification: Because syntax rules are relevant to overload resolution, it means that if it looks like a reserved word, it
is not an identifier. As a side effect, implementations cannot use reserved words as implementation-defined attributes
♦.

2.4 Numeric Literals
1 There ♦ is one kind of numeric_literal, ♦ integer literals. ♦ An integer literal is a numeric_literal ♦.

Syntax

2 numeric_literal ::= decimal_literal | based_literal

Abstract Syntax

3 All numeric and decimal literals are translated into simple integers, including based_numeric_literals.

n ∈ N ACL2 predicate: INTEGERP(n)

AVARM;1.0 Lexical Elements

17 5 October 1995 Numeric Literals 2.4

NOTES
43 The type of an integer literal is universal_integer. ♦

2.4.1 Decimal Literals
1A decimal_literal is a numeric_literal in the conventional decimal notation (that is, the base is ten).

Syntax

2decimal_literal ::= numeral ♦ [exponent]

3numeral ::= digit {[underline] digit}

4exponent ::= E + numeral | ♦
5♦

Static Semantics

6An underline character in a numeric_literal does not affect its meaning. The letter E of an exponent can
be written either in lower case or in upper case, with the same meaning.

6.aRamification: Although these rules are in this subclause, they apply also to the next subclause.

7An exponent indicates the power of ten by which the value of the decimal_literal without the exponent is
to be multiplied to obtain the value of the decimal_literal with the exponent.

Examples

8Examples of decimal literals:

9

12 0 1E6 123_456 -- integer literals
♦

AVA Implementation Inconsistency

9.aOur current lexical scanner does not handle ‘_‘ in numerals.
Wording Changes From Ada 83

9.bWe have changed the syntactic category name integer to be numeral. We got this idea from ACID. It avoids the
confusion between this and integers. (Other places don’t offer similar confusions. For example, a string_literal is
different from a string.)

2.4.2 Based Literals
1A based_literal is a numeric_literal expressed in a form that specifies the base explicitly.

Syntax

2based_literal ::=
base # based_numeral ♦ # [exponent]

3base ::= numeral

4based_numeral ::=
extended_digit {[underline] extended_digit}

5extended_digit ::= digit | A | B | C | D | E | F

Lexical Elements AVARM;1.0

2.4.2 Based Literals 5 October 1995 18

Legality Rules

6 The base (the numeric value of the decimal numeral preceding the first #) shall be at least two and at most
sixteen. The extended_digits A through F represent the digits ten through fifteen, respectively. The value
of each extended_digit of a based_literal shall be less than the base.

Static Semantics

7 The conventional meaning of based notation is assumed. An exponent indicates the power of the base by
which the value of the based_literal without the exponent is to be multiplied to obtain the value of the
based_literal with the exponent. The base and the exponent, if any, are in decimal notation.

8 The extended_digits A through F can be written either in lower case or in upper case, with the same
meaning.

Examples

9 Examples of based literals:

10

2#1111_1111# 16#FF# 016#0ff# -- integer literals of value 255
16#E#E1 2#1110_0000# -- integer literals of value 224
♦

Wording Changes From Ada 83

10.a The rule about which letters are allowed is now encoded in BNF, as suggested by Mike Woodger. This is clearly more
readable.

2.5 Character Literals
1 A character_literal is formed by enclosing a graphic character between two apostrophe characters.

Syntax

2 character_literal ::= ’graphic_character’

Abstract Syntax

3

c ∈ Character == #\space ... #\~ CHARACTER-P(c) ∧
STANDARD-CHAR-P(c)

NOTES
4 4 A character_literal is an enumeration literal of a character type. See 3.5.2.

Examples

5 Examples of character literals:

6 ’A’ ’*’ ’’’ ’ ’

Wording Changes From Ada 83

6.a The definitions of the values of literals are in Sections 3 and 4, rather than here, since it requires knowledge of types.

AVARM;1.0 Lexical Elements

19 5 October 1995 String Literals 2.6

2.6 String Literals
1A string_literal is formed by a sequence of graphic characters (possibly none) enclosed between two

quotation marks used as string brackets. They are used to represent ♦ values of a string type (see 4.2),
and array subaggregates (see 4.3.3).

Syntax

2string_literal ::= "{string_element}"

3string_element ::= "" | non_quotation_mark_graphic_character

4A string_element is either a pair of quotation marks (""), or a single graphic_character other than a
quotation mark.

Abstract Syntax

5

s ∈ String == "c*" STRINGP(s)

Static Semantics

6The sequence of characters of a string_literal is formed from the sequence of string_elements between the
bracketing quotation marks, in the given order, with a string_element that is "" becoming a single quota-
tion mark in the sequence of characters, and any other string_element being reproduced in the sequence.

7A null string literal is a string_literal with no string_elements between the quotation marks.

NOTES
85 An end of line cannot appear in a string_literal.

Examples

9Examples of string literals:

10

"Message of the day:"

"" -- a null string literal
" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

Wording Changes From Ada 83

10.aThe wording has been changed to be strictly lexical. No mention is made of string or character values, since string_
literals are also used to represent operator_symbols, which don’t have a defined value.

10.bThe syntax is described differently.

2.7 Comments
1A comment starts with two adjacent hyphens and extends up to the end of the line unless the character

immediately after the second hyphen is ‘|‘, in which case the text to the end of the line is part of
an AVA annotation. See Section 3.12.

Lexical Elements AVARM;1.0

2.7 Comments 5 October 1995 20

Syntax

2 comment ::= --{non_end_of_line_character}

3 If there are any non_end_of_line_characters the first one following the hyphens must not be a
vertical bar. A comment may appear on any line of a program.

Static Semantics

4 The presence or absence of comments has no influence on whether a program is legal or illegal. Further-
more, comments do not influence the meaning of a program; their sole purpose is the enlightenment of
the human reader.

Examples

5 Examples of comments:

6 -- the last sentence above echoes the Algol 68 report

end; -- processing of Line is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

2.8 Pragmas -- Removed
We might want to reintroduce pragmas to allow the restrictions of Annex H to be applied. But
since Annex H doesn’t provide enough leverage to get us to the AVA subset, pragmas remain
moot.

AVARM;1.0 Lexical Elements

21 5 October 1995 Pragmas -- Removed 2.8

2.9 Reserved Words
Syntax

1

2The following are the reserved words (ignoring upper/lower case distinctions):

2.aDiscussion: Reserved words have special meaning in the syntax. In addition, certain reserved words are used as
attribute names.

2.bThe syntactic category identifier no longer allows reserved words. We have added the few reserved words that are legal
explicitly to the syntax for attribute_reference. Allowing identifier to include reserved words has been a source of
confusion for some users, and differs from the way they are treated in the C and Pascal language definitions.

abort
abs
abstract
accept
access
aliased
all
and
array
at

begin
body

case
constant

declare
delay
delta
digits
do

else
elsif
end
entry
exception
exit

for
function

generic
goto

if
in
is

limited
loop

mod

new
not
null

of
or
others
out

package
pragma
private
procedure
protected

raise
range
record
rem
renames
requeue

return
reverse

select
separate
subtype

tagged
task
terminate
then
type

until
use

when
while
with

xor

Syntax

3

4The following are the AVA reserved words (ignoring upper/lower case distinctions): AVA
reserved words only have meaning in the context of annotations.

assert
axiom
defun

fi
iff
implies

invariant
isin
theorem

where

NOTES
36 The reserved words appear in lower case boldface in this Reference Manual, except when used in the designator of an

attribute (see 4.1.4). ♦ This is merely a convention — programs may be written in whatever typeface is desired and
available.

Incompatibilities With Ada 83

3.aThe following words are not reserved in Ada 83, but are reserved in AVA 95: abstract, aliased, protected, requeue,
tagged, until.

Wording Changes From Ada 83

3.bThe clause entitled ‘‘Allowed Replacements of Characters’’ has been moved to Annex I, ‘‘Obsolescent Features’’.

Lexical Elements AVARM;1.0

2.10 Annotations -- New 5 October 1995 22

2.10 Annotations -- New
1 Annotations allow the user to

2 • define functions, constants and theorems in the ACL2 logic [Kaufmann 94],

3 • assert logical specifications for AVA functions, procedures, types, and statements, and

4 • state axioms and purported theorems to be used in the analysis of programs.
See section 3.12 for further details on annotations.

5 Annotation lines start with two adjacent hyphens and extend up to the end of the line if the character
immediately after the second hyphen is ‘|. Note that the first production for an annotation line violates the
syntax of 1.1.4(14) in that the ‘|‘ after the two hyphens is part of the production and not a production
separator.

Syntax

6 annotation_line ::= --|{non_end_of_line_character}

Annotation lines are preprocessed by tools that recognize these special forms of Ada comments as AVA
annotations.

AVARM;1.0 Declarations and Types

23 5 October 1995 Declarations and Types 3

3. Declarations and Types
1This section describes the types in the language and the rules for declaring constants, variables, and

named numbers.

3.1 Declarations
1The language defines several kinds of named entities that are declared by declarations. The entity’s name

is defined by the declaration, usually by a defining_identifier, but sometimes by a defining_character_
literal ♦.

2There are several forms of declaration. A basic_declaration is a form of declaration defined as follows.

Syntax

3basic_declaration ::=
type_declaration | subtype_declaration

| inner_declaration | ♦
| subprogram_declaration | ♦
| package_declaration | renaming_declaration
| axiom_decl
| theorem_decl
| defun_decl
| ♦ | ♦
| ♦

4defining_identifier ::= identifier

5inner_declaration ::=
object_declaration

| number_declaration
| invariant_annotation

Abstract Syntax

6

di ∈ InnerD == do | dn | assert | invariant
dL ∈ LogicDecl == defun | theorem | axiom
d ∈ Decl == di | subp | type | subtype | dL

Static Semantics

5A declaration is a language construct that associates a name with (a view of) an entity. A declaration
may appear explicitly in the program text (an explicit declaration), or may be supposed to occur at a given
place in the text as a consequence of the semantics of another construct (an implicit declaration). AVA
declarations also include annotations that further restrict the properties of declared objects and
subprograms.

5.aDiscussion: An implicit declaration generally declares a predefined ♦ operation associated with the definition of a
type. This term is used primarily when allowing explicit declarations to override implicit declarations, as part of a type
declaration.

6Each of the following is defined to be a declaration: any basic_declaration; an enumeration_literal_
specification; ♦ a component_declaration; a loop_parameter_specification; a parameter_specification;
and a subprogram_body. ♦

Declarations and Types AVARM;1.0

3.1 Declarations 5 October 1995 24

6.a Discussion: This list (when basic_declaration is expanded out) contains all syntactic categories that end in
"_declaration" or "_specification", except for program unit _specifications. Moreover, it contains subprogram_body. A
subprogram_body is a declaration, whether or not it completes a previous declaration. This is a bit strange,
subprogram_body is not part of the syntax of basic_declaration or library_unit_declaration. ♦ Completions are
sometimes declarations, and sometimes not.

7 All declarations contain a definition for a view of an entity. A view consists of an identification of the
entity (the entity of the view), plus view-specific characteristics that affect the use of the entity through
that view (such as ♦ formal parameter names♦, or visibility to components of a type). In most cases, a
declaration also contains the definition for the entity itself (a renaming_declaration is an example of a
declaration that does not define a new entity, but instead defines a view of an existing entity (see 8.5)).

7.a Discussion: Most declarations define a view (of some entity) whose view-specific characteristics are unchanging for
the life of the view. However, subtypes are somewhat unusual in that they inherit characteristics from whatever view
of their type is currently visible. Hence, a subtype is not a view of a type; it is more of an indirect reference. By
contrast, a private type provides a single, unchanging (partial) view of its full type.

8 For each declaration, the language rules define a certain region of text called the scope of the declaration
(see 8.2). Most declarations associate an identifier with a declared entity. Within its scope, and only
there, there are places where it is possible to use the identifier to refer to the declaration, the view it
defines, and the associated entity; these places are defined by the visibility rules (see 8.3). At such places
the identifier is said to be a name of the entity (the direct_name or selector_name); the name is said to
denote the declaration, the view, and the associated entity (see 8.6). The declaration is said to declare the
name, the view, and in most cases, the entity itself.

9 As an alternative to an identifier, an enumeration literal can be declared with a character_literal as its
name (see 3.5.1) ♦.

10 The syntax rules use the terms defining_identifier and defining_character_literal♦ for the defining occur-
rence of a name; these are collectively called defining names. The terms direct_name and selector_name
are used for usage occurrences of identifiers and character_literals♦. These are collectively called usage
names.

10.a To be honest: The terms identifier, character_literal, and operator_symbol are used directly in contexts where the
normal visibility rules do not apply ♦. ♦

Dynamic Semantics

11 The process by which a construct achieves its run-time effect is called execution. This process is also
called elaboration for declarations and annotations and evaluation for expressions. One of the terms
execution, elaboration, or evaluation is defined by this Reference Manual for each construct that has a
run-time effect.

11.a To be honest: The term elaboration is also used for the execution of certain constructs that are not declarations, and
the term evaluation is used for the execution of certain constructs that are not expressions. For example, subtype_
indications are elaborated, and ranges are evaluated.

11.b For bodies, execution and elaboration are both explicitly defined. When we refer specifically to the execution of a
body, we mean the explicit definition of execution for that kind of body, not its elaboration.

11.c Discussion: Technically, "the execution of a declaration" and "the elaboration of a declaration" are synonymous. We
use the term "elaboration" of a construct when we know the construct is elaborable. When we are talking about more
arbitrary constructs, we use the term "execution". For example, we use the term "erroneous execution", to refer to any
erroneous execution, including erroneous elaboration or evaluation.

11.d When we explicitly define evaluation or elaboration for a construct, we are implicitly defining execution of that
construct.

11.e We also use the term "execution" for things like statements, which are executable, but neither elaborable nor evaluable.
We considered using the term "execution" only for non-elaborable, non-evaluable constructs, and defining the term

AVARM;1.0 Declarations and Types

25 5 October 1995 Declarations 3.1

"action" to mean what we have defined "execution" to mean. We rejected this idea because we thought three terms that
mean the same thing was enough — four would be overkill. Thus, the term "action" is used only informally in the
standard (except where it is defined as part of a larger term ♦).

11.fTo be honest: A construct is elaborable if elaboration is defined for it. A construct is evaluable if evaluation is
defined for it. A construct is executable if execution is defined for it.

11.gDiscussion: ♦

11.hEvaluation of an evaluable construct produces a result that is either a value ♦ or a range. The following are evaluable:
expression; name; prefix; range; ♦ and possibly discrete_range.

11.iIntuitively, an executable construct is one that has a defined run-time effect (which may be null). Since execution
includes elaboration and evaluation as special cases, all elaborable and all evaluable constructs are also executable.
Hence, most constructs in Ada are executable. ♦

NOTES
121 At compile time, the declaration of an entity declares the entity. At run time, the elaboration of the declaration creates

the entity.

12.aRamification: Syntactic categories for declarations are named either entity_declaration (if they include a trailing
semicolon) or entity_specification (if not).

12.bThe various kinds of named entities that can be declared are as follows: an object (including components ♦), a named
number, a type (the name always refers to its first subtype), a subtype, a subprogram (including enumeration literals
and operators), ♦ and a package♦.

12.cIdentifiers are also associated with ♦ attributes, but these are not user-definable.

Wording Changes From Ada 83

12.dThe syntax rule for defining_identifier is new. It is used for the defining occurrence of an identifier. Usage occurrences
use the direct_name or selector_name syntactic categories. Each occurrence of an identifier (or simple_name),
character_literal, or operator_symbol in the Ada 83 syntax rules is handled as follows in Ada 95:

12.e• It becomes a defining_identifier, defining_character_literal, or defining_operator_symbol (or some syntactic
category composed of these), to indicate a defining occurrence;

12.f• It becomes a direct_name, in usage occurrences where the usage is required (in Section 8) to be directly
visible;

12.g• It becomes a selector_name, in usage occurrences where the usage is required (in Section 8) to be visible
but not necessarily directly visible; It remains an identifier, character_literal, or operator_symbol, in cases
where the visibility rules do not apply (such as the designator that appears after the end of a subprogram_
body).

12.hFor declarations that come in ‘‘two parts’’ (program unit declaration plus body, private or incomplete type plus full
type, deferred constant plus full constant), we consider both to be defining occurrences. Thus, for example, the syntax
for package_body uses defining_identifier after the reserved word body, as opposed to direct_name.

12.i♦

12.jThe phrase ‘‘visible by selection’’ is not used in Ada 95. It is subsumed by simply ‘‘visible’’ and the Name Resolution
Rules for selector_names.

12.k(Note that in Ada 95, a declaration is visible at all places where one could have used a selector_name, not just at places
where a selector_name was actually used. Thus, the places where a declaration is directly visible are a subset of the
places where it is visible. See Section 8 for details.)

12.lWe use the term ‘‘declaration’’ to cover _specifications that declare (views of) objects, such as parameter_
specifications. In Ada 83, these are referred to as a ‘‘form of declaration,’’ but it is not entirely clear that they are
considered simply ‘‘declarations.’’

12.mRM83 contains an incomplete definition of "elaborated" in this clause: it defines "elaborated" for declarations,
declarative_parts, declarative_items and compilation_units, but "elaboration" is defined elsewhere for various other
constructs. To make matters worse, Ada 95 has a different set of elaborable constructs. Instead of correcting the list, it
is more maintainable to refer to the term "elaborable," which is defined in a distributed manner.

Declarations and Types AVARM;1.0

3.1 Declarations 5 October 1995 26

12.n RM83 uses the term ‘‘has no other effect’’ to describe an elaboration that doesn’t do anything except change the state
from not-yet-elaborated to elaborated. This was a confusing wording, because the answer to ‘‘other than what?’’ was
to be found many pages away. In Ada 95, we change this wording to ‘‘has no effect’’ (for things that truly do nothing
at run time), and ‘‘has no effect other than to establish that so-and-so can happen without failing the Elaboration_
Check’’ (for things where it matters).

12.o We make it clearer that the term "execution" covers elaboration and evaluation as special cases. This was implied in
RM83. For example, "erroneous execution" can include any execution♦.

3.2 Types and Subtypes
Static Semantics

1 A type is characterized by a set of values, and a set of primitive operations which implement the fun-
damental aspects of its semantics. An object of a given type is a run-time entity that contains (has) a
value of the type.

2 Types are grouped into classes of types, reflecting the similarity of their values and primitive operations.
There exist several language-defined classes of types (see NOTES below). Elementary types are those
whose values are logically indivisible; composite types are those whose values are composed of
component values.

3 The elementary types are the discrete scalar types♦. Discrete types are either integer types or are defined
by enumeration of their values (enumeration types). ♦

4 The composite types are the record types ♦ and array types♦ A private type ♦ represents a partial view
(see 7.3) of a type, providing support for data abstraction. A partial view is a composite type. ♦

5 ♦

6 The term subcomponent is used in this Reference Manual in place of the term component to indicate
either a component, or a component of another subcomponent. Where other subcomponents are ex-
cluded, the term component is used instead. Similarly, a part of an object or value is used to mean the
whole object or value, or any set of its subcomponents.

6.a Discussion: The definition of ‘‘part’’ here is designed to simplify rules elsewhere. By design, the intuitive meaning of
‘‘part’’ will convey the correct result to the casual reader, while this formalistic definition will answer the concern of
the compiler-writer.

6.b ♦

7 The set of possible values for an object of a given type can be subjected to a condition that is called a
constraint (the case of a null constraint that specifies no restriction is also included); the rules for which
values satisfy a given kind of constraint are given in 3.5 for range_constraints, and 3.6.1 for index_
constraints♦.

8 A subtype of a given type is a combination of the type, a constraint on values of the type, and certain
attributes specific to the subtype. The given type is called the type of the subtype. Similarly, the as-
sociated constraint is called the constraint of the subtype. The set of values of a subtype consists of the
values of its type that satisfy its constraint. Such values belong to the subtype.

8.a Discussion: We make a strong distinction between a type and its subtypes. In particular, a type is not a subtype of
itself. There is no constraint associated with a type (not even a null one), and type-related attributes are distinct from
subtype-specific attributes.

8.b Discussion: We no longer use the term "base type." All types were "base types" anyway in Ada 83, so the term was
redundant, and occasionally confusing. In the RM95 we say simply "the type of the subtype" instead of "the base type
of the subtype."

AVARM;1.0 Declarations and Types

27 5 October 1995 Types and Subtypes 3.2

8.cRamification: The value subset for a subtype might be empty, and need not be a proper subset.

8.dTo be honest: Any name of a class of types (such as ‘‘discrete’’ ♦), or other category of types (such as ♦
‘‘incomplete’’) is also used to qualify its subtypes, as well as its objects, values, declarations, and definitions, such as
an ‘‘integer type declaration’’ or an ‘‘integer value.’’ In addition, if a term such as♦ ‘‘index subtype’’ is defined, then
the corresponding term for the type of the subtype is ♦ ‘‘index type.’’

8.eDiscussion: We use these corresponding terms without explicitly defining them, when the meaning is obvious.

9A subtype is called an unconstrained subtype if ♦ its type allows range or index♦ constraints, but the
subtype does not impose such a constraint; otherwise, the subtype is called a constrained subtype (since it
has no unconstrained characteristics).

9.aDiscussion: In an earlier version of Ada 95, "constrained" meant "has a non-null constraint." However, we changed to
this definition since we kept having to special case composite non-array/non-discriminated types. It also corresponds
better to the (now obsolescent) attribute ’Constrained.

9.bFor scalar types, ‘‘constrained’’ means ‘‘has a non-null constraint’’. For composite types, in implementation terms,
‘‘constrained’’ means that the size of all objects of the subtype is the same, assuming a typical implementation model.

9.c♦

NOTES
102 ♦ Only certain classes are used in the description of the rules of the language — generally those that have their own

particular set of primitive operations (see 3.2.3)♦. The following are examples of ‘‘interesting’’ language-defined classes:
elementary, scalar, discrete, enumeration, character, boolean, integer, ♦ composite, array, string, ♦ record♦. Special
syntax is provided to define types in each of these classes.

10.aDiscussion: A value is a run-time entity with a given type which can be assigned to an object of an appropriate
subtype of the type. An operation is a program entity that operates on zero or more operands to produce an effect, or
yield a result, or both.

10.bRamification: Note that a type’s class depends on the place of the reference — a private type is composite outside and
possibly elementary inside. It’s really the view that is elementary or composite. Note that although private types are
composite, there are some properties that depend on the corresponding full view — for example, parameter passing
modes, and the constraint checks that apply in various places.

10.cNot every property of types represents a class. ♦

10.d♦

11These language-defined classes are organized like this:

12

all types
elementary

scalar
discrete

enumeration
character
boolean
other enumeration

integer
signed integer

♦
composite

array
string
other array

♦ record
♦

13♦

Declarations and Types AVARM;1.0

3.2 Types and Subtypes 5 October 1995 28

Wording Changes From Ada 83

13.a This clause and its subclauses now precede the clause and subclauses on objects and named numbers, to cut down on
the number of forward references.

13.b We have dropped the term "base type" in favor of simply "type" (all types in Ada 83 were "base types" so it wasn’t
clear when it was appropriate/necessary to say "base type"). Given a subtype S of a type T, we call T the "type of the
subtype S."

3.2.1 Type Declarations
1 A type_declaration declares a type and its first subtype.

Syntax

2 type_declaration ::= full_type_declaration
| ♦
| private_type_declaration
| ♦

3 full_type_declaration ::=
type defining_identifier ♦ is type_definition;

| ♦
4 type_definition ::=

enumeration_type_definition | ♦
| ♦ | array_type_definition
| record_type_definition | ♦
| ♦

Legality Rules

5 A given type shall not have a subcomponent whose type is the given type itself.

Abstract Syntax

6

type ∈ Type == typer | typea | typee | id | range
dt ∈ TypeDecl == type id [type]

Static Semantics

7 The defining_identifier of a type_declaration denotes the first subtype of the type. ♦ The remainder of the
type_declaration defines the remaining characteristics of (the view of) the type.

8 A type defined by a type_declaration is a named type; such a type has one or more nameable subtypes.
For a named type whose first subtype is T, this Reference Manual sometimes refers to the type of T as
simply ‘‘the type T.’’

9 A named type that is declared by a full_type_declaration, ♦ is called a full type. The type_definition♦ that
defines a full type is called a full type definition. Types declared by other forms of type_declaration are
not separate types; they are partial or incomplete views of some full type.

9.a To be honest: ♦ Root numeric types are full types.

10 The definition of a type implicitly declares certain predefined operators that operate on the type, accord-
ing to what classes the type belongs, as specified in 4.5, ‘‘Operators and Expression Evaluation’’.

10.a Discussion: We no longer talk about the implicit declaration of basic operations. These are treated like an if_statement
— they don’t need to be declared, but are still applicable to only certain classes of types.

AVARM;1.0 Declarations and Types

29 5 October 1995 Type Declarations 3.2.1

11The predefined types (for example the types Boolean, ♦ Integer, root_integer, and universal_integer) are
the types that are defined in a predefined library package called Standard; this package also includes the
(implicit) declarations of their predefined operators. The package Standard is described in A.1.

11.aRamification: We use the term ‘‘predefined’’ to refer to entities declared in the visible part of Standard, to implicitly
declared operators of a type whose semantics are defined by the language, to Standard itself, and to the ‘‘predefined
environment’’. We do not use this term to refer to library packages other than Standard. For example AVA_IO is a
language-defined package, not a predefined package, and AVA_IO.Put_Line is not a predefined operation.

Dynamic Semantics

12The elaboration of a full_type_declaration consists of the elaboration of the full type definition. Each
elaboration of a full type definition creates a distinct type and its first subtype.

12.aReason: The creation is associated with the type definition, rather than the type declaration♦.

12.bRamification: Any implicit declarations that occur immediately following the full type definition are elaborated where
they (implicitly) occur.

Examples

13Examples of type definitions:
14(White, Red, Yellow, Green, Blue, Brown, Black)

range 1 .. 72
array(index) of Integer

15Examples of type declarations:
16type Color is (White, Red, Yellow, Green, Blue, Brown, Black);

♦
type Table is array(index) of Integer;

NOTES
173 Each of the above examples declares a named type. The identifier given denotes the first subtype of the type. Other

named subtypes of the type can be declared with subtype_declarations (see 3.2.2). Although names do not directly denote
types, a phrase like ‘‘the type Table is sometimes used in this Reference Manual to refer to the type of Table, where
Table denotes the first subtype of the type. ♦

Wording Changes From Ada 83

17.a♦

17.bWe have generalized the concept of first-named subtype (now called simply ‘‘first subtype’’) to cover all kinds of
types, for uniformity of description elsewhere. RM83 defined first-named subtype in Section 13. We define first
subtype here, because it is now a more fundamental concept. We renamed the term, because in Ada 95 some first
subtypes have no name.

17.c♦

3.2.2 Subtype Declarations
1A subtype_declaration declares a subtype of some previously declared type, as defined by a subtype_

indication.

Syntax

2subtype_declaration ::=
subtype defining_identifier is subtype_indication;

3subtype_indication ::= subtype_mark [constraint]

4subtype_mark ::= subtype_name

4.aRamification: Note that name includes attribute_reference; thus, S’Base can be used as a subtype_mark.

Declarations and Types AVARM;1.0

3.2.2 Subtype Declarations 5 October 1995 30

4.b Reason: We considered changing subtype_mark to subtype_name. However, existing users are used to the word
"mark," so we’re keeping it.

5 constraint ::= scalar_constraint | composite_constraint

6 scalar_constraint ::=
range_constraint | ♦

7 composite_constraint ::=
index_constraint | ♦

Abstract Syntax

8

con ∈ Constraints == subtype | unconstrained | range | attr id range
tm ∈ TM == type-mark id con
subtype ∈ Subtype == id | tm A subtype_indication
ds ∈ SubtypeDecl == subtype id subtype

Name Resolution Rules

9 A subtype_mark shall resolve to denote a subtype. The type determined by a subtype_mark is the type of
the subtype denoted by the subtype_mark.

9.a Ramification: Types are never directly named; all subtype_marks denote subtypes — possibly an unconstrained
(base) subtype, but never the type. ♦

Dynamic Semantics

10 The elaboration of a subtype_declaration consists of the elaboration of the subtype_indication. The
elaboration of a subtype_indication creates a new subtype. If the subtype_indication does not include a
constraint, the new subtype has the same (possibly null) constraint as that denoted by the subtype_mark.
The elaboration of a subtype_indication that includes a constraint proceeds as follows:

11 • The constraint is first elaborated.

12 • A check is then made that the constraint is compatible with the subtype denoted by the
subtype_mark.

12.a Ramification: The checks associated with constraint compatibility are all Range_Checks. ♦ Index_Checks
are associated only with checks that a value satisfies a constraint.

13 The condition imposed by a constraint is the condition obtained after elaboration of the constraint. The
rules defining compatibility are given for each form of constraint in the appropriate subclause. These
rules are such that if a constraint is compatible with a subtype, then the condition imposed by the
constraint cannot contradict any condition already imposed by the subtype on its values. The exception
Constraint_Error is raised if any check of compatibility fails.

13.a To be honest: The condition imposed by a constraint is named after it — a range_constraint imposes a range
constraint, etc.

13.b Ramification: A range_constraint causes freezing of its type. Other constraints do not.

NOTES
14 4 A scalar_constraint may be applied to a subtype of an appropriate scalar type (see 3.5), even if the subtype is already

constrained. On the other hand, a composite_constraint may be applied to a composite subtype ♦ only if the composite
subtype is unconstrained (see 3.6.1).

Examples

15 Examples of subtype declarations:

AVARM;1.0 Declarations and Types

31 5 October 1995 Subtype Declarations 3.2.2

16subtype Rainbow is Color range Red .. Blue; -- see 3.2.1
subtype Red_Blue is Rainbow;
subtype Int is Integer;
subtype Small_Int is Integer range -10 .. 10;
♦
subtype Square is Matrix(1 .. 10, 1 .. 10); -- see 3.6
♦

Incompatibilities With Ada 83

16.aIn Ada 95, all range_constraints cause freezing of their type. ♦
Wording Changes From Ada 83

16.bSubtype_marks allow only subtype names now, since types are never directly named. There is no need for
RM83-3.3.2(3), which says a subtype_mark can denote both the type and the subtype; in Ada 95, you denote an
unconstrained (base) subtype if you want, but never the type.

16.cThe syntactic category type_mark is now called subtype_mark, since it always denotes a subtype.

3.2.3 Classification of Operations
Static Semantics

1An operation operates on a type T if it yields a value of type T, or if it has an operand whose expected
type (see 8.6) is T♦. A predefined operator, or other language-defined operation such as assignment or a
membership test, that operates on a type, is called a predefined operation of the type. The primitive
operations of a type are the predefined operations of the type, plus any user-defined primitive sub-
programs. ♦

2The primitive subprograms of a specific type are defined as follows:

3• The predefined operators of the type (see 4.5);

4• ♦

5• For an enumeration type, the enumeration literals (which are considered parameterless func-
tions — see 3.5.1);

6• For a specific type declared immediately within a package_specification, any subprograms
(in addition to the enumeration literals) that are explicitly declared immediately within the
same package_specification and that operate on the type;

7• ♦

7.aDiscussion: In Ada 83, only subprograms declared in the visible part were ‘‘primitive’’ (i.e. derivable). In Ada 95, ♦
we include all operations declared in the private part as well ♦.

7.bRamification: It is possible for a subprogram to be primitive for more than one type♦.

♦

8A primitive subprogram whose designator is an operator_symbol is called a primitive operator.

Incompatibilities With Ada 83

8.aThe attribute S’Base is no longer defined for non-scalar subtypes. ♦
Extensions to Ada 83

8.bThe primitive subprograms (derivable subprograms) include subprograms declared in the private part of a package
specification as well ♦.

Declarations and Types AVARM;1.0

3.2.3 Classification of Operations 5 October 1995 32

Wording Changes From Ada 83

8.c We have dropped the confusing term operation of a type in favor of the more useful primitive operation of a type and
the phrase operates on a type.

8.d The description of S’Base has been moved to 3.5, ‘‘Scalar Types’’ because it is now defined only for scalar types.

3.3 Objects and Named Numbers
1 Objects are created at run time and contain a value of a given type. An object can be created and

initialized as part of elaborating a declaration, evaluating an ♦ aggregate or or function_call, or passing a
parameter by copy. Prior to reclaiming the storage for an object, it is finalized if necessary (see 7.6.1).

Static Semantics

2 All of the following are objects:

3 • the entity declared by an object_declaration;

4 • a formal parameter of a subprogram♦;

5 • ♦

6 • a loop parameter;

7 • ♦

8 • ♦

9 • ♦

10 • the result of evaluating a function_call (or the equivalent operator invocation);

11 • the result of evaluating an aggregate;

12 • a component♦ of another object.

13 An object is either a constant object or a variable object. The value of a constant object cannot be
changed between its initialization and its finalization, whereas the value of a variable object can be
changed. Similarly, a view of an object is either a constant or a variable. All views of a constant object
are constant. A constant view of a variable object cannot be used to modify the value of the variable.
The terms constant and variable by themselves refer to constant and variable views of objects.

14 The value of an object is read when the value of any part of the object is evaluated, or when the value of
an enclosing object is evaluated. The value of a variable is updated when an assignment is performed to
any part of the variable, or when an assignment is performed to an enclosing object.

14.a Ramification: Reading and updating are intended to include read/write references of any kind, even if they are not
associated with the evaluation of a particular construct. ♦

15 Whether a view of an object is constant or variable is determined by the definition of the view. The
following (and no others) represent constants:

16 • an object declared by an object_declaration with the reserved word constant;

17 • a formal parameter ♦ of mode in;

18 • ♦

19 • a loop parameter♦;

AVARM;1.0 Declarations and Types

33 5 October 1995 Objects and Named Numbers 3.3

20• ♦

21• the result of evaluating a function_call or an aggregate;

22• a selected_component or indexed_component ♦ of a constant. ♦

23At the place where a view of an object is defined, a nominal subtype is associated with the view. The
object’s actual subtype (that is, its subtype) can be more restrictive than the nominal subtype of the view;
it always is if the nominal subtype is an indefinite subtype. A subtype is an indefinite subtype if it is an
unconstrained array subtype♦; otherwise the subtype is a definite subtype (all elementary subtypes are
definite subtypes). A class-wide subtype is defined to have unknown discriminants, and is therefore an
indefinite subtype. An indefinite subtype does not by itself provide enough information to create an
object; an additional constraint or explicit initialization expression is necessary (see 3.3.1)). A component
cannot have an indefinite nominal subtype.

24A named number provides a name for a numeric value known at compile time. It is declared by a
number_declaration.

NOTES
255 A constant cannot be the target of an assignment operation, nor be passed as an in out or out parameter, between its

initialization and finalization, if any.

266 The nominal and actual subtypes of an elementary object are always the same. For ♦ an array object, if the nominal
subtype is constrained then so is the actual subtype.

Extensions to Ada 83

26.a♦

26.bThe result of a function and of evaluating an aggregate are considered (constant) objects. This is necessary to explain
the [[??? action of finalization ???]] on such things. ♦

Wording Changes From Ada 83

26.cThis clause and its subclauses now follow the clause and subclauses on types and subtypes, to cut down on the number
of forward references.

26.dThe term nominal subtype is new. It is used to distinguish what is known at compile time about an object’s constraint,
versus what its "true" run-time constraint is.

26.e♦

26.fWe have moved the syntax for object_declaration and number_declaration down into their respective subclauses, to
keep the syntax close to the description of the associated semantics.

26.gWe talk about variables and constants here, since the discussion is not specific to object_declarations, and it seems
better to have the list of the kinds of constants juxtaposed with the kinds of objects.

26.hWe no longer talk about indirect updating due to parameter passing. Parameter passing is handled in 6.2 and 6.4.1 in a
way that there is no need to mention it here in the definition of read and update. Reading and updating now includes
the case of evaluating or assigning to an enclosing object.

3.3.1 Object Declarations
1An object_declaration declares a stand-alone object with a given nominal subtype and♦ an explicit initial

value given by an initialization expression. ♦

Syntax

Declarations and Types AVARM;1.0

3.3.1 Object Declarations 5 October 1995 34

2 object_declaration ::=
defining_identifier_list : [constant] subtype_indication [:= expression];

| ♦
| ♦
| ♦

3 defining_identifier_list ::= defining_identifier {, defining_identifier}

Abstract Syntax

4

mode ∈ Mode == constant | variable
do ∈ ObjectDecls == object id mode subtype [expr]

Name Resolution Rules

5 ♦ The type expected for the expression following the compound delimiter := is that of the object.
This expression is called the initialization expression.

Legality Rules

6 An object_declaration without the reserved word constant declares a variable object. ♦

Static Semantics

7 An object_declaration with the reserved word constant declares a constant object. If it has an initializa-
tion expression, then it is called a full constant declaration. Otherwise it is called a deferred constant
declaration. The rules for deferred constant declarations are given in clause 7.4. The rules for full
constant declarations are given in this subclause.

8 Any declaration that includes a defining_identifier_list with more than one defining_identifier is equivalent
to a series of declarations each containing one defining_identifier from the list, with the rest of the text of
the declaration copied for each declaration in the series, in the same order as the list. The remainder of
this Reference Manual relies on this equivalence; explanations are given for declarations with a single
defining_identifier.

9 The subtype_indication ♦ of an object_declaration defines the nominal subtype of the object. The object_
declaration declares an object of the type of the nominal subtype. ♦

Dynamic Semantics

10 If a composite object declared by an object_declaration has an unconstrained nominal subtype, then if this
subtype is indefinite or the object is constant ♦ the actual subtype of this object is constrained. The
constraint is determined by the bounds ♦ of its initial value; the object is said to be constrained by its
initial value. ♦ An explicit initial value is required. When not constrained by its initial value, the actual
and nominal subtypes of the object are the same. If its actual subtype is constrained, the object is called a
constrained object.

11 ♦
12 • ♦

13 • ♦

14 • ♦

15 • ♦

AVARM;1.0 Declarations and Types

35 5 October 1995 Object Declarations 3.3.1

16The elaboration of an object_declaration proceeds in the following sequence of steps:

171. The subtype_indication♦ is first elaborated. This creates the nominal subtype♦.

182. ♦ The (explicit) initial value is obtained by evaluating the expression and converting it to
the nominal subtype (which might raise Constraint_Error — see 4.6).

193. The object is created♦. ♦
19.aReason: The reason we say that evaluating an explicit initialization expression happens before creating the

object is that in some cases it is impossible to know the size of the object being created until its initial value is
known, as in ‘‘X: String := Func_Call(...);’’. The implementation can create the object early in the common
case where the size can be known early, since this optimization is semantically neutral.

204. ♦ Initial values ♦ are assigned to the object ♦. ♦
20.aRamification: Since the initial values have already been converted to the appropriate nominal subtype, the

only Constraint_Errors that might occur as part of these assignments are for values outside their base range that
are used to initialize unconstrained numeric subcomponents. See 3.5.

21♦ ♦

22♦

NOTES
237 ♦

248 As indicated above, a stand-alone object is an object declared by an object_declaration. Similar definitions apply to
‘‘stand-alone constant’’ and ‘‘stand-alone variable.’’ A subcomponent of an object is not a stand-alone object♦. An
object declared by a loop_parameter_specification♦ or parameter_specification ♦ is not called a stand-alone object.

259 ♦

Examples

26Example of a multiple object declaration:
27-- the multiple object declaration

28♦
Buick, Ford: CAR := (Number => 30300, Owner => "Smith, Michael K. ");

29-- is equivalent to the two single object declarations in the order given

30♦
Buick: CAR := (Number => 30300, Owner => "Smith, Michael K. ");
Ford: CAR := (Number => 30300, Owner => "Smith, Michael K. ");

31Examples of variable declarations:
32♦

Size : Integer range 0 .. 10_000 := 0;
Sorted : Boolean := False;
♦
Hello : constant String := "Hi, world.";

33Examples of constant declarations:
34Limit : constant Integer := 10_000;

Low_Limit : constant Integer := Limit/10;
♦

Extensions to Ada 83

34.a♦

34.bA variable declared by an object_declaration can be constrained by its initial value; that is, a variable of a nominally
unconstrained array subtype♦ can be declared ♦. In Ada 83, this was permitted for constants♦ but not for variables
declared by object_declarations. ♦

Declarations and Types AVARM;1.0

3.3.1 Object Declarations 5 October 1995 36

34.c ♦
Wording Changes From Ada 83

34.d We have moved the syntax for object_declarations into this subclause.

34.e ♦

3.3.2 Number Declarations
1 A number_declaration declares a named number.

1.a Discussion: If a value or other property of a construct is required to be static that means it is required to be determined
prior to execution. A static expression is an expression whose value is computed at compile time and is usable in
contexts where the actual value might affect the legality of the construct. This is fully defined in clause 4.9.

Syntax

2 number_declaration ::=
defining_identifier_list : constant := static_expression;

Name Resolution Rules

3 The static_expression given for a number_declaration is expected to be of any numeric type.

Legality Rules

4 The static_expression given for a number declaration shall be a static expression, as defined by clause
4.9.

Abstract Syntax

5

dn ∈ NumberDecl == number id mode expr

Static Semantics

6 The named number denotes a value of type universal_integer♦.

7 The value denoted by the named number is the value of the static_expression, converted to the ♦ type
universal_integer.

Dynamic Semantics

8 The elaboration of a number_declaration has no effect.
8.a Proof: Since the static_expression was evaluated at compile time.

Examples

9 Examples of number declarations:
10 ♦
11 Max : constant := 500; -- an integer number

Max_Line_Size : constant := Max/6 -- the integer 83
Power_16 : constant := 2**16; -- the integer 65_536
One, Un, Eins : constant := 1; -- three different names for 1

♦
Wording Changes From Ada 83

11.a We have moved the syntax rule into this subclause.

11.b AI-00263 describes the elaboration of a number declaration in words similar to that of an object_declaration. However,
since there is no expression to be evaluated and no object to be created, it seems simpler to say that the elaboration has
no effect.

AVARM;1.0 Declarations and Types

37 5 October 1995 Derived Types and Classes -- Largely Removed 3.4

3.4 Derived Types and Classes -- Largely Removed

3.4.1 Derivation Classes
1In addition to the various language-defined classes of types, types can be grouped into derivation classes.

Static Semantics

2The derivation class of types for a type T (also called the class rooted at T) is the set consisting of T (the
root type of the class) and all types derived from T (directly or indirectly) plus any associated universal or
class-wide types (defined below).

2.aDiscussion: Note that the definition of ‘‘derived from’’ is a recursive definition. We don’t define a root type for all
interesting language-defined classes, though presumably we could.

2.bTo be honest: ♦ The universal type associated with root_integer ♦ is universal_integer♦.

3Every type is either a specific type ♦ or a universal type. A specific type is one defined by a type_
declaration♦. Class-wide and universal types are implicitly defined, to act as representatives for an entire
class of types, as follows:

3.aTo be honest: The root type root_integer ♦ is also a specific type. It is declared in the specification of package
Standard.

Universal types Universal types are defined for (and belong to) the integer ♦ class, and are referred to 6

in this standard as ♦ universal_integer ♦. ♦ A value of a universal type (including
an integer ♦) is ‘‘universal’’ in that it is acceptable where some particular type in the
class is expected (see 8.6).

The set of values of a universal type is the undiscriminated union of the set of values 7

possible for any definable type in the associated class. ♦ Universal types have no
primitive subprograms of their own. However, their ‘‘universality’’ allows them to
be used as operands with the primitive subprograms of any type in the corresponding
class.

8The integer ♦ class ♦ has a specific root type in addition to its universal type, named ♦ root_integer ♦.

9A ♦ universal type is said to cover all of the types in its class. A specific type covers only itself.

10A specific type T2 is defined to be a descendant of a type T1 if T2 is the same as T1, or if T2 is derived
(directly or indirectly) from T1. ♦ The universal types are defined to be descendants of the root types of
their classes. If a type T2 is a descendant of a type T1, then T1 is called an ancestor of T2. ♦

10.aRamification: A specific type is a descendant of itself. ♦

10.bA specific type is an ancestor of itself. ♦

10.cDiscussion: The terms root, parent, ancestor, and ultimate ancestor are all related. For example:

10.d• Each type has at most one parent, and one ♦ ancestor type♦.

10.e• A class of types has at most one root type♦.

10.f• The root of a class is an ancestor of all of the types in the class (including itself).

10.g• The type root_integer is the root of the integer class♦.

11♦

Declarations and Types AVARM;1.0

3.4.1 Derivation Classes 5 October 1995 38

NOTES
12 10 Because operands of a universal type are acceptable to the predefined operators of any type in their class, ambiguity

can result. For universal_integer ♦, this potential ambiguity is resolved by giving a preference (see 8.6) to the predefined
operators of the corresponding root type (root_integer ♦). Hence, in an apparently ambiguous expression like

13 1 + 4 < 7

where each of the literals is of type universal_integer, the predefined operators of root_integer will be preferred over those
of other specific integer types, thereby resolving the ambiguity.

13.a Ramification: Except for this preference, a root numeric type is essentially like any other specific type in the
associated numeric class. In particular, the result of a predefined operator of a root numeric type is not ‘‘universal’’
(implicitly convertible) even if both operands were.

3.5 Scalar Types
1 Scalar types comprise enumeration types and integer types♦. Enumeration types and integer types are

called discrete types; each value of a discrete type has a position number which is an integer value.
Integer types ♦ are called numeric types. All scalar types are ordered, that is, all relational operators are
predefined for their values.

Syntax

2 range_constraint ::= range range

3 range ::= range_attribute_reference
| simple_expression .. simple_expression

3.a Discussion: These need to be simple_expressions rather than more general expressions because ranges appear in
membership tests and other contexts where expression .. expression would be ambiguous.

4 A range has a lower bound and an upper bound and specifies a subset of the values of some scalar type
(the type of the range). A range with lower bound L and upper bound R is described by ‘‘L .. R’’. If R is
less than L, then the range is a null range, and specifies an empty set of values. Otherwise, the range
specifies the values of the type from the lower bound to the upper bound, inclusive. A value belongs to a
range if it is of the type of the range, and is in the subset of values specified by the range. A value
satisfies a range constraint if it belongs to the associated range. One range is included in another if all
values that belong to the first range also belong to the second. ♦

Abstract Syntax

5

from, to == n | c | id
range ∈ Range == range from to

Name Resolution Rules

6 For a subtype_indication containing a range_constraint, ♦ the type of the range shall resolve to that of the
type determined by the subtype_mark of the subtype_indication. For a range of a given type, the simple_
expressions of the range (likewise, the simple_expressions of the equivalent range for a range_attribute_
reference) are expected to be of the type of the range.

6.a Discussion: In Ada 95, constraints only appear within subtype_indications; things that look like constraints that appear
in type declarations are called something else like range_specifications.

6.b We say "the expected type is ..." or "the type is expected to be ..." depending on which reads better. They are
fundamentally equivalent, and both feed into the type resolution rules of clause 8.6.

6.c In some cases, it doesn’t work to use expected types. For example, in the above rule, we say that the ‘‘type of the
range shall resolve to ...’’ rather than ‘‘the expected type for the range is ...’’. We then use ‘‘expected type’’ for the
bounds. If we used ‘‘expected’’ at both points, there would be an ambiguity, since one could apply the rules of 8.6
either on determining the type of the range, or on determining the types of the individual bounds. It is clearly important

AVARM;1.0 Declarations and Types

39 5 October 1995 Scalar Types 3.5

to allow one bound to be of a universal type, and the other of a specific type, so we need to use ‘‘expected type’’ for the
bounds. Hence, we used ‘‘shall resolve to’’ for the type of the range as a whole. There are other situations where
‘‘expected type’’ is not quite right, and we use ‘‘shall resolve to’’ instead.

Static Semantics

7The base range of a scalar type is the range of finite values of the type that can be represented in every
unconstrained object of the type; it is also the range supported at a minimum for intermediate values
during the evaluation of expressions involving predefined operators of the type.

7.aImplementation Note: Note that in some machine architectures intermediates in an expression (particularly if static),
and register-resident variables might accommodate a wider range. The base range does not include the values of this
wider range that are not assignable without overflow to memory-resident objects.

7.bRamification: The base range of an enumeration type is the range of values of the enumeration type.

7.cReason: If the representation supports infinities, the base range is nevertheless restricted to include only the
representable finite values, so that ’Base’First and ’Base’Last are always guaranteed to be finite.

♦

8A constrained scalar subtype is one to which a range constraint applies. The range of a constrained scalar
subtype is the range associated with the range constraint of the subtype. The range of an unconstrained
scalar subtype is the base range of its type.

Dynamic Semantics

9A range is compatible with a scalar subtype if and only if it is either a null range or each bound of the
range belongs to the range of the subtype. A range_constraint is compatible with a scalar subtype if and
only if its range is compatible with the subtype.

9.aRamification: Only range_constraints ♦ impose conditions on the values of a scalar subtype. ♦

10The elaboration of a range_constraint consists of the evaluation of the range. The evaluation of a range
determines a lower bound and an upper bound. If simple_expressions are given to specify bounds, the
evaluation of the range evaluates these simple_expressions in an arbitrary order and converts them to
the type of the range.

If a range_attribute_reference is given, the evaluation of the range consists of the evaluation of the
range_attribute_reference.

11Attributes

12For every scalar subtype S, the following attributes are defined:

S’First S’First denotes the lower bound of the range of S. The value of this attribute is of the 13

type of S.
13.aRamification: Evaluating S’First never raises Constraint_Error.

S’Last S’Last denotes the upper bound of the range of S. The value of this attribute is of the 14

type of S.
14.aRamification: Evaluating S’Last never raises Constraint_Error.

♦ 15

S’Base S’Base denotes an unconstrained subtype of the type of S. This unconstrained sub- 16

type is called the base subtype of the type.

Declarations and Types AVARM;1.0

3.5 Scalar Types 5 October 1995 40

♦17

♦18

S’Succ S’Succ denotes a function with the following specification:22

23 function S’Succ(Arg : S’Base)
return S’Base

For an enumeration type, the function returns the value whose position number is one24

more than that of the value of Arg; Constraint_Error is raised if there is no such value
of the type. For an integer type, the function returns the result of adding one to the
value of Arg. ♦ Constraint_Error is raised if there is no such machine number. ♦

S’Pred S’Pred denotes a function with the following specification:25

26 function S’Pred(Arg : S’Base)
return S’Base

For an enumeration type, the function returns the value whose position number is one27

less than that of the value of Arg; Constraint_Error is raised if there is no such value
of the type. For an integer type, the function returns the result of subtracting one
from the value of Arg. ♦ Constraint_Error is raised if there is no such machine
number. ♦

♦28

S’Image S’Image denotes a function with the following specification:35

36 function S’Image(Arg : S’Base)
return String

The function returns an image of the value of Arg as a String.37

The lower bound of the result is one. The image of an integer value is the cor-38

responding decimal literal, without underlines, leading zeros, exponent, or trailing
spaces, but with a single leading character that is either a minus sign or a space.

38.a Implementation Note: If the machine supports negative zeros for signed integer types, it is not specified whether "–0"
or " 0" should be returned for negative zero. We don’t have enough experience with such machines to know what is
appropriate, and what other languages do. In any case, the implementation should be consistent.

The image of an enumeration value is either the corresponding identifier in upper case39

or the corresponding character literal (including the two apostrophes); neither leading
nor trailing spaces are included. For a nongraphic character (a value of a character
type that has no enumeration literal associated with it), the result is a corresponding
language-defined or implementation-defined name in upper case (for example, the
image of the nongraphic character identified as nul is ‘‘NUL’’ — the quotes are not
part of the image). ♦

♦40

♦41

S’Value S’Value denotes a function with the following specification:52

53 function S’Value(Arg : String)
return S’Base

This function returns a value given an image of the value as a String, ignoring any54

leading or trailing spaces.

For the evaluation of a call on S’Value for an enumeration subtype S, if the sequence55

of characters of the parameter (ignoring leading and trailing spaces) has the syntax of
an enumeration literal and if it corresponds to a literal of the type of S (or corresponds
to the result of S’Image for a value of the type), the result is the corresponding
enumeration value; otherwise Constraint_Error is raised. For the evaluation of a call
on S’Value for an integer subtype S, if the sequence of characters of the parameter

AVARM;1.0 Declarations and Types

41 5 October 1995 Scalar Types 3.5

(ignoring leading and trailing spaces) has the syntax of an integer literal, with an
optional leading sign character (plus or minus), and the corresponding numeric value
belongs to the base range of the type of S, then that value is the result; otherwise
Constraint_Error is raised. ♦

56

NOTES
5719 The evaluation of S’First or S’Last never raises an exception. If a scalar subtype S has a nonnull range, S’First and

S’Last belong to this range. These values can, for example, always be assigned to a variable of subtype S. ♦

5820 For a subtype of a scalar type, the result delivered by the attributes Succ, Pred, and Value might not belong to the
subtype; similarly, the actual parameters of the attributes Succ, Pred, and Image need not belong to the subtype.

5921 For any value V (including any nongraphic character) of an enumeration subtype S, S’Value(S’Image(V)) equals V, ♦.
Neither expression ever raises Constraint_Error.

Examples

60Examples of ranges:
61-10 .. 10

X .. X + 1
♦
Red .. Green -- see 3.5.1
1 .. 0 -- a null range
♦

62Example of range constraints:
63♦

range S’First+1 .. S’Last-1

Incompatibilities With Ada 83

63.aS’Base is no longer defined for nonscalar types. ♦
Extensions to Ada 83

63.b♦
Wording Changes From Ada 83

63.gWe now use the syntactic category range_attribute_reference since it is now syntactically distinguished from other
attribute references.

63.hThe definition of S’Base has been moved here from 3.3.3 since it now applies only to scalar types.

63.iMore explicit rules are provided for nongraphic characters.

3.5.1 Enumeration Types
1An enumeration_type_definition defines an enumeration type.

Syntax

2enumeration_type_definition ::=
(enumeration_literal_specification {, enumeration_literal_specification})

3enumeration_literal_specification ::= defining_identifier | defining_character_literal

4defining_character_literal ::= character_literal

Legality Rules

5The defining_identifiers and defining_character_literals listed in an enumeration_type_definition shall be
distinct.

Declarations and Types AVARM;1.0

3.5.1 Enumeration Types 5 October 1995 42

5.a Proof: This is a ramification of the normal disallowance of homographs explicitly declared immediately in the same
declarative region.

Abstract Syntax

6

e ∈ EnumLiteral == id | c
typee ∈ EnumerationType == enum e*

Static Semantics

7 Each enumeration_literal_specification is the explicit declaration of the corresponding enumeration
literal: it declares a parameterless function, whose defining name is the defining_identifier or defining_
character_literal, and whose result type is the enumeration type.

7.a Reason: This rule defines the profile of the enumeration literal, which is used in the various types of conformance.

7.b Ramification: The parameterless function associated with an enumeration literal is fully defined by the enumeration_
type_definition; a body is not permitted for it, and it never fails the Elaboration_Check when called.

8 Each enumeration literal corresponds to a distinct value of the enumeration type, and to a distinct position
number. The position number of the value of the first listed enumeration literal is zero; the position
number of the value of each subsequent enumeration literal is one more than that of its predecessor in the
list.

9 The predefined order relations between values of the enumeration type follow the order of corresponding
position numbers.

10 If the same defining_identifier or defining_character_literal is specified in more than one enumeration_
type_definition, the corresponding enumeration literals are said to be overloaded. At any place where an
overloaded enumeration literal occurs in the text of a program, the type of the enumeration literal has to
be determinable from the context (see 8.6).

Dynamic Semantics

11 The elaboration of an enumeration_type_definition creates the enumeration type and its first subtype,
which is constrained to the base range of the type. ♦

12 When called, the parameterless function associated with an enumeration literal returns the corresponding
value of the enumeration type.

NOTES
13 22 If an enumeration literal occurs in a context that does not otherwise suffice to determine the type of the literal, then

qualification by the name of the enumeration type is one way to resolve the ambiguity (see 4.7).

Examples

14 Examples of enumeration types and subtypes:
15 type Day is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);

type Suit is (Clubs, Diamonds, Hearts, Spades);
type Gender is (M, F);
type Level is (Low, Medium, Urgent);
type Color is (White, Red, Yellow, Green, Blue, Brown, Black);
type Light is (Red, Amber, Green); -- Red and Green are overloaded

16 type Hexa is (’A’, ’B’, ’C’, ’D’, ’E’, ’F’);
type Mixed is (’A’, ’B’, ’*’, B, None, ’?’, ’%’);

17 subtype Weekday is Day range Mon .. Fri;
subtype Major is Suit range Hearts .. Spades;
subtype Rainbow is Color range Red .. Blue; -- the Color Red, not the Light

AVARM;1.0 Declarations and Types

43 5 October 1995 Enumeration Types 3.5.1

Wording Changes From Ada 83

17.aThe syntax rule for defining_character_literal is new. It is used for the defining occurrence of a character_literal,
analogously to defining_identifier. Usage occurrences use the name or selector_name syntactic categories.

17.bWe emphasize the fact that an enumeration literal denotes a function, which is called to produce a value.

3.5.2 Character Types
Static Semantics

1An enumeration type is said to be a character type if at least one of its enumeration literals is a character_
literal.

2The predefined type Character is a character type whose values correspond to the 256 code positions of
Row 00 (also known as Latin-1) of the ISO 10646 Basic Multilingual Plane (BMP). Each of the graphic
characters of Row 00 of the BMP has a corresponding character_literal in Character. Each of the non-
graphic positions of Row 00 (0000-001F and 007F-009F) has a corresponding language-defined name,
which is not usable as an enumeration literal, but which is usable with the attributes ♦Image and ♦Value;
these names are given in the definition of type Character in A.1, ‘‘The Package Standard’’, but are set in
italics.

3♦

Implementation Permissions

4In a nonstandard mode, an implementation may provide other interpretations for the predefined type
Character ♦, to conform to local conventions.

♦
Examples

8Example of a character type:
9type Roman_Digit is (’I’, ’V’, ’X’, ’L’, ’C’, ’D’, ’M’);

Inconsistencies With Ada 95

9.aThe declaration of Wide_Character in package Standard in Ada 95 hides use-visible declarations with the
same defining identifier. In the unlikely event that an AVA program had depended on such a use-visible
declaration, and the program remains legal after the substitution of Standard.Wide_Character, the meaning
of the program will be different.

9.bSimilarly, the presence of Wide_Character in Ada package Standard means that an expression such as
’a’ = ’b’

is ambiguous in Ada 95, whereas in AVA both literals could be resolved to be of type Character.

Incompatibilities With Ada 83

9.d♦

9.eThe change in visibility rules (see 4.2) for character literals means that additional qualification might be necessary to
resolve expressions involving overloaded subprograms and character literals.

Extensions to Ada 83

9.fThe type Character has been extended to have 256 positions♦. Note that this change was already approved by the
ARG for Ada 83 conforming compilers.

9.gThe rules for referencing character literals are changed (see 4.2), so that the declaration of the character type need not
be directly visible to use its literals, similar to null and string literals. Context is used to resolve their type.

Declarations and Types AVARM;1.0

3.5.3 Boolean Types 5 October 1995 44

3.5.3 Boolean Types
Static Semantics

1 There is a predefined enumeration type named Boolean, declared in the visible part of package Standard.
It has the two enumeration literals False and True ordered with the relation False < True. ♦ The
predefined type Boolean is called a boolean type. ♦

Abstract Syntax

2

b ∈ BooleanLiteral == true | false

3.5.4 Integer Types
1 ♦

Abstract Syntax

2 The predefined integer type in standard is integer0.

Static Semantics

8 The set of values for a signed integer type is the (infinite) set of mathematical integers, though only
values of the base range of the type are fully supported for run-time operations. ♦

9 ♦

11 There is a predefined signed integer subtype named Integer, declared in the visible part of package Stan-
dard. It is constrained to the base range of its type.

11.a Reason: Integer is a constrained subtype, rather than an unconstrained subtype. This means that on assignment to an
object of subtype Integer, a range check is required. On the other hand, an object of subtype Integer’Base is
unconstrained, and no range check (only overflow check) is required on assignment. For example, if the object is held
in an extended-length register, its value might be outside of Integer’First .. Integer’Last. All parameter and result
subtypes of the predefined integer operators are of such unconstrained subtypes, allowing extended-length registers to
be used as operands or for the result. In an earlier version of Ada 95, Integer was unconstrained. However, the fact
that certain Constraint_Errors might be omitted or appear elsewhere was felt to be an undesirable upward inconsistency
in this case. ♦

12 Integer has two predefined subtypes, declared in the visible part of package Standard:
13 subtype Natural is Integer range 0 .. Integer’Last;

subtype Positive is Integer range 1 .. Integer’Last;

14 ♦ Root_integer is an anonymous predefined (specific) integer type, whose base range is System.Min_Int
.. System.Max_Int. ♦ Integer literals are all of the type universal_integer, the universal type for the class
rooted at root_integer, allowing their use with the operations of any integer type. ♦

15 The position number of an integer value is equal to the value.

16 ♦

Dynamic Semantics

17 ♦

19 For a signed integer type, the exception Constraint_Error is raised by the execution of an operation that
cannot deliver the correct result because it is outside the base range of the type.

AVARM;1.0 Declarations and Types

45 5 October 1995 Integer Types 3.5.4

20For any integer type, Constraint_Error is raised by the operators "/", "rem", and "mod" if the right
operand is zero.

Implementation Requirements

21In an implementation, the range of Integer shall include the range –2**15+1 .. +2**15–1. The smallest
(most negative) value supported by the predefined integer types of an implementation (exclud-
ing universal_integer) is the named number AVA.Min_Int and the largest (most positive) value is
AVA.Max_Int. An implementation must not accept a compilation unit containing a static
univeral_integer expression whose value lies outside of the range AVA.Min_Int .. AVA.Max_Int.2

22♦

23System.Max_Binary_Modulus shall be at least 2**16.

♦

NOTES
3024 Integer literals are of the anonymous predefined integer type universal_integer. Other integer types have no literals.

However, the overload resolution rules (see 8.6, ‘‘The Context of Overload Resolution’’) allow expressions of the type
universal_integer whenever an integer type is expected.

3125 ♦

Examples

32Examples of integer ♦ subtypes:
33♦
34

subtype Small_Int is Integer range -10 .. 10;
subtype Column_Ptr is Line_Size range 1 .. 10;
subtype Buffer_Size is Integer range 0 .. Max;

34♦

♦
Wording Changes From Ada 83

35.a♦

35.dStandard.Integer♦ denotes a constrained subtype of root_integer ♦, consistent with the Ada 95 model that only
subtypes have names.

35.eWe now impose minimum requirements on the base range of Integer ♦.

35.f♦

2IMPLEMENTATION REQUIREMENT. Ada requires that such expressions be accepted, unless insufficient resources
(memory) are available. We require otherwise in order that:

1. we have a single, predictable model of arithmentic operations and

2. we can write down a requirement that will allow us to prove whether or not an expression is static.

Note that we have deleted the permission to return a value outside of the base range. This means that the optimization of
((Ada.Max_Int+1)-1) to Ada.Max_Int is not permissible.

Declarations and Types AVARM;1.0

3.5.5 Operations of Discrete Types 5 October 1995 46

3.5.5 Operations of Discrete Types
Some of the operations of a discrete type require or return information about the constraints of
the subtype or have names dependent on the subtype name. In this case we talk about opera-
tions or attributes of the subtype. Formally, these are operations of the base type that may take
additional, subtype dependent arguments to express constraint information.

Static Semantics

1 For every discrete subtype S, the following attributes are defined:

S’Pos S’Pos denotes a function with the following specification:2

3 function S’Pos(Arg : S’Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type4

universal_integer.

S’Val S’Val denotes a function with the following specification:5

6 function S’Val(Arg : integer)
return S’Base

This function returns a value of the type of S whose position number equals the value7

of Arg. For the evaluation of a call on S’Val, if there is no value in the base range
of its type with the given position number, Constraint_Error is raised.

7.a Ramification: By the overload resolution rules, a formal parameter of type universal_integer allows an actual
parameter of any integer type.

♦

♦

NOTES
9 28 Indexing and loop iteration use values of discrete types.

10 29 The predefined operations of a discrete type include the assignment operation, qualification, the membership tests, and
the relational operators; for a boolean type they include the short-circuit control forms and the logical operators; for an
integer type they include♦ the binary and unary adding operators – and +, the multiplying operators, the unary operator
abs, and the exponentiation operator. The assignment operation is described in 5.2. The other predefined operations are
described in Section 4.

11 30 ♦

12 31 For a subtype of a discrete type, the result delivered by the attribute Val might not belong to the subtype; similarly, the
actual parameter of the attribute Pos need not belong to the subtype. The following relations are satisfied (in the absence
of an exception) by these attributes:

13 S’Val(S’Pos(X)) = X
S’Pos(S’Val(N)) = N

Examples

14 Examples of attributes of discrete subtypes:
15 -- For the types and subtypes declared in subclause 3.5.1 the following hold:

16

-- Color’First = White, Color’Last = Black
-- Rainbow’First = Red, Rainbow’Last = Blue

16

-- Color’Succ(Blue) = Rainbow’Succ(Blue) = Brown
-- Color’Pos(Blue) = Rainbow’Pos(Blue) = 4
-- Color’Val(0) = Rainbow’Val(0) = White

AVARM;1.0 Declarations and Types

47 5 October 1995 Operations of Discrete Types 3.5.5

♦

3.5.6 Real Types -- Removed

3.5.7 Floating Point Types -- Removed

3.5.8 Operations of Floating Point Types -- Removed

3.5.9 Fixed Point Types -- Removed

3.5.10 Operations of Fixed Point Types -- Removed

3.6 Array Types
1An array object is a composite object consisting of components which all have the same subtype. The

name for a component of an array uses one or more index values belonging to integer types. The value
of an array object is a composite value consisting of the values of the components.

Syntax

2array_type_definition ::=
unconstrained_array_definition | constrained_array_definition

3unconstrained_array_definition ::=
array(index_subtype_definition {, index_subtype_definition}) of component_definition

4index_subtype_definition ::= subtype_mark range <>

5constrained_array_definition ::=
array (integer_subtype_definition {, integer_subtype_definition}) of component_definition

6discrete_subtype_definition ::= discrete_subtype_mark | range

7integer_subtype_definition ::= integer_subtype_mark | range

8component_definition ::= ♦ subtype_indication

Abstract Syntax

9

typea ∈ ArrayType == array tm type

Name Resolution Rules

8For an integer_subtype_definition that is a range, the range shall resolve to be of some specific integer
type; which discrete type shall be determined without using any context other than the bounds of the
range itself (plus the preference for root_integer — see 8.6).

Legality Rules

9Each index_subtype_definition or integer_subtype_definition in an array_type_definition defines an index
subtype; its type (the index type) shall be of an integer type.

9.aDiscussion: An index is a discrete quantity used to select along a given dimension of an array. A component is
selected by specifying corresponding values for each of the indices.

Declarations and Types AVARM;1.0

3.6 Array Types 5 October 1995 48

10 The subtype defined by the subtype_indication of a component_definition (the component subtype) shall
be a definite subtype.

10.a Ramification: This applies to all uses of component_definition, including in record_type_definitions ♦

11 ♦

Static Semantics

12 An array is characterized by the number of indices (the dimensionality of the array), the type and position
of each index, the lower and upper bounds for each index, and the subtype of the components. The order
of the indices is significant.

13 A one-dimensional array has a distinct component for each possible index value. A multidimensional
array has a distinct component for each possible sequence of index values that can be formed by selecting
one value for each index position (in the given order). The possible values for a given index are all the
values between the lower and upper bounds, inclusive; this range of values is called the index range. The
bounds of an array are the bounds of its index ranges. The length of a dimension of an array is the
number of values of the index range of the dimension (zero for a null range). The length of a one-
dimensional array is the length of its only dimension.

14 An array_type_definition defines an array type and its first subtype. For each object of this array type, the
number of indices, the type and position of each index, and the subtype of the components are as in the
type definition; the values of the lower and upper bounds for each index belong to the corresponding
index subtype of its type, except for null arrays (see 3.6.1).

15 An unconstrained_array_definition defines an array type with an unconstrained first subtype. Each
integer_subtype_definition defines the corresponding index subtype to be the subtype denoted by the
subtype_mark. The compound delimiter <> (called a box) of an index_subtype_definition stands for an
undefined range (different objects of the type need not have the same bounds).

16 A constrained_array_definition defines an array type with a constrained first subtype. Each
integer_subtype_definition defines the corresponding index subtype, as well as the corresponding index
range for the constrained first subtype. The constraint of the first subtype consists of the bounds of the
index ranges. ♦

17 The discrete subtype defined by a discrete_subtype_definition or an integer_subtype_definition is either
that defined by the subtype_mark, or a subtype determined by the range as follows:

18 • If the type of the range resolves to root_integer, then the subtype definition defines a sub-
type of the predefined type Integer with bounds given by a conversion to Integer of the
bounds of the range;

18.a Reason: This ensures that indexing over the discrete subtype can be performed with regular Integers, rather
than only universal_integers.

♦

19 • Otherwise, the index_range defines a subtype of the type of the range, with the bounds given
by the range.

20 The component_definition of an array_type_definition defines the nominal subtype of the components. ♦

AVARM;1.0 Declarations and Types

49 5 October 1995 Array Types 3.6

Dynamic Semantics

21The elaboration of an array_type_definition creates the array type and its first subtype, and consists of the
elaboration of any index_ranges and the component_definition.

22The elaboration of an integer_subtype_definition creates the integer subtype, and consists of the
elaboration of the subtype_indication or the evaluation of the range. The elaboration of a component_
definition in an array_type_definition consists of the elaboration of the subtype_indication. The elabora-
tion of any integer_subtype_definitions and the elaboration of the component_definition are performed in
an arbitrary order.

AVA Implementation Inconsistency

22.aThe existing AVA parser only permits a singly dimensioned arrays (though it does permit arrays of arrays).

NOTES
2341 All components of an array have the same subtype. In particular, for an array of components that are one-dimensional

arrays, this means that all components have the same bounds and hence the same length.

2442 Each elaboration of an array_type_definition creates a distinct array type. ♦

Examples

25Examples of type declarations with unconstrained array definitions:
26♦

type Matrix is array(Integer range <>, Integer range <>) of Integer;
type Bit_Vector is array(Integer range <>) of Boolean;
type Roman is array(Positive range <>) of Roman_Digit; -- see 3.5.2

27Examples of type declarations with constrained array definitions:
28type Table is array(1 .. 10) of Integer;

type Schedule is array(1 .. 7) of Boolean;
type Line is array(1 .. Max_Line_Size) of Character;

29Examples of object declarations with array type definitions:
30Bv : Bit_Vector(0..7) := (others => false);

♦
Tuple : array(Positive range <>) of Integer := (1, 2, 3);♦

Extensions to Ada 83

30.a♦

30.bThe syntax rules for unconstrained_array_definition and constrained_array_definition are modified to use component_
definition (instead of component_subtype_indication). ♦

30.cA range in a discrete_subtype_definition or an integer_subtype_definition may use arbitrary universal expressions for
each bound (e.g. –1 .. 3+5), rather than strictly "implicitly convertible" operands. The subtype defined will still be a
subtype of Integer.

Wording Changes From Ada 83

30.dThe syntax for index_constraint and discrete_range have been moved to their own subclause, since they are no longer
used here.

30.eThe syntax rule for component_definition (formerly component_subtype_definition) is moved here from RM83-3.7.

3.6.1 Index Constraints and Discrete Ranges
1An index_constraint determines the range of possible values for every index of an array subtype, and

thereby the corresponding array bounds.

Declarations and Types AVARM;1.0

3.6.1 Index Constraints and Discrete Ranges 5 October 1995 50

Syntax

2 index_constraint ::= (discrete_range {, discrete_range})

3 discrete_range ::= discrete_subtype_indication | range

Name Resolution Rules

4 The type of an discrete_range is the type of the subtype defined by the subtype_indication, or the type of
the range. For an index_constraint, each discrete_range shall resolve to be of the type of the correspond-
ing index and thus must be an integer range.

4.a Discussion: In Ada 95, index_constraints only appear in a subtype_indication; they no longer appear in constrained_
array_definitions.

Legality Rules

5 An index_constraint shall appear only in a subtype_indication whose subtype_mark denotes an uncon-
strained array subtype♦; the index_constraint shall provide a discrete_range for each index of the array
type.

Static Semantics

6 A discrete_range defines a range whose bounds are given by the range, or by the range of the subtype
defined by the subtype_indication.

Dynamic Semantics

7 An index_constraint is compatible with an unconstrained array subtype if and only if the index range
defined by each discrete_range is compatible (see 3.5) with the corresponding index subtype. If any of
the discrete_ranges defines a null range, any array thus constrained is a null array, having no com-
ponents. An array value satisfies an index_constraint if at each index position the array value and the
index_constraint have the same index bounds.

7.a Ramification: There is no need to define compatibility with a constrained array subtype, because one is not allowed to
constrain it again.

8 The elaboration of an index_constraint consists of the evaluation of the discrete_range(s), in an arbitrary
order. The evaluation of a discrete_range consists of the elaboration of the subtype_indication or the
evaluation of the range.

NOTES
9 43 The elaboration of a subtype_indication consisting of a subtype_mark followed by an index_constraint checks the

compatibility of the index_constraint with the subtype_mark (see 3.2.2).

10 44 Even if an array value does not satisfy the index constraint of an array subtype, Constraint_Error is not raised on
conversion to the array subtype, so long as the length of each dimension of the array value and the array subtype match.
See 4.6.

Examples

11 Examples of array declarations including an index constraint:
12 Board : Matrix(1 .. 8, 1 .. 8) := (others => 0); -- see 3.6

Rectangle : Matrix(1 .. 20, 1 .. 30) := (others => 0);
Inverse : Matrix(1 .. N, 1 .. N) := (others => 0); -- N need not be static

13 Filter : Bit_Vector(0 .. 31) := (others => true);

14 Example of array declaration with a constrained array subtype:
15 My_Schedule : Schedule := (others => false); -- all arrays of type Schedule have the same bounds

16 ♦

AVARM;1.0 Declarations and Types

51 5 October 1995 Index Constraints and Discrete Ranges 3.6.1

Extensions to Ada 83

18.aWe allow the declaration of a variable with a nominally unconstrained array subtype, so long as it has an initialization
expression to determine its bounds.

Wording Changes From Ada 83

18.bWe have moved the syntax for index_constraint and discrete_range here since they are no longer used in constrained_
array_definitions. We therefore also no longer have to describe the (special) semantics of index_constraints and
discrete_ranges that appear in constrained_array_definitions.

18.cThe rules given in RM83-3.6.1(5,7-10), which define the bounds of an array object, are redundant with rules given
elsewhere, and so are not repeated here. RM83-3.6.1(6), which requires that the (nominal) subtype of an array variable
be constrained, no longer applies, so long as the variable is explicitly initialized.

3.6.2 Operations of Array Types
Legality Rules

1The argument N used in the attribute_designators for the N-th dimension of an array shall be a static
expression of type universal_integer. The value of N shall be positive (nonzero) and no greater than the
dimensionality of the array.

Static Semantics

2The following attributes are defined for a prefix A that is of an array type ♦, or denotes a constrained
array subtype: ♦

A’First A’First denotes the lower bound of the first index range; its type is the corresponding 3

index type.

A’First(N) A’First(N) denotes the lower bound of the N-th index range; its type is the cor- 4

responding index type.

A’Last A’Last denotes the upper bound of the first index range; its type is the corresponding 5

index type.

A’Last(N) A’Last(N) denotes the upper bound of the N-th index range; its type is the cor- 6

responding index type.

A’Range A’Range is equivalent to the range A’First .. A’Last, except that the prefix A is only 7

evaluated once.

A’Range(N) A’Range(N) is equivalent to the range A’First(N) .. A’Last(N), except that the prefix 8

A is only evaluated once.

A’Length A’Length denotes the number of values of the first index range (zero for a null range); 9

its type is universal_integer.

A’Length(N) A’Length(N) denotes the number of values of the N-th index range (zero for a null 10

range); its type is universal_integer.

Implementation Advice

11An implementation should normally represent multidimensional arrays in row-major order, consistent
with the notation used for multidimensional array aggregates (see 4.3.3). ♦

NOTES
1245 The attribute_references A’First and A’First(1) denote the same value. A similar relation exists for the attribute_

references A’Last, A’Range, and A’Length. The following relation is satisfied (except for a null array) by the above
attributes if the index type is an integer type:

13A’Length(N) = A’Last(N) - A’First(N) + 1

1446 ♦

Declarations and Types AVARM;1.0

3.6.2 Operations of Array Types 5 October 1995 52

15 47 The predefined operations of an array type include ♦ the predefined equality operators. For a one-dimensional array
type, they include the predefined concatenation operators♦ and, if the component type is discrete, the predefined relational
operators; if the component type is boolean, the predefined logical operators are also included.

16 48 A component of an array can be named with an indexed_component. A value of an array type can be specified with an
array_aggregate♦.

Examples

17 Examples (using arrays declared in the examples of subclause 3.6.1):
18 -- Filter’First = 0 Filter’Last = 31 Filter’Length = 32

-- Rectangle’Last(1) = 20 Rectangle’Last(2) = 30

3.6.3 String Types
Static Semantics

1 A one-dimensional array type whose component type is a character type is called a string type.

2 There is one predefined string type, String ♦, indexed by values of the predefined subtype Positive;
these are declared in the visible part of package Standard:

3 subtype Positive is Integer range 1 .. Integer’Last;

4

type String is array(Positive range <>) of Character;
♦

NOTES
4 49 String literals (see 2.6 and 4.2) are defined for all string types. The concatenation operator & is predefined for string

types, as for all♦ one-dimensional array types. The ordering operators <, <=, >, and >= are predefined for string types♦;
these ordering operators correspond to lexicographic order (see 4.5.2).

Examples

5 Examples of string objects:
6 Stars : String(1 .. 120) := (1 .. 120 => ’*’);

Question : constant String := "How many characters?";
-- Question’First = 1, Question’Last = 20
-- Question’Length = 20 (the number of characters)

7

Ask_Twice : String := Question & Question; -- constrained to (1..40)
Ninety_Six : constant Roman := "XCVI"; -- see 3.5.2 and 3.6

Inconsistencies With Ada 95

7.a The declaration of Wide_String in Standard in Ada 95 hides a use-visible declaration with the same defining_
identifier. In rare cases, this might result in an inconsistency between AVA and Ada 95.

7.b Similarly, because both String and Wide_String are always directly visible in Ada 95, an expression like
8 "a" < "bc"

is ambiguous, whereas in AVA both string literals could be resolved to type String.

♦
Wording Changes From Ada 83

9.c We define the term string type as a natural analogy to the term character type.

3.7 Discriminants -- Removed

AVARM;1.0 Declarations and Types

53 5 October 1995 Record Types 3.8

3.8 Record Types
1A record object is a composite object consisting of named components. The value of a record object is a

composite value consisting of the values of the components.

Syntax

2record_type_definition ::= ♦ record_definition

3record_definition ::=
record

component_list
end record

| ♦
4component_list ::=

component_item {component_item}
| ♦
| null;

5component_item ::= component_declaration♦
6component_declaration ::=

defining_identifier_list : component_definition ♦;

Abstract Syntax

7

fs ∈ FieldSpec == fs id type
typer ∈ RecordType == record fs*

♦
Legality Rules

8♦

9Each component_declaration declares a component of the record type. ♦ The identifiers of all com-
ponents of a record type shall be distinct.

9.aProof: The identifiers of all components of a record type have to be distinct because they are all declared immediately
within the same declarative region. See Section 8.

10♦

Static Semantics

14The component_definition of a component_declaration defines the (nominal) subtype of the component.
♦

15♦

Dynamic Semantics

16The elaboration of a record_type_definition creates the record type and its first subtype, and consists of
the elaboration of the record_definition. The elaboration of a record_definition consists of the elaboration
of its component_list, if any.

17The elaboration of a component_list consists of the elaboration of the component_items ♦ in the order in
which they appear. The elaboration of a component_declaration consists of the elaboration of the
component_definition.

Declarations and Types AVARM;1.0

3.8 Record Types 5 October 1995 54

17.a Discussion: If the defining_identifier_list has more than one defining_identifier, we presume here that the transformation
explained in 3.3.1 has already taken place. Alternatively, we could say that the component_definition is elaborated once
for each defining_identifier in the list.

18 ♦ For the elaboration of a component_definition of a component_declaration, ♦ the subtype_indication is
elaborated. ♦

NOTES
19 55 A component_declaration with several identifiers is equivalent to a sequence of single component_declarations, as

explained in 3.3.1.

20 56 ♦

21 57 The subtype defined by a component_definition (see 3.6) has to be a definite subtype.

22 58 ♦ The same components of a record type are present in all values of the type.

23 59 ♦

24 60 The predefined operations of a record type include membership tests, qualification, ♦ and the predefined equality
operators.

25 61 A component of a record can be named with a selected_component. A value of a record can be specified with a
record_aggregate♦.

Examples

26 Examples of record type declarations:
27 type Date is

record
Day : Integer range 1 .. 31;
Month : Month_Name;
Year : Integer range 0 .. 4000;

end record;

28 type Rational is
record

num : Integer;
den : Integer;

end record;

29 type Car is
record

Number : Integer;
Owner : String(1 .. 20);

end record;
type Person is

record
Name : String(1 .. 20);
Birth : Date;
Age : Integer range 0 .. 130;
Vehicle : Car;
Spouse : String(1 .. 20);

end record;

29 Examples of record variables:
30 Tomorrow, Yesterday : Date (20, 5, 49);

A, B, C : Rational := (1,1);
♦

Next_Car : Car := (34549821, "Smith, Michael K. ");

31 Next_Person : Person := ("Smith, Michael K. ", Yesterday, 40, Next_Car, "Smith, Elizabeth B. ")

AVARM;1.0 Declarations and Types

55 5 October 1995 Record Types 3.8

Extensions to Ada 83

31.aThe syntax rule for component_declaration is modified to use component_definition (instead of component_subtype_
definition). ♦

31.b♦

3.8.1 Variant Parts and Discrete Choices -- Removed

3.9 Tagged Types and Type Extensions -- Removed

3.10 Access Types -- Removed

3.11 Declarative Parts
1A declarative_part contains declarative_items (possibly none).

Syntax

2declarative_part ::= {declarative_item}

3declarative_item ::=
basic_declarative_item | body

4basic_declarative_item ::=
basic_declaration | ♦

5body ::= proper_body | ♦
6proper_body ::=

subprogram_body | package_body | ♦
7inner_declarative_part::= {inner_declaration}

Dynamic Semantics

8The elaboration of a declarative_part consists of the elaboration of the declarative_items, if any, in the
order in which they are given in the declarative_part. The elaboration of an inner_declarative_part
consists of the elaboration of the inner_declarative_items, if any, in the order in which they are
given in the inner_declarative_part.

9An elaborable construct is in the elaborated state after the normal completion of its elaboration. Prior to
that, it is not yet elaborated.

9.aRamification: The elaborated state is only important for bodies; certain uses of a body raise an exception if the body
is not yet elaborated.

9.bNote that "prior" implies before the start of elaboration, as well as during elaboration.

9.cThe use of the term "normal completion" implies that if the elaboration propagates an exception♦, the declaration is
not elaborated.♦

10For a construct that attempts to use a body, a check (Elaboration_Check) is performed, as follows:

11• For a call to a ♦ subprogram ♦, a check is made that the subprogram_body is already
elaborated. This check and the evaluations of any actual parameters of the call are done in an
arbitrary order.

11.b Discussion: ♦ AI-00430 specifies that there is no elaboration check for an enumeration literal. AI-00406
specifies that the evaluation of parameters and the elaboration check occur in an arbitrary order. ♦

12 • ♦

13 • ♦

14 • ♦

15 The exception Program_Error is raised if any of these checks fails.

AVA Implementation Inconsistency

15.a The existing AVA parser does not permit package_bodys as declarative_items.
Extensions to Ada 83

15.b The syntax for declarative_part is modified to remove the ordering restrictions of Ada 83; that is, the distinction
between basic_declarative_items and later_declarative_items within declarative_parts is removed. This means that
things like ♦ variable_declarations can be freely intermixed with things like bodies.

15.c ♦
Wording Changes From Ada 83

15.d The syntax rule for later_declarative_item is removed; the syntax rule for declarative_item is new.

15.e RM83 defines ‘‘elaborated’’ and ‘‘not yet elaborated’’ for declarative_items here, and for other things in 3.1,
‘‘Declarations’’. That’s no longer necessary, since these terms are fully defined in 3.1.

15.f In RM83, all uses of declarative_part are optional (except for the one in block_statement with a declare) which is sort
of strange, since a declarative_part can be empty, according to the syntax. That is, declarative_parts are sort of ‘‘doubly
optional’’. In Ada 95, these declarative_parts are always required (but can still be empty). To simplify description, we
go further and say (see 5.6, ‘‘Block Statements’’) that a block_statement without an explicit declarative_part is
equivalent to one with an empty one.

3.11.1 Completions of Declarations
1 Declarations sometimes come in two parts. A declaration that requires a second part is said to require

completion. The second part is called the completion of the declaration (and of the entity declared), and is
either another declaration, or a body♦.

1.a Discussion: Throughout the RM95, there are rules about completions that define the following:

1.b • Which declarations require a corresponding completion.

1.c • Which constructs can only serve as the completion of a declaration.

1.d • Where the completion of a declaration is allowed to be.

1.e • What kinds of completions are allowed to correspond to each kind of declaration that allows one.

1.f Don’t confuse this compile-time concept with the run-time concept of completion defined in 7.6.1.

1.g ♦

Name Resolution Rules

2 A construct that can be a completion is interpreted as the completion of a prior declaration only if:

3 • The declaration and the completion occur immediately within the same declarative region;

4 • The defining name or defining_program_unit_name in the completion is the same as in the
declaration♦;

5 • If the declaration is overloadable, then the completion has a type-conformant profile♦.

AVARM;1.0 Declarations and Types

57 5 October 1995 Completions of Declarations 3.11.1

Legality Rules

6An implicit declaration shall not have a completion. For any explicit declaration that is specified to
require completion, there shall be a corresponding explicit completion.

6.aDiscussion: The implicit declarations of predefined operators are not allowed to have a completion. Enumeration
literals, although they are subprograms, are not allowed to have a corresponding subprogram_body. That’s because the
completion rules are described in terms of constructs (subprogram_declarations) and not entities (subprograms). When
a completion is required, it has to be explicit; the implicit null package_body that Section 7 talks about cannot serve as
the completion of a package_declaration if a completion is required.

7At most one completion is allowed for a given declaration. Additional requirements on completions
appear where each kind of completion is defined.

7.aRamification: ♦

7.bIf the completion of a declaration is also a declaration, then that declaration might have a completion, too. ♦

Static Semantics

8A type is completely defined at a place that is after its full type definition (if it has one) and after all of its
subcomponent types are completely defined. A type shall be completely defined before it is frozen (see
13.14 and 7.3).

8.aReason: Index types are always completely defined — no need to mention them. There is no way for a completely
defined type to depend on the value of a (still) deferred constant.

NOTES
962 ♦

1063 There are rules that prevent premature uses of declarations that have a corresponding completion. The Elaboration_
Checks of 3.11 prevent such uses at run time for subprograms♦. The rules of 13.14, ‘‘Freezing Rules’’, prevent , at
compile time, premature uses of other entities such as private types and deferred constants.

Wording Changes From Ada 83

10.aThis subclause is new. It is intended to cover all kinds of completions of declarations, be they a body for a spec, a full
type for an incomplete or private type, or a full constant declaration for a deferred constant declaration♦.

3.12 Annotation Declarations -- New
1Annotations allow the user to

2• define functions, constants and theorems in the ACL2 logic [Kaufmann 94],

3• assert logical specifications for AVA functions, procedures, objects, and statements,

4• and state axioms and purported theorems to be used in the analysis of programs.

5One difficulty that the user may encounter is that expressions in ACL2 and AVA have different seman-
tics. For example, ‘‘+’’ in AVA text is an operation subject to the normal rules of Ada, e.g. the exception
CONSTRAINT_ERROR is raised if the result is too large. The ‘‘+’’ in ACL2 is a total function, iden-
tical to mathematical plus in the case that its arguments are integers. Another difference is that variables
in ACL2 are untyped. We may assert restrictions on their values in various contexts by virtue of predi-
cates, e.g. ‘‘integerp(x)’’.

6Communication between the AVA world and the logic is by virtue of assertions on the value of AVA
variables in the current environment.

Declarations and Types AVARM;1.0

3.12 Annotation Declarations -- New 5 October 1995 58

Syntax

7 assert_annotation ::= assert logical_expression ;

8 invariant_annotation ::= invariant logical_expression ;

9 transition_annotation ::= where logical_expression ;

10 subprogram_annotation ::=
where logical_expression

| where return [identifier ,] logical_expression

11 axiom_decl ::= axiom identifier logical_expression ;

12 theorem_decl ::= theorem identifier logical_expression ;

13 defun_decl ::= defun identifier arglist logical_expression ;

14 arglist ::= ({identifier})

Annotation lines are preprocessed by tools that recognize these special forms of Ada comments as AVA
annotations. The syntax was originally more similar to that of ANNA [Luckham 90]. As we faced the
issue of providing a precise semantics for annotations in ACL2 they have evolved away from ANNA.

Abstract Syntax

15

assert ∈ Assert == assert lexpr
invariant ∈ Invariant == invariant lexpr
transition ∈ Transition == transtion lexpr

specret ∈ ReturnRelation == spec-return sym lexpr
specval ∈ ReturnValue == spec-value lexpr
specp ∈ SubprogramAnnotation == specret | specval | transition

axiom ∈ Axiom == axiom sym lexpr
theorem ∈ Theorem == theorem sym lexpr
defun ∈ Defun == defun sym sym* lexpr

Formal Static Semantics

16 Annotations have scope and points of application. Within the scope of the annotation it is evaluated with
respect to an output state (typically the current state) and possibly an input state whenever the computa-
tion reaches a point of application.

17 The scope of an assert_annotation appearing in a statement list is the annotation itself and its point of
application is that of the assert statement in the statement list.

18 The scope of a transition_annotation is the immediately preceding statement. The input state is the state
before execution of the statement. The output state is the current state. The point of application is
immediately after the statement.

19 The scope of an invariant_annotation appearing in a declaration list is the scope of the enclosing declara-
tive region and its points of application follow every statement in the declarative region.

20 The scope of a subprogram_annotation is identical to the scope of its associated subprogram_declaration.
The points of application are the returns from every call on the designated subprogram. The input state is
the state immediately preceding the evaluation of the body of the subprogram. The output state is the
state at the point of return from the body of the subprogram. Thus, the annotation will normally be stated
in terms of the formal parameters of the subprogram.

AVARM;1.0 Declarations and Types

59 5 October 1995 Annotation Declarations -- New 3.12

21A Defun_decl defines a specification function in the logic of ACL2 to be used within annotations. We
expect most annotations to be stated in terms of these functions, as opposed to the approach in ANNA,
where virtual function definitions are used. The advantage is that we can provide a meaning in the logic
for such functions. An attempt to state properties in terms of the AVA executable functions is possible,
but is indirect and would take the form of a statement about the application of the operational semantics
to such a function in some specific environment.

Formal Dynamic Semantics

22Properties of specification functions can be described by theorem_decls and axiom_decls. Axioms are
assumptions. Theorems are conjectures to be proven. These have no effect on the evaluation of an AVA
program.

23The meaning given to annotations depends on their scope and points of application.

24Annotation evaluation proceeds as follows. The logical variable ‘‘env’’ contains a mapping from
program variable names to values. The annotation is evaluated according to the rules of the the ACL2
logic and the interpretation provided for logical_expressions (see section 4.10. If the result is non-false
(in the ACL2 sense), computation proceeds. If the result is false (NIL), the exception logical_error is
raised. Logical_error cannot be handled. Proving the correctness of a program or subprogram requires
proving the absence of such exceptions.

Examples

25Example of a compound statement invariant.

26If x is less than or equal to y when we enter the loop, then x = y when we exit.

27while x < y loop
x := x+1;
end loop;

--| where if in(@x le @y) then @x = @y fi ;

Example of an assert_annotation.

28--| assert @x < 5 and @y < 10;
x := x * y;

--| assert @x < 50;

Examples of function annotation.

29‘‘Get’’ is predefined to select an array or record element from a literal. ‘‘pattern_ok’’ would be defined
in ACL2 via a defun_decl.

30function filter_table_ok (table : a_filter_table) return boolean;
--| where return
--| (all i in (1 .. filter_max) , pattern_ok(get(@table,i)));

31In the following example we are asserting that the value that f returns, denoted by z, when f is evaluated
in environment env is equal to the result of evaluating ‘‘g(value(’x, env),value(’y, env))’’ in the logic.

32function f(x,y:T1) return T2;
--| where return z , g(@x, @y) = z;

33We could state this more simply by leaving out the variable, z.

Declarations and Types AVARM;1.0

3.12 Annotation Declarations -- New 5 October 1995 60

34 function f(x,y:T1) return T2;
--| where return g(@x, @y);

35 But we need the identifier in cases where we only wish to provide a partial specification.

36 function f(x,y:T1) return T2;
--| where return z, z < g(@x, @y);

37 In the following example we require that the value of x be less than the value of y when f is called.

38 function f(x,y:T1) return T2
--| where in(@x < @y);

AVARM;1.0 Names and Expressions

61 5 October 1995 Names and Expressions 4

4. Names and Expressions
1The rules applicable to the different forms of name and expression, and to their evaluation, are given in

this section.

4.1 Names
1Names can denote declared entities, whether declared explicitly or implicitly (see 3.1). Names can also

denote ♦ the results of type_conversions or function_calls; and subcomponents ♦ of objects and values♦.
Finally, names can denote attributes of any of the foregoing.

Syntax

2name ::=
direct_name | ♦

| indexed_component | ♦
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

3direct_name ::= identifier | ♦
3.aDiscussion: character_literal is no longer a direct_name. character_literals are usable even when the corresponding

enumeration_type_declaration is not visible. See 4.2.

4prefix ::= name | ♦

♦

7Certain forms of name (indexed_components, selected_components, ♦ and attributes) include a prefix
that is itself a name that denotes some related entity♦.

Abstract Syntax

8

apply ∈ Apply == apply expr apl Before overload resolution.
dot ∈ Dot == dot name sym
name ∈ Name == id | apply | dot

name ∈ Name == id | indexed | selected After overload resolution.

♦
Dynamic Semantics

11The evaluation of a name determines the entity denoted by the name. This evaluation has no other effect
for a name that is a direct_name or a character_literal.

12The evaluation of a name that has a prefix includes the evaluation of the prefix. The evaluation of a prefix
consists of the evaluation of the name ♦. The prefix denotes the entity denoted by the name ♦.

13♦

Examples

14Examples of direct names:

Names and Expressions AVARM;1.0

4.1 Names 5 October 1995 62

15

♦
Limit -- the direct name of a constant (see 3.3.1)
♦
Board -- the direct name of an array variable (see 3.6.1)
Matrix -- the direct name of a type (see 3.6)
Increment -- the direct name of a function (see 6.1)
♦

♦

Extensions to Ada 83

17.a Type conversions and function calls are now considered names that denote the result of the operation. ♦. Function
calls are considered names so that a type conversion of a function call and the function call itself are treated
equivalently in the grammar. A function call is considered the name of a constant, and can be used anywhere such a
name is permitted. See 6.5. ♦

Wording Changes From Ada 83

17.c Everything of the general syntactic form name(...) is now syntactically a name. In any realistic parser, this would be a
necessity since distinguishing among the various name(...) constructs inevitably requires name resolution. In cases
where the construct yields a value rather than an object, the name denotes the value rather than an object. Names
already denote values in Ada 83 with named numbers, components of the result of a function call, etc. This is partly
just a wording change, and partly an extension of functionality (see Extensions heading above).

17.d The syntax rule for direct_name is new. It is used in places where direct visibility is required. It’s kind of like Ada
83’s simple_name, but simple_name applied to both direct visibility and visibility by selection, and furthermore, it
didn’t work right for operator_symbols. The syntax rule for simple_name is removed, since its use is covered by a
combination of direct_name and selector_name. The syntactic categories direct_name and selector_name are similar;
it’s mainly the visibility rules that distinguish the two. ♦

4.1.1 Indexed Components
1 An indexed_component denotes a component of an array ♦.

Syntax

2 indexed_component ::= prefix(expression {, expression})

Abstract Syntax

3

indexed ∈ IndexedComponent == indexed expr expr

Name Resolution Rules

4 The prefix of an indexed_component with a given number of expressions shall resolve to denote an array
♦ with the corresponding number of index positions♦.

5 The expected type for each expression is the corresponding index type.

Static Semantics

6 ♦ The indexed_component denotes the component of the array with the specified index value(s). The
nominal subtype of the indexed_component is the component subtype of the array type.

6.a Ramification: ♦ An array component is constrained if and only if its nominal subtype is constrained.

7 ♦

AVARM;1.0 Names and Expressions

63 5 October 1995 Indexed Components 4.1.1

Dynamic Semantics

8For the evaluation of an indexed_component, the prefix and the expressions are evaluated in an arbitrary
order.

The value of each expression is converted to the corresponding index type. A check is made that each
index value belongs to the corresponding index range of the array ♦ denoted by the prefix. Constraint_
Error is raised if this check fails.

Examples

9Examples of indexed components:
10

Filter(1) -- a component of a one-dimensional array (see 3.6.1)
Page(10) -- a component of a one-dimensional array (see 3.6)
Board(M, J + 1) -- a component of a two-dimensional array (see 3.6.1)
Page(10)(20) -- a component of a component (see 3.6)

♦

NOTES
111 Notes on the examples: Distinct notations are used for components of multidimensional arrays (such as Board) and

arrays of arrays (such as Page). The components of an array of arrays are arrays and can therefore be indexed. Thus
Page(10)(20) denotes the 20th component of Page(10). ♦

4.1.2 Slices -- Removed

4.1.3 Selected Components
1Selected_components are used to denote components ♦; they are also used as expanded names as

described below.

Syntax

2selected_component ::= prefix . selector_name

3selector_name ::= identifier | ♦

Abstract Syntax

4

selected ∈ SelectedComponent == selected expr sym

Name Resolution Rules

5A selected_component is called an expanded name if, according to the visibility rules, at least one pos-
sible interpretation of its prefix denotes a package♦.

5.aDiscussion: See AI-00187.

6A selected_component that is not an expanded name shall resolve to denote one of the following: ♦
7• A component♦:

8The prefix shall resolve to denote an object or value of some record type ♦. The selector_
name shall resolve to denote a ♦ component_declaration of the type. The selected_
component denotes the corresponding component of the object or value. ♦

8.aRamification: Only the ♦ components visible at the place of the selected_component can be selected, since a
selector_name can only denote declarations that are visible (see 8.3).

Names and Expressions AVARM;1.0

4.1.3 Selected Components 5 October 1995 64

9 • ♦

10 ♦

11 An expanded name shall resolve to denote a declaration that occurs immediately within a named declara-
tive region, as follows:

12 • The prefix shall resolve to denote a package ♦.

13 • The selector_name shall resolve to denote a declaration that occurs immediately within the
declarative region of the package ♦ (the declaration shall be visible at the place of the ex-
panded name — see 8.3). The expanded name denotes that declaration.

13.a Ramification: Hence, a library unit ♦ can use an expanded name to refer to the declarations within the private
part of its parent unit♦.

14 • ♦

Dynamic Semantics

15 The evaluation of a selected_component includes the evaluation of the prefix.

16 ♦

Examples

17 Examples of selected components:
18

Tomorrow.Month -- a record component (see 3.8)
♦
Next_Person.Vehicle_Number -- a record component (see 3.8)

♦

19 Examples of expanded names:
20

Table_Manager.Insert -- a procedure of the visible part of a package (see 7.3)
♦

Standard.Boolean -- the name of a predefined type (see A.1)

Extensions to Ada 83

20.a We now allow an expanded name to use a prefix that denotes a rename of a package, even if the selector is for an entity
local to the body or private part of the package, so long as the entity is visible at the place of the reference. This
eliminates a preexisting anomaly where references in a package body may refer to declarations of its visible part but
not those of its private part or body when the prefix is a rename of the package.

Wording Changes From Ada 83

20.b The syntax rule for selector_name is new. It is used in places where visibility, but not necessarily direct visibility, is
required. See 4.1, ‘‘Names’’ for more information.

20.c ♦

4.1.4 Attributes
1 An attribute is a characteristic of an entity that can be queried via an attribute_reference or a range_

attribute_reference.

Syntax

2 attribute_reference ::= prefix’attribute_designator

3 attribute_designator ::=
identifier[(static_expression)]

| ♦

AVARM;1.0 Names and Expressions

65 5 October 1995 Attributes 4.1.4

4range_attribute_reference ::= prefix’range_attribute_designator

5range_attribute_designator ::= Range[(static_expression)]

Abstract Syntax

6

attr ∈ Attr == attr id sym [expr]

Name Resolution Rules

7♦

8

8.aDiscussion: ♦

8.bWe normally talk in terms of expected type or profile for name resolution rules, but we don’t do this for attributes
because certain attributes are legal independent of the type or the profile of the prefix.

9The expression, if any, in an attribute_designator or range_attribute_designator is expected to be of any
integer type.

Legality Rules

10The expression, if any, in an attribute_designator or range_attribute_designator shall be static.

Static Semantics

11An attribute_reference denotes a value, an object, a subprogram, or some other kind of program entity.
11.aRamification: The attributes defined by the language are summarized in Annex J. Implementations can define

additional attributes.

12A range_attribute_reference X’Range(N) is equivalent to the range X’First(N) .. X’Last(N)♦. Similarly,
X’Range is equivalent to X’First .. X’Last♦

Dynamic Semantics

13The evaluation of an attribute_reference (or range_attribute_reference) has an effect that depends on
the specific attribute. The result of this evaluation may be a value or a type.

Implementation Permissions

14An implementation may provide implementation-defined attributes; the identifier for an implementation-
defined attribute shall differ from those of the language-defined attributes.

14.aImplementation defined: Implementation-defined attributes.

14.bRamification: They cannot be reserved words because reserved words are not legal identifiers.

14.cThe semantics of implementation-defined attributes, and any associated rules, are, of course, implementation defined.
For example, the implementation defines whether a given implementation- defined attribute can be used in a static
expression.

NOTES
154 Attributes are defined throughout this Reference Manual, and are summarized in Annex J.

165 In general, the name in a prefix of an attribute_reference (or a range_attribute_reference) has to be resolved without
using any context. ♦

Names and Expressions AVARM;1.0

4.1.4 Attributes 5 October 1995 66

Examples

17 Examples of attributes:
18

Color’First -- minimum value of the enumeration type Color (see 3.5.1)
Rainbow’Base’First -- same as Color’First (see 3.5.1)
♦
Board’Last(2) -- upper bound of the second dimension of Board (see 3.6.1)
Board’Range(1) -- index range of the first dimension of Board (see 3.6.1)
♦

Extensions to Ada 83

18.a We now uniformly treat X’Range as X’First..X’Last, allowing its use with scalar subtypes.

18.b We allow any integer type in the static_expression of an attribute designator, not just a value of universal_integer. The
preference rules ensure upward compatibility.

Wording Changes From Ada 83

18.c We use the syntactic category attribute_reference rather than simply "attribute" to avoid confusing the name of
something with the thing itself.

18.d The syntax rule for attribute_reference now uses identifier instead of simple_name, because attribute identifiers are not
required to follow the normal visibility rules.

18.e We now separate attribute_reference from range_attribute_reference, and enumerate the reserved words that are legal
attribute or range attribute designators. We do this because identifier no longer includes reserved words.

18.f The Ada 95 name resolution rules are a bit more explicit than in Ada 83. The Ada 83 rule said that the "meaning of the
prefix of an attribute must be determinable independently of the attribute designator and independently of the fact that
it is the prefix of an attribute." That isn’t quite right since the meaning even in Ada 83 embodies whether or not the
prefix is interpreted as a parameterless function call♦. So the attribute designator does make a difference — just not
much.

18.g ♦

4.2 Literals
1 A literal represents a value literally, that is, by means of notation suited to its kind. A literal is either a

numeric_literal, a character_literal, ♦ or a string_literal.
1.a Discussion: An enumeration literal that is an identifier rather than a character_literal is not considered a literal in the

above sense, because it involves no special notation ‘‘suited to its kind.’’ It might more properly be called an
enumeration_identifier, except for historical reasons.

Name Resolution Rules

2 ♦

3 For a name that consists of a character_literal, either its expected type shall be a single character type, in
which case it is interpreted as a parameterless function_call that yields the corresponding value of the
character type, or its expected profile shall correspond to a parameterless function with a character result
type, in which case it is interpreted as the name of the corresponding parameterless function declared as
part of the character type’s definition (see 3.5.1). In either case, the character_literal denotes the
enumeration_literal_specification.

3.a Discussion: See 4.1.3 for the resolution rules for a selector_name that is a character_literal.

4 The expected type for a primary that is a string_literal shall be a single string type.

AVARM;1.0 Names and Expressions

67 5 October 1995 Literals 4.2

Legality Rules

5A character_literal that is a name shall correspond to a defining_character_literal of the expected type, or
of the result type of the expected profile.

6For each character of a string_literal with a given expected string type, there shall be a corresponding
defining_character_literal of the component type of the expected string type.

7♦

Abstract Syntax

8

literala ∈ ArrayLiteral == (n . expr)*

literalr ∈ RecordLiteral == (sym . expr)*

Static Semantics

9An integer literal is of type universal_integer. ♦

Dynamic Semantics

9♦ The evaluation of a string_literal that is a primary yields an array value containing the value of each
character of the sequence of characters of the string_literal, as defined in 2.6. The bounds of this array
value are determined according to the rules for positional_array_aggregates (see 4.3.3), except that for a
null string literal, the upper bound is the predecessor of the lower bound.

10For the evaluation of a string_literal of type T, a check is made that the value of each character of the
string_literal belongs to the component subtype of T. For the evaluation of a null string literal, a check is
made that its lower bound is greater than the lower bound of the base range of the index type. The
exception Constraint_Error is raised if either of these checks fails.

11

11.aRamification: The checks on the characters need not involve more than two checks altogether, since one need only
check the characters of the string with the lowest and highest position numbers against the range of the component
subtype.

NOTES
126 Enumeration literals that are identifiers rather than character_literals follow the normal rules for identifiers when used in a

name ♦

Examples

13Examples of literals:

14

♦
1_345 -- an integer literal
’A’ -- a character literal
"Some Text" -- a string literal

Incompatibilities With Ada 83

14.aBecause character_literals are now treated like other literals, in that they are resolved using context rather than
depending on direct visibility, additional qualification might be necessary when passing a character_literal to an
overloaded subprogram.

Extensions to Ada 83

14.bCharacter_literals are now treated analogously to ♦ string_literals, in that they are resolved using context, rather than
their content; the declaration of the corresponding defining_character_literal need not be directly visible.

Names and Expressions AVARM;1.0

4.2 Literals 5 October 1995 68

Wording Changes From Ada 83

14.c Name Resolution rules for enumeration literals that are not character_literals are not included anymore, since they are
neither syntactically nor semantically "literals" but are rather names of parameterless functions.

4.3 Aggregates
1 An aggregate combines component values into a composite value of an array type or record type♦.

Syntax

2 aggregate ::= record_aggregate | ♦ | array_aggregate

Name Resolution Rules

3 The expected type for an aggregate shall be a single ♦ array type or record type♦.
3.a Discussion: See 8.6, ‘‘The Context of Overload Resolution’’ for the meaning of ‘‘shall be a single ... type.’’

Legality Rules

4 ♦

Dynamic Semantics

5 For the evaluation of an aggregate, an anonymous object is created and values for the components ♦ are
obtained (as described in the subsequent subclause for each kind of the aggregate) and assigned into the
corresponding components ♦ of the anonymous object. Obtaining the values and the assignments occur
in an arbitrary order .

The value of the aggregate is the value of this object. ♦
5.b Ramification: The assignment operations do the necessary value adjustment, as described in 7.6. Note that the value

as a whole is not adjusted — just the subcomponents ♦. 7.6 also describes when this anonymous object is finalized.

5.c ♦

6 ♦

♦
Wording Changes From Ada 83

6.c We have adopted new wording for expressing the rule that the type of an aggregate shall be determinable from the
outside, though using the fact that it is ♦ record ♦ or array.

6.d An aggregate now creates an anonymous object. ♦

4.3.1 Record Aggregates
1 In a record_aggregate, a value is specified for each component of the record or record extension value,

using either a named or a positional association.

Syntax

2 record_aggregate ::= (record_component_association_list)

3 record_component_association_list ::=
record_component_association {, record_component_association}

| ♦
4 record_component_association ::=

[component_choice_list =>] expression

AVARM;1.0 Names and Expressions

69 5 October 1995 Record Aggregates 4.3.1

5component_choice_list ::=
component_selector_name {| component_selector_name}

| others

6A record_component_association is a named component association if it has a component_choice_
list; otherwise, it is a positional component association. ♦ Named and positional component
associations cannot be used in the same aggregate.

6.aDiscussion: These rules were implied by the BNF in an early version of the RM95, but it made the grammar harder to
read♦. Note that for array aggregates we still express some of the rules in the grammar♦.

7In the record_component_association_list for a record_aggregate, if there is only one association, it
shall be a named association.

7.aReason: Otherwise the construct would be interpreted as a parenthesized expression. This is considered a syntax rule,
since it is relevant to overload resolution. We choose not to express it with BNF so we can share the definition of
record_component_association_list in both record_aggregate and extension_aggregate.

♦

Abstract Syntax

8

choice ∈ Choice == range | expr | others
choices ∈ Choices == choices choice*

agg-choice ∈ AggChoice == agg-choice choices expr
agg-pos ∈ AggPos == agg-pos expr
agg-arm ∈ AggArm == agg-choice | agg-pos
aggregate ∈ Aggregate == aggregate agg-arm*

Name Resolution Rules

9The expected type for a record_aggregate shall be a single ♦ record type ♦.

9.aRamification: This rule is used to resolve whether an aggregate is an array_aggregate or a record_aggregate. ♦

10For the record_component_association_list of a record_aggregate, all components of the composite value
defined by the aggregate are needed♦. Each selector_name in a record_component_association shall
denote a needed component ♦.

10.aRamification: For the association list of a record_aggregate, ‘‘needed components’’ includes every component of the
composite value♦.

10.b♦

11The expected type for the expression of a record_component_association is the type of the associated
component(s); the associated component(s) are as follows:

12• For a positional association, the component ♦ in the corresponding relative position (in the
declarative region of the type), counting only the needed components;♦

13• For a named association with one or more component_selector_names, the named
component(s);

14• For a named association with the reserved word others, all needed components ♦.

Legality Rules

15♦

16Each record_component_association shall have at least one associated component, and each needed com-
ponent shall be associated with exactly one record_component_association. If a record_component_
association has two or more associated components, all of them shall be of the same type.

Names and Expressions AVARM;1.0

4.3.1 Record Aggregates 5 October 1995 70

16.a Ramification: These rules apply to an association with an others choice.

16.b Reason: Without these rules, there would be no way to know what was the expected type for the expression of the
association.

16.c Discussion: AI-00244 also requires that the expression shall be legal for each associated component. This is because
even though two components have the same type, they might have different subtypes. Therefore, the legality of the
expression, particularly if it is an array aggregate, might differ depending on the associated component’s subtype.
However, we have relaxed the rules on array aggregates slightly for Ada 95, so the staticness of an applicable index
constraint has no effect on the legality of the array aggregate to which it applies. See 4.3.3. This was the only case
(that we know of) where a subtype provided by context affected the legality of an expression.

16.d Ramification: The rule that requires at least one associated component for each record_component_association
implies that there can be no extra associations for components that don’t exist in the composite value♦.

16.e ♦

17 ♦

Dynamic Semantics

18 The evaluation of a record_aggregate consists of the evaluation of the record_component_association_
list.

19 ♦ Any ♦ expression evaluations (and conversions) occur in an arbitrary order ♦.

20 The expression of a record_component_association is evaluated (and converted) once for each associated
component.

♦
Examples

22 Example of a record aggregate with positional associations:
23 (4, July, 1776) -- see 3.8

24 Examples of record aggregates with named associations:
25 (Day => 4, Month => July, Year => 1776)

(Month => July, Day => 4, Year => 1776)

26 ♦

27 Example of component association with several choices:
28 ♦

(Month => July, Day|Year => 0) -- see 3.8

29 ♦

Wording Changes From Ada 83

31.b Various AIs have been incorporated (AI-189, AI-244, and AI-309). In particular, Ada 83 did not explicitly disallow
extra values in a record aggregate. Now we do.

4.3.2 Extension Aggregates -- Removed

AVARM;1.0 Names and Expressions

71 5 October 1995 Array Aggregates 4.3.3

4.3.3 Array Aggregates
1In an array_aggregate, values are specified for each component of an array, either positionally or by

♦the choice others. For a positional_array_aggregate, the components are given in increasing-index
order♦. For a named_array_aggregate, the components are identified by the values covered by the
discrete_choices.

♦
Syntax

2array_aggregate ::=
positional_array_aggregate | named_array_aggregate

3positional_array_aggregate ::=
(expression, expression {, expression})

| ♦
4named_array_aggregate ::=

(others => expression)

5♦

6An n-dimensional array_aggregate is one that is written as n levels of nested array_aggregates (or at the
bottom level, equivalent string_literals). For the multidimensional case (n >= 2) the array_aggregates (or
equivalent string_literals) at the n–1 lower levels are called subaggregates of the enclosing n-dimensional
array_aggregate. The expressions of the bottom level subaggregates (or of the array_aggregate itself if
one-dimensional) are called the array component expressions of the enclosing n-dimensional array_
aggregate.

6.aRamification: Subaggregates do not have a type. They correspond to part of an array. For example, with a matrix, a
subaggregate would correspond to a single row of the matrix. The definition of "n-dimensional" array_aggregate
applies to subaggregates as well as aggregates that have a type.

♦

Name Resolution Rules

7The expected type for an array_aggregate (that is not a subaggregate) shall be a single ♦ array type. The
component type of this array type is the expected type for each array component expression of the array_
aggregate.

7.aRamification: We already require a single array or record type ♦ for an aggregate. The above rule requiring a single
♦ array type (and a similar one for record ♦ aggregates) resolves which kind of aggregate you have.

8♦

Legality Rules

9An array_aggregate of an n-dimensional array type shall be written as an n-dimensional array_aggregate.
9.aRamification: In an m-dimensional array_aggregate (including a subaggregate), where m >= 2, each of the

expressions has to be an (m–1)-dimensional subaggregate.

10An others choice is allowed for an array_aggregate only if an applicable index constraint applies to the
array_aggregate. An applicable index constraint is a constraint provided by certain contexts where an
array_aggregate is permitted that can be used to determine the bounds of the array value specified by the
aggregate. Each of the following contexts (and none other) defines an applicable index constraint:

11• For an explicit_actual_parameter, ♦ the expression of a return_statement, or the initializa-
tion expression in an object_declaration, ♦ when the nominal subtype of the corresponding
formal parameter, ♦ function result, object, or component is a constrained array subtype, the
applicable index constraint is the constraint of the subtype.

Names and Expressions AVARM;1.0

4.3.3 Array Aggregates 5 October 1995 72

12 • For the expression of an assignment_statement where the name denotes an array variable,
the applicable index constraint is the constraint of the array variable;

12.a Reason: This case is broken out because the constraint comes from the actual subtype of the variable (which is
always constrained) rather than its nominal subtype (which might be unconstrained).

13 • For the operand of a qualified_expression whose subtype_mark denotes a constrained array
subtype, the applicable index constraint is the constraint of the subtype;

14 • For a component expression in an aggregate, if the component’s nominal subtype is a con-
strained array subtype, the applicable index constraint is the constraint of the subtype;

14.a Discussion: Here, the array_aggregate with others is being used within a larger aggregate.

15 • For a parenthesized expression, the applicable index constraint is that, if any, defined for the
expression.

15.a Discussion: RM83 omitted this case, presumably as an oversight. We want to minimize situations where an
expression becomes illegal if parenthesized.

16 The applicable index constraint applies to an array_aggregate that appears in such a context, as well as to
any subaggregates thereof. ♦

17 ♦

18 ♦

19 A bottom level subaggregate of a multidimensional array_aggregate of a given array type is allowed to
be a string_literal only if the component type of the array type is a character type; each character of such a
string_literal shall correspond to a defining_character_literal of the component type.

Static Semantics

20 A subaggregate that is a string_literal is equivalent to one that is a positional_array_aggregate of the same
length, with each expression being the character_literal for the corresponding character of the string_
literal.

Dynamic Semantics

21 The evaluation of an array_aggregate of a given array type proceeds in one step.
22 1. The array component expressions of the aggregate are evaluated in an arbitrary order and

their values are converted to the component subtype of the array type; an array component
expression is evaluated once for each associated component.

23

23.a Ramification: Subaggregates are not separately evaluated. The conversion of the value of the component expressions
to the component subtype might raise Constraint_Error.

24 The bounds of the index range of an array_aggregate (including a subaggregate) are determined as fol-
lows:

25 • For an array_aggregate with an others choice, the bounds are those of the corresponding
index range from the applicable index constraint;

26 • For a positional_array_aggregate (or equivalent string_literal) ♦, the lower bound is that of
the corresponding index range in the applicable index constraint, if defined, or that of the
corresponding index subtype, if not; in either case, the upper bound is determined from the
lower bound and the number of expressions (or the length of the string_literal);

AVARM;1.0 Names and Expressions

73 5 October 1995 Array Aggregates 4.3.3

27• ♦

28For an array_aggregate, a check is made that the index range defined by its bounds is compatible with the
corresponding index subtype.

28.aDiscussion: In RM83, this was phrased more explicitly, but once we define "compatibility" between a range and a
subtype, it seems to make sense to take advantage of that definition.

28.bRamification: The definition of compatibility handles the special case of a null range, which is always compatible
with a subtype. See AI-00313.

29♦

30For a multidimensional array_aggregate, a check is made that all subaggregates that correspond to the
same index have the same bounds.

30.aRamification: No array bounds ‘‘sliding’’ is performed on subaggregates.

30.bReason: If sliding were performed, it would not be obvious which subaggregate would determine the bounds of the
corresponding index.

31The exception Constraint_Error is raised if any of the above checks fail.

NOTES
3210 In an array_aggregate, positional notation may only be used with two or more expressions; a single expression in

parentheses is interpreted as a parenthesized_expression. A named_array_aggregate, such as (others => X), may be used
to specify an array with a single component.

Examples

33Examples of array aggregates with positional associations:
34(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)

♦

35

38Examples of two-dimensional array aggregates:
39♦

((1, 1, 1), (2, 2, 2))

(others => (1, 1, 1))

41Examples of aggregates as initial values:
42A : Table := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0

B : Table := (♦ others => 0); -- B(i)=0 for i in 1..10
♦

♦
E : Bit_Vector(M .. N) := (others => True);
F : String(1 .. 1) := (♦ others => ’F’); -- a one component aggregate: same as "F"

Extensions to Ada 83

43.aWe now allow "named with others" aggregates in all contexts where there is an applicable index constraint, effectively
eliminating what was RM83-4.3.2(6). Sliding never occurs on an aggregate with others, because its bounds come from
the applicable index constraint, and therefore already match the bounds of the target.

43.bThe legality of an others choice is no longer affected by the staticness of the applicable index constraint. This
substantially simplifies several rules, while being slightly more flexible for the user. It obviates the rulings of AI-244
and AI-310, while taking advantage of the dynamic nature of the "extra values" check required by AI-309.

Names and Expressions AVARM;1.0

4.3.3 Array Aggregates 5 October 1995 74

Wording Changes From Ada 83

43.c We now separate named and positional array aggregate syntax♦.

43.d We have also reorganized the presentation to handle multidimensional and one-dimensional aggregates more
uniformly, and to incorporate the rulings of AI-19, AI-309, etc.

4.4 Expressions
1 An expression is a formula that defines the computation or retrieval of a value. In this Reference Manual,

the term ‘‘expression’’ refers to a construct of the syntactic category expression or of any of the other
five syntactic categories defined below.

Syntax

2 expression ::=
relation {and relation} | relation {and then relation}

| relation {or relation} | relation {or else relation}
| relation {xor relation}

3 relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in subtype_mark

4 simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}

5 term ::= factor {multiplying_operator factor}

6 factor ::= primary [** primary] | abs primary | not primary

7 primary ::=
numeric_literal | ♦ | string_literal | aggregate

| name | qualified_expression | ♦ | (expression)

Name Resolution Rules

8 A name used as a primary shall resolve to denote ♦ a value.
8.a Discussion: This replaces RM83-4.4(3). We don’t need to mention named numbers explicitly, because the name of a

named number denotes a value. We don’t need to mention attributes explicitly, because attributes now denote (rather
than yield) values in general. ♦

8.b Reason: It might seem odd that this is an overload resolution rule, but it is relevant during overload resolution. For
example, it helps ensure that a primary that consists of only the identifier of a parameterless function is interpreted as a
function_call rather than directly as a direct_name.

Abstract Syntax

9

expr ∈ Expr == literal | expr O2 expr | O1 expr |
aggregate | name | convert | qualified | function-call>

Static Semantics

10 Each expression has a type; it specifies the computation or retrieval of a value of that type.

Dynamic Semantics

11 The value of a primary that is a name denoting an object is the value of the object.

Implementation Permissions

AVARM;1.0 Names and Expressions

75 5 October 1995 Expressions 4.4

12For the evaluation of a primary that is a name denoting an object of an unconstrained numeric subtype3, if
the value of the object is outside the base range of its type, the implementation must ♦ raise Constraint_
Error. ♦

Examples

13Examples of primaries:
14♦

Pi -- named number
(1, 2, 3, 4, 5) -- array aggregate

Sum -- variable
Integer’Last -- attribute
Abs(X) -- function call
Color’(Blue) -- qualified expression
♦
(Line_Count + 10) -- parenthesized expression

15Examples of expressions:
16Volume -- primary

not Destroyed -- factor
2*Line_Count -- term
-4 -- simple expression
-4 + A -- simple expression
B**2 - 4*A*C -- simple expression
♦
Count in Small_Int -- relation
Count not in Small_Int -- relation
Index = 0 or Item_Hit -- expression
(Cold and Sunny) or Warm -- expression (parentheses are required)
A**(B**C) -- expression (parentheses are required)

Extensions to Ada 83

16.a♦

16.bIn various contexts throughout the language where Ada 83 syntax rules had simple_expression, the corresponding Ada
95 syntax rule has expression instead. ♦ Requiring parentheses to use these operators in such contexts seemed
unnecessary and potentially confusing. Note that the bounds of a range still have to be specified by simple_
expressions, since otherwise expressions involving membership tests might be ambiguous. Essentially, the operation
".." is of higher precedence than the logical operators, and hence uses of logical operators still have to be parenthesized
when used in a bound of a range.

4.5 Operators and Expression Evaluation
1The language defines the following six categories of operators (given in order of increasing precedence).

♦

Syntax

2logical_operator ::= and | or | xor

3relational_operator ::= = | /= | < | <= | > | >=

4binary_adding_operator ::= + | – | &

5unary_adding_operator ::= + | –

6multiplying_operator ::= * | / | mod | rem

7highest_precedence_operator ::= ** | abs | not

3The only unconstrained numeric subtype permitted in AVA is integer’Base.

Names and Expressions AVARM;1.0

4.5 Operators and Expression Evaluation 5 October 1995 76

7.a Discussion: Some of the above syntactic categories are not used in other syntax rules. They are just used for
classification. The others are used for both classification and parsing.

Abstract Syntax

8 And then and or else forms have been normalized to if_expressions.

O2 ∈ BinaryOperators == Ol | O= | O+ | O*
O∧ == and | or | xor
O= == in | not-in | isin | not-isin | = | ne | lt | gt | le | ge
O+ == + | - | &
O* == * | / | mod | rem
O1 ∈ UnaryOperators == abs | minus

Static Semantics

9 For a sequence of operators of the same precedence level, the operators are associated with their operands
in textual order from left to right. Parentheses can be used to impose specific associations.

9.a Discussion: The left-associativity is not directly inherent in the grammar of 4.4, though in 1.1.4 the definition of the
metasymbols {} implies left associativity. So this could be seen as redundant, depending on how literally one interprets
the definition of the {} metasymbols.

9.b ♦

10 For each form of type definition, certain of the above operators are predefined; that is, they are implicitly
declared immediately after the type definition. For each such implicit operator declaration, the
parameters are called Left and Right for binary operators; the single parameter is called Right for unary
operators. ♦ The predefined operators and their effects are described in subclauses 4.5.1 through 4.5.6.

Dynamic Semantics

11 The predefined operations on integer types either yield the mathematically correct result or raise the
exception Constraint_Error. ♦ ♦

Implementation Requirements

12 The implementation of a predefined operator that delivers a result of an integer ♦ type may raise
Constraint_Error only if the result is outside the base range of the result type.

13 ♦

♦

NOTES
14 11 The two operands of an expression of the form X op Y, where op is a binary operator, are evaluated in an arbitrary

order, as for any function_call (see 6.4).

Note that nothing in this section permits optimization of (1 + System.Max_Int - 1) to System.Max_Int.

14.b AVA Implementation requirement: Optimization of integer expressions.

Examples

15 Examples of precedence:
16 not Sunny or Warm -- same as (not Sunny) or Warm

X > 4 and Y > 0 -- same as (X > 4) and (Y > 0)

AVARM;1.0 Names and Expressions

77 5 October 1995 Operators and Expression Evaluation 4.5

4*A**2 -- same as –(4 * (A**2))
abs(1 + A) + B -- same as (abs (1 + A)) + B
Y**(-3) -- parentheses are necessary
A / B * C -- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

Wording Changes From Ada 83

17.aWe don’t give a detailed definition of precedence, since it is all implicit in the syntax rules anyway.

17.b♦

4.5.1 Logical Operators and Short-circuit Control Forms
Name Resolution Rules

1An expression consisting of two relations connected by and then or or else (a short-circuit control form)
shall resolve to be of some boolean type; the expected type for both relations is that same boolean type.

1.aReason: This rule is written this way so that overload resolution treats the two operands symmetrically; the resolution
of overloading present in either one can benefit from the resolution of the other. Furthermore, the type expected by
context can help.

Static Semantics

2The following logical operators are predefined for every boolean type T ♦ and for every one-dimensional
array type T whose component type is a boolean type4:

3

function "and"(Left, Right : T) return T
function "or" (Left, Right : T) return T
function "xor"(Left, Right : T) return T

3.aTo be honest: For predefined operators, the parameter and result subtypes shown as T are actually the unconstrained
subtype of the type.

4For boolean types, the predefined logical operators and, or, and xor perform the conventional operations
of conjunction, inclusive disjunction, and exclusive disjunction, respectively.

5♦

6The logical operators on arrays are performed on a component-by-component basis on matching com-
ponents (as for equality — see 4.5.2), using the predefined logical operator for the component type. The
bounds of the resulting array are those of the left operand.

Dynamic Semantics

7The short-circuit control forms and then and or else deliver the same result as the corresponding
predefined and and or operators for boolean types, except that the left operand is always evaluated first,
and the right operand is not evaluated if the value of the left operand determines the result.

8For the logical operators on arrays, a check is made that for each component of the left operand there is a
matching component of the right operand, and vice versa. Also, a check is made that each component of
the result belongs to the component subtype. The exception Constraint_Error is raised if either of the
above checks fails.

8.aDiscussion: The check against the component subtype is per AI-00535.

4We had intended to delete these overloadings. Unfortunately that would transform some ambiguous Ada programs into
unambiguous AVA programs.

Names and Expressions AVARM;1.0

4.5.1 Logical Operators and Short-circuit Control Forms 5 October 1995 78

9 The conventional meaning of the logical operators is given by the following truth table:

10

A B (A and B) (A or B) (A xor B)

True True True True False
True False False True True
False True False True True
False False False False False

Examples

11 Examples of logical operators:
12 Sunny or Warm

♦

13 Examples of short-circuit control forms:
14 ♦

Next_Person.Age /= 0 and then 25 / Next_Person.Age < 1 -- see 3.8}
N = 0 or else A(N) = Hit_Value

4.5.2 Relational Operators and Membership Tests
1 The equality operators = (equals) and /= (not equals) are predefined for all types. The other relational_

operators are the ordering operators < (less than), <= (less than or equal), > (greater than), and >=
(greater than or equal). The ordering operators are predefined for scalar types, and for discrete array
types, that is, one-dimensional array types whose components are of a discrete type. ♦

2 A membership test, using in or not in, determines whether or not a value belongs to a given subtype or
range♦. Membership tests are allowed for all types.5

Name Resolution Rules

3 The tested type of a membership test is the type of the range or the type determined by the subtype_mark.
♦ The expected type for the simple_expression is the tested type. ♦

Static Semantics

5 The result type of a membership test is the predefined type Boolean.

6 The equality operators are predefined for every specific type T ♦ with the following specifications:
7 function "=" (Left, Right : T) return Boolean

function "/="(Left, Right : T) return Boolean

8 The ordering operators are predefined for every specific scalar type T, and for every discrete array type T,
with the following specifications:

9 function "<" (Left, Right : T) return Boolean
function "<="(Left, Right : T) return Boolean
function ">" (Left, Right : T) return Boolean
function ">="(Left, Right : T) return Boolean

5They are operations, not operators or functions [AI-00128]. Presumably this is what allows then to take types as arguments.

AVARM;1.0 Names and Expressions

79 5 October 1995 Relational Operators and Membership Tests 4.5.2

Dynamic Semantics

10For discrete types, the predefined relational operators are defined in terms of corresponding mathematical
operations on the position numbers of the values of the operands.

11♦

15For a private type, ♦ predefined equality for the private type is that of its full type.

16For other composite types, the predefined equality operators (and certain other predefined operations on
composite types — see 4.5.1 and 4.6) are defined in terms of the corresponding operation on matching
components, defined as follows:

17• For two composite objects or values of the same non-array type, matching components are
those that correspond to the same component_declaration ♦;

18• For two one-dimensional arrays of the same type, matching components are those (if any)
whose index values match in the following sense: the lower bounds of the index ranges are
defined to match, and the successors of matching indices are defined to match;

19• For two multidimensional arrays of the same type, matching components are those whose
index values match in successive index positions.

20The analogous definitions apply if the types of the two objects or values are convertible, rather than being
the same.

20.aDiscussion: Ada 83 seems to omit this part of the definition, though it is used in array type conversions. See 4.6.

21Given the above definition of matching components, the result of the predefined equals operator for
composite types (other than for those composite types covered earlier) is defined as follows:

22• If there are no components, the result is defined to be True;

23• If there are unmatched components, the result is defined to be False;

24• Otherwise, the result is defined in terms of ♦ the predefined equals for any matching ♦
components. ♦

24.aRamification: Two null arrays of the same type are always equal; two null records of the same type are always equal.

24.bNote that if a composite object has a component of an integer type, and the integer type has both a plus and minus
zero (as on a one’s complement machine), which are considered equal by the predefined equality, then a block
compare cannot be used for the predefined composite equality. ♦

25The predefined "/=" operator gives the complementary result to the predefined "=" operator.

25.aRamification: ♦

26For a discrete array type, the predefined ordering operators correspond to lexicographic order using the
predefined order relation of the component type: A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand is lexicographically less
than the right operand if the first component of the left operand is less than that of the right; otherwise the
left operand is lexicographically less than the right operand only if their first components are equal and
the tail of the left operand is lexicographically less than that of the right (the tail consists of the remaining
components beyond the first and can be null).

27For the evaluation of a membership test, the simple_expression and the range (if any) are evaluated in an
arbitrary order .

28 A membership test using in yields the result True if:

29 • The tested type is scalar, and the value of the simple_expression belongs to the given range,
or the range of the named subtype; or

30 • The tested type is not scalar, and the value of the simple_expression satisfies any constraints
of the named subtype ♦.

31 Otherwise the test yields the result False.

32 A membership test using not in gives the complementary result to the corresponding membership test
using in.

NOTES
33 12 No exception is ever raised by a membership test, by a predefined ordering operator, or by a predefined equality

operator for an elementary type, but an exception can be raised by the evaluation of the operands. ♦

34 13 ♦

Examples

35 Examples of expressions involving relational operators and membership tests:
36 X /= Y

"" < "A" and "A" < "Aa" -- True
"Aa" < "B" and "A" < "A " -- True

♦

N not in 1 .. 10 -- range membership test
Today in Mon .. Fri -- range membership test
Today in Weekday -- subtype membership test (see 3.5.1)
♦

♦
Wording Changes From Ada 83

39.c The term ‘‘membership test’’ refers to the relation "X in S" rather to simply the reserved word in or not in.

39.d We use the term ‘‘equality operator’’ to refer to both the = (equals) and /= (not equals) operators. Ada 83 referred to =
as the equality operator, and /= as the inequality operator. The new wording is more consistent with the ISO 10646
name for "=" (equals sign) and provides a category similar to ‘‘ordering operator’’ to refer to both = and /=.

39.e We have changed the term ‘‘catenate’’ to ‘‘concatenate’’.

4.5.3 Binary Adding Operators
Static Semantics

1 The binary adding operators + (addition) and – (subtraction) are predefined for every specific numeric
type T with their conventional meaning. They have the following specifications:

2 function "+"(Left, Right : T) return T
function "-"(Left, Right : T) return T

3 The concatenation operators & are predefined for every ♦ one-dimensional array type T with component
type C. They have the following specifications:

4 function "&"(Left : T; Right : T) return T
function "&"(Left : T; Right : C) return T
function "&"(Left : C; Right : T) return T
function "&"(Left : C; Right : C) return T

AVARM;1.0 Names and Expressions

81 5 October 1995 Binary Adding Operators 4.5.3

Dynamic Semantics

5For the evaluation of a concatenation with result type T, if both operands are of type T, the result of the
concatenation is a one-dimensional array whose length is the sum of the lengths of its operands, and
whose components comprise the components of the left operand followed by the components of the right
operand. If the left operand is a null array, the result of the concatenation is the right operand. Otherwise,
the lower bound of the result is determined as follows:

6• If the ♦ array type was defined by a constrained_array_definition, then the lower bound of
the result is that of the index subtype;

6.aReason: This rule avoids Constraint_Error when using concatenation on an array type whose first subtype is
constrained.

7• If the ♦ array type was defined by an unconstrained_array_definition, then the lower bound
of the result is that of the left operand.

8The upper bound is determined by the lower bound and the length. A check is made that the upper bound
of the result of the concatenation belongs to the range of the index subtype, unless the result is a null
array. Constraint_Error is raised if this check fails.

9If either operand is of the component type C, the result of the concatenation is given by the above rules,
using in place of such an operand an array having this operand as its only component (converted to the
component subtype) and having the lower bound of the index subtype of the array type as its lower
bound.

9.aRamification: ♦

10The result of a concatenation is defined in terms of an assignment to an anonymous object, as for any
function call (see 6.5).

10.aRamification: ♦

♦
Examples

12Examples of expressions involving binary adding operators:
13♦

"A" & "BCD" -- concatenation of two string literals
’A’ & "BCD" -- concatenation of a character literal and a string literal
’A’ & ’A’ -- concatenation of two character literals

Inconsistencies With Ada 83

14.aThe lower bound of the result of concatenation, for a type whose first subtype is constrained, is now that of the index
subtype. This is inconsistent with Ada 83, but generally only for Ada 83 programs that raise Constraint_Error. For
example, the concatenation operator in

15X : array(1..10) of Integer;
begin
X := X(6..10) & X(1..5);

15.awould raise Constraint_Error in Ada 83 (because the bounds of the result of the concatenation would be 6..15, which is
outside of 1..10), but would succeed and swap the halves of X (as expected) in Ada 95.

Extensions to Ada 83

15.bConcatenation is now useful for array types whose first subtype is constrained. When the result type of a concatenation
is such an array type, Constraint_Error is avoided by effectively first sliding the left operand (if nonnull) so that its
lower bound is that of the index subtype.

Names and Expressions AVARM;1.0

4.5.4 Unary Adding Operators 5 October 1995 82

4.5.4 Unary Adding Operators
Static Semantics

1 The unary adding operators + (identity) and – (negation) are predefined for every specific numeric type T
with their conventional meaning. They have the following specifications:

2 function "+"(Right : T) return T
function "-"(Right : T) return T

♦

4.5.5 Multiplying Operators
Static Semantics

1 The multiplying operators * (multiplication), / (division), mod (modulus), and rem (remainder) are
predefined for every specific integer type T:

2 function "*" (Left, Right : T) return T
function "/" (Left, Right : T) return T
function "mod"(Left, Right : T) return T
function "rem"(Left, Right : T) return T

3 Signed integer multiplication has its conventional meaning.

4 Signed integer division and remainder are defined by the relation:
5 A = (A/B)*B + (A rem B)

6 where (A rem B) has the sign of A and an absolute value less than the absolute value of B. Signed integer
division satisfies the identity:

7 (-A)/B = -(A/B) = A/(-B)

8 The signed integer modulus operator is defined such that the result of A mod B has the sign of B and an
absolute value less than the absolute value of B; in addition, for some signed integer value N, this result
satisfies the relation:

9 A = B*N + (A mod B)

10 ♦

Dynamic Semantics

21 ♦

22 The exception Constraint_Error is raised by integer division, rem, and mod if the right operand is zero.
♦

NOTES
23 17 For positive A and B, A/B is the quotient and A rem B is the remainder when A is divided by B. The following

relations are satisfied by the rem operator:

24 A rem (-B) = A rem B
(-A) rem B = -(A rem B)

25 18 For any signed integer K, the following identity holds (ignoring exceptions):

26 A mod B = (A + K*B) mod B

27 The relations between signed integer division, remainder, and modulus are illustrated by the following table:

28 A B A/B A rem B A mod B A B A/B A rem B A mod B

AVARM;1.0 Names and Expressions

83 5 October 1995 Multiplying Operators 4.5.5

10 5 2 0 0 -10 5 -2 0 0
11 5 2 1 1 -11 5 -2 -1 4
12 5 2 2 2 -12 5 -2 -2 3
13 5 2 3 3 -13 5 -2 -3 2
14 5 2 4 4 -14 5 -2 -4 1

A B A/B A rem B A mod B A B A/B A rem B A mod B
10 -5 -2 0 0 -10 -5 2 0 0
11 -5 -2 1 -4 -11 -5 2 -1 -1
12 -5 -2 2 -3 -12 -5 2 -2 -2
13 -5 -2 3 -2 -13 -5 2 -3 -3
14 -5 -2 4 -1 -14 -5 2 -4 -4

Examples

31Examples of expressions involving multiplying operators:
32I : Integer := 1;

J : Integer := 2;
K : Integer := 3;

♦

35

Expression Value Result Type

I*J 2 same as I and J, that is, Integer
K/J 1 same as K and J, that is, Integer
K mod J 1 same as K and J, that is, Integer

♦

♦
Wording Changes From Ada 83

35.cWe have used the normal syntax for function definition rather than a tabular format.

4.5.6 Highest Precedence Operators
Static Semantics

1The highest precedence unary operator abs (absolute value) is predefined for every specific numeric type
T, with the following specification:

2function "abs"(Right : T) return T

3The highest precedence unary operator not (logical negation) is predefined for every boolean type T, ♦
and for every one-dimensional array type T whose components are of a boolean type, with the following
specification:

4function "not"(Right : T) return T

5♦

6The operator not that applies to a one-dimensional array of boolean components yields a one-dimensional
boolean array with the same bounds; each component of the result is obtained by logical negation of the
corresponding component of the operand (that is, the component that has the same index value). A check
is made that each component of the result belongs to the component subtype; the exception Constraint_
Error is raised if this check fails.

6.aDiscussion: The check against the component subtype is per AI-00535.

Names and Expressions AVARM;1.0

4.5.6 Highest Precedence Operators 5 October 1995 84

7 The highest precedence exponentiation operator ** is predefined for every specific integer type T with the
following specification:

8 function "**"(Left : T; Right : Natural) return T

9 ♦

11 The right operand of an exponentiation is the exponent. The expression X**N with the value of the
exponent N positive is equivalent to the expression X*X*...X (with N–1 multiplications) except that the
multiplications are associated in an arbitrary order . With N equal to zero, the result is one. ♦

♦

NOTES
13 19 As implied by the specification given above for exponentiation of an integer type, a check is made that the exponent is

not negative. Constraint_Error is raised if this check fails.

Wording Changes From Ada 83

13.a We now show the specification for "**" for integer types with a parameter subtype of Natural rather than Integer for
the exponent. This reflects the fact that Constraint_Error is raised if a negative value is provided for the exponent.

4.6 Type Conversions
1 Explicit type conversions ♦ are allowed between closely related types as defined below. This clause also

defines rules for value ♦ conversions to a particular subtype of a type, both explicit ones and those
implicit in other constructs.

Syntax

2 type_conversion ::=
subtype_mark(expression)

| ♦

3 The target subtype of a type_conversion is the subtype denoted by the subtype_mark. The operand of a
type_conversion is the expression ♦ within the parentheses; its type is the operand type.

4 One type is convertible to a second type if a type_conversion with the first type as operand type and the
second type as target type is legal according to the rules of this clause. Two types are convertible if each
is convertible to the other.

4.a Ramification: Note that ‘‘convertible’’ is defined in terms of legality of the conversion. Whether the conversion
would raise an exception at run time is irrelevant to this definition.

5 ♦ ♦ Type_conversions are called value conversions.

Abstract Syntax

6

convert ∈ TypeConvert == convert type expr

Name Resolution Rules

7 The operand of a type_conversion is expected to be of any type.
7.a Discussion: This replaces the "must be determinable" wording of Ada 83. This is equivalent to (but hopefully more

intuitive than) saying that the operand of a type_conversion is a ‘‘complete context.’’

AVARM;1.0 Names and Expressions

85 5 October 1995 Type Conversions 4.6

8♦ The operand of a value conversion is interpreted as an expression.

Legality Rules

9If the target type is a numeric type, then the operand type shall be a numeric type.

10If the target type is an array type, then the operand type shall be an array type. Further:

11• The types shall have the same dimensionality;

12• Corresponding index types shall be convertible; and

13• The component subtypes shall statically match.

Static Semantics

25A type_conversion that is a value conversion denotes the value that is the result of converting the value of
the operand to the target subtype.

26♦

27The nominal subtype of a type_conversion is its target subtype.

Dynamic Semantics

28For the evaluation of a type_conversion ♦ the operand is evaluated, and then the value of the operand is
converted to a corresponding value of the target type, if any. If there is no value of the target type that
corresponds to the operand value, Constraint_Error is raised♦. Additional rules follow:

29• Numeric Type Conversion

30• ♦ The result is the value of the target type that corresponds to the same mathematical
integer as the operand.

31• ♦

32• ♦

33• ♦

34• Enumeration Type Conversion
35• The result is the value of the target type with the same position number as that of the

operand value.

36• Array Type Conversion
37• If the target subtype is a constrained array subtype, then a check is made that the length

of each dimension of the value of the operand equals the length of the corresponding
dimension of the target subtype. The bounds of the result are those of the target
subtype.

38• If the target subtype is an unconstrained array subtype, then the bounds of the result are
obtained by converting each bound of the value of the operand to the corresponding
index type of the target type. For each nonnull index range, a check is made that the
bounds of the range belong to the corresponding index subtype.

38.aDiscussion: Only nonnull index ranges are checked, per AI-00313.

39• In either array case, the value of each component of the result is that of the matching
component of the operand value (see 4.5.2). ♦

40• ♦

Names and Expressions AVARM;1.0

4.6 Type Conversions 5 October 1995 86

41 • ♦

51 After conversion of the value to the target type, if the target subtype is constrained, a check is performed
that the value satisfies this constraint.

51.a Ramification: The above check is a Range_Check for scalar subtypes♦. The Length_Check for an array conversion
is performed as part of the conversion to the target type.

52 ♦

53 ♦

57 ♦ Any ♦ check associated with a conversion raises Constraint_Error if it fails.

58 Conversion to a type is the same as conversion to an unconstrained subtype of the type.
58.a Reason: This definition is needed because the semantics of various constructs involves converting to a type, whereas

an explicit type_conversion actually converts to a subtype. For example, the evaluation of a range is defined to convert
the values of the expressions to the type of the range.

58.b Ramification: A conversion to a scalar type, or, equivalently, to an unconstrained scalar subtype, can raise
Constraint_Error if the value is outside the base range of the type.

NOTES
59 20 In addition to explicit type_conversions, type conversions are performed implicitly in situations where the expected

type and the actual type of a construct differ, as is permitted by the type resolution rules (see 8.6). For example, an integer
literal is of the type universal_integer, and is implicitly converted when assigned to a target of some specific integer type.
♦

60 Even when the expected and actual types are the same, implicit subtype conversions are performed to adjust the array
bounds (if any) of an operand to match the desired target subtype, or to raise Constraint_Error if the (possibly adjusted)
value does not satisfy the constraints of the target subtype.

61 21 A ramification of the overload resolution rules is that the operand of an (explicit) type_conversion cannot be ♦ an
aggregate, a string_literal, or a character_literal♦. Similarly, such an expression enclosed by parentheses is not allowed. A
qualified_expression (see 4.7) can be used instead of such a type_conversion.

62 22 ♦

Examples

63 ♦

69 Examples of conversions between array types:
70 type Sequence is array (Integer range <>) of Integer;

subtype Dozen is Sequence(1 .. 12);
Ledger : array Integer range (1 .. 100) of Integer;

Sequence(Ledger) -- bounds are those of Ledger
♦

Incompatibilities With Ada 83

71.a A character_literal is not allowed as the operand of a type_conversion, since there are now two character types in
package Standard.

71.b The component subtypes have to statically match in an array conversion, rather than being checked for matching
constraints at run time.

Extensions to Ada 83

71.c ♦

71.d ‘‘Sliding’’ of array bounds (which is part of conversion to an array subtype) is performed in more cases in Ada 95 than
in Ada 83. Sliding is not performed on the operand of a membership test, nor on the operand of a qualified_expression.
It wouldn’t make sense on a membership test, and we wish to retain a connection between subtype membership and

AVARM;1.0 Names and Expressions

87 5 October 1995 Type Conversions 4.6

subtype qualification. In general, a subtype membership test returns True if and only if a corresponding subtype
qualification succeeds without raising an exception. Other operations that take arrays perform sliding.

Wording Changes From Ada 83

71.eWe no longer explicitly list the kinds of things that are not allowed as the operand of a type_conversion, except in a
NOTE.

71.f♦

4.7 Qualified Expressions
1A qualified_expression is used to state explicitly the type, and to verify the subtype, of an operand that is

either an expression or an aggregate.

Syntax

2qualified_expression ::=
subtype_mark’(expression) | subtype_mark’aggregate

Name Resolution Rules

3The operand (the expression or aggregate) shall resolve to be of the type determined by the subtype_
mark, or a universal type that covers it.

Abstract Syntax

4

qualified ∈ Qualified == qualified type expr

Dynamic Semantics

5The evaluation of a qualified_expression evaluates the operand (and if of a universal type, converts it to
the type determined by the subtype_mark) and checks that its value belongs to the subtype denoted by the
subtype_mark. The exception Constraint_Error is raised if this check fails.

5.aRamification: This is one of the few contexts in Ada 95 where implicit subtype conversion is not performed prior to a
constraint check, and hence no ‘‘sliding’’ of array bounds is provided.

5.bReason: Implicit subtype conversion is not provided because a qualified_expression with a constrained target subtype
is essentially an assertion about the subtype of the operand, rather than a request for conversion. An explicit type_
conversion can be used rather than a qualified_expression if subtype conversion is desired.

NOTES
623 When a given context does not uniquely identify an expected type, a qualified_expression can be used to do so. In

particular, if an overloaded name or aggregate is passed to an overloaded subprogram, it might be necessary to qualify the
operand to resolve its type.

Examples

7Examples of disambiguating expressions using qualification:
8type Mask is (Fix, Dec, Exp, Signif);

type Code is (Fix, Cla, Dec, Tnz, Sub);

Print (Mask’(Dec)); -- Dec is of type Mask
Print (Code’(Dec)); -- Dec is of type Code

for J in Code’(Fix) .. Code’(Dec) loop ... -- qualification needed for either Fix or Dec
for J in Code range Fix .. Dec loop ... -- qualification unnecessary
for J in Code’(Fix) .. Dec loop ... -- qualification unnecessary for Dec

♦

Names and Expressions AVARM;1.0

4.8 Allocators -- Removed 5 October 1995 88

4.8 Allocators -- Removed

4.9 Static Expressions and Static Subtypes
1 Certain expressions of a scalar or string type are defined to be static. Similarly, certain discrete ranges are

defined to be static, and certain scalar and string subtypes are defined to be static subtypes. Static means
determinable at compile time, using the declared properties or values of the program entities.

1.a Discussion: As opposed to more elaborate data flow analysis, etc.

Language Design Principles

1.b For an expression to be static, it has to be calculable at compile time.

1.c Only scalar ♦ expressions are static.

1.d To be static, an expression cannot have any nonscalar♦ subexpressions ♦. A static scalar expression cannot have any
nonscalar subexpressions. There is one exception — a membership test for a string subtype can be static, and the result
is scalar, even though a subexpression is nonscalar.

1.e The rules for evaluating static expressions are designed to maximize portability of static calculations.

2 A static expression is a a scalar or string expression that is one of the following:

3 • a numeric_literal;
3.a Ramification: A numeric_literal is always a static expression, even if its expected type is not that of a static

subtype. However, if its value is explicitly converted to, or qualified by, a nonstatic subtype, the resulting
expression is nonstatic.

4 • ♦

5 • a name that denotes the declaration of a named number or a static constant;
5.a Ramification: Note that enumeration literals are covered by the function_call case.

6 • a function_call whose function_name or function_prefix statically denotes a static function,
and whose actual parameters, if any (whether given explicitly or by default), are all static
expressions;

6.a Ramification: This includes uses of operators that are equivalent to function_calls.

7 • an attribute_reference that denotes a scalar value, and whose prefix denotes a static scalar
subtype;

7.a Ramification: Note that this does not include the case of an attribute that is a function; a reference to such an
attribute is not even an expression. See above for function calls.

7.b An implementation may define the staticness and other properties of implementation-defined attributes.

8 • ♦

9 • ♦

10 • a qualified_expression whose subtype_mark denotes a static (scalar or string) subtype, and
whose operand is a static expression;

10.a Ramification: This rules out the subtype_mark’aggregate case.

10.b Reason: Adding qualification to an expression shouldn’t make it nonstatic, even for strings.

11 • ♦

12 • ♦

13 • a static expression enclosed in parentheses.

AVARM;1.0 Names and Expressions

89 5 October 1995 Static Expressions and Static Subtypes 4.9

13.aDiscussion: Informally, we talk about a static value. When we do, we mean a value specified by a static expression.

13.bRamification: The language requires a static expression in a number_declaration, a numeric type definition, and a
discrete_choice (sometimes)♦

14A name statically denotes an entity if it denotes the entity and:

15• It is a direct_name, expanded name, or character_literal, and it denotes a declaration other
than a renaming_declaration; or

16• It is an attribute_reference whose prefix statically denotes some entity; or

17• It denotes a renaming_declaration with a name that statically denotes the renamed entity.
17.aRamification: Selected_components that are not expanded names and indexed_components do not statically denote

things.

18A static function is one of the following:
18.aRamification: These are the functions whose calls can be static expressions.

19• a predefined operator whose parameter and result types are all scalar types ♦;

20• a predefined concatenation operator ♦;

21• an enumeration literal;

22• a language-defined attribute that is a function, if the prefix denotes a static scalar subtype, and
if the parameter and result types are scalar.

23♦

24A static constant is a constant view declared by a full constant declaration or an object_renaming_
declaration with a static nominal subtype, having a value defined by a static scalar expression ♦.

24.aRamification: A deferred constant is not static; the view introduced by the corresponding full constant declaration can
be static.

♦

25A static range is a range whose bounds are static expressions, or a range_attribute_reference that is
equivalent to such a range. A static discrete_range is one that is a static range or is a subtype_indication
that defines a static scalar subtype. The base range of a scalar type is a static range ♦.

26A static subtype is ♦ a static scalar subtype ♦. A static scalar subtype is an unconstrained scalar subtype
♦ or a constrained scalar subtype formed by imposing a compatible static constraint on a static scalar
subtype. ♦

27The different kinds of static constraint are defined as follows:

28• A null constraint is always static;

29• A scalar constraint is static if it has no range_constraint, or one with a static range;

30• An index constraint is static if each discrete_range is static, and each index subtype of the
corresponding array type is static;

31• ♦

32A subtype is statically constrained if it is constrained, and its constraint is static. An object is statically
constrained if its nominal subtype is statically constrained, or if it is a static string constant.

Names and Expressions AVARM;1.0

4.9 Static Expressions and Static Subtypes 5 October 1995 90

Legality Rules

33 A static expression is evaluated at compile time except when it is part of the right operand of a static
short-circuit control form whose value is determined by its left operand. This evaluation is performed
exactly, without performing Overflow_Checks. For a static expression that is evaluated:

34 • The expression is illegal if its evaluation fails a language-defined check other than Overflow_
Check.

35 • If the expression is not part of a larger static expression, then its value shall be within the
base range of its expected type. Otherwise, the value may be arbitrarily large or small.

36 • If the expression is of type universal_real and its expected type is a decimal fixed point type,
then its value shall be a multiple of the small of the decimal type.

36.a Ramification: This means that a numeric_literal for a decimal type cannot have ‘‘extra’’ significant digits.

37 The last two restrictions above do not apply if the expected type is a descendant of a formal scalar type
(or a corresponding actual type in an instance).

37.a Discussion: Values outside the base range are not permitted when crossing from the ‘‘static’’ domain to the
‘‘dynamic’’ domain. This rule is designed to enhance portability of programs containing static expressions. Note that
this rule applies to the exact value, not the value after any rounding or truncation. (See below for the rounding and
truncation requirements.)

37.b Short-circuit control forms are a special case:

37.c N: constant := 0.0;
X: constant Boolean := (N = 0.0) or else (1.0/N > 0.5); -- Static.

37.d The declaration of X is legal, since the divide-by-zero part of the expression is not evaluated. X is a static constant
equal to True.

37.e Reason: There is no requirement to recheck these rules in an instance; the base range check will generally be
performed at run time anyway.

36 ♦

♦

NOTES
36 28 An expression can be static even if it occurs in a context where staticness is not required.

36.a Ramification:

36.b The following kinds of expressions are never static: ♦ indexed_component, ♦ aggregate♦.

37 29 ♦

37.a Implementation Note: The value of the literal 0E999 is zero.
The implementation must take care to evaluate such literals properly.

Examples

41 Examples of static expressions:
42 1 + 1 -- 2

abs(-10)*3 -- 30

Kilo : constant := 1000;
Mega : constant := Kilo*Kilo; -- 1_000_000
♦

Extensions to Ada 83

41.a The rules for static expressions and static subtypes are generalized to allow more kinds of compile-time-known
expressions to be used where compile-time-known values are required, as follows:

AVARM;1.0 Names and Expressions

91 5 October 1995 Static Expressions and Static Subtypes 4.9

42• Membership tests and short-circuit control forms may appear in a static expression.

43• The bounds and length of statically constrained array objects or subtypes are static.

44• The Range attribute of a statically constrained array subtype or object gives a static range.

45• A type_conversion is static if the subtype_mark denotes a static scalar subtype and the operand is a static
expression.

46• All numeric literals are now static♦. ♦ ♦

46.aThe rules for the evaluation of static expressions are revised to require exact evaluation at compile time ♦ to enhance
portability and predictability. ♦.

46.bstatic expressions are legal even if an intermediate in the expression goes outside the base range of the type. Therefore,
the following will succeed in Ada 95, whereas it might raise an exception in Ada 83:

47type Short_Int is range -32_768 .. 32_767;
I : Short_Int := -32_768;

47.aThis might raise an exception in Ada 83 because "32_768" is out of range, even though "–32_768" is not. In Ada 95,
this will always succeed. Certain expressions involving string operations (in particular concatenation and membership
tests) are considered static in Ada 95.

47.bThe reason for this change is to simplify the rule requiring compile-time-known string expressions as the link name in
an interfacing pragma, and to simplify the preelaborability rules.

Incompatibilities With Ada 83

47.cAn Ada 83 program that uses an out-of-range static value is illegal in Ada 95, unless the expression is part of a larger
static expression, or the expression is not evaluated due to being on the right-hand side of a short-circuit control form.

Wording Changes From Ada 83

47.dThis clause (and 4.5.5, ‘‘Multiplying Operators’’) subsumes the RM83 section on Universal Expressions.

47.eThe existence of static string expressions necessitated changing the definition of static subtype to include string
subtypes. Most occurrences of "static subtype" have been changed to "static scalar subtype", in order to preserve the
effect of the Ada 83 rules. This has the added benefit of clarifying the difference between "static subtype" and
"statically constrained subtype", which has been a source of confusion. In cases where we allow static string subtypes,
we explicitly use phrases like "static string subtype" or "static (scalar or string) subtype", in order to clarify the
meaning for those who have gotten used to the Ada 83 terminology.

47.fIn Ada 83, an expression was considered nonstatic if it raised an exception. Thus, for example:

47.gBad: constant := 1/0; -- Illegal!

was illegal because 1/0 was not static. In Ada 95, the above example is still illegal, but for a different reason: 1/0 is
static, but there’s a separate rule forbidding the exception raising.

FORMAL NOTES
48We have allowed the semantics of static expressions to remain unchanged from Ada95. We were previously concerned

about having two different models of arithmetic to worry about. But that problem is present anyway, given mathematical
integers and Integers. It is still unclear whether this approach will work, or whether we really end up with three models.

4.9.1 Statically Matching Constraints and Subtypes
Static Semantics

1A constraint statically matches another constraint if both are null constraints, both are static and have
equal corresponding bounds ♦, or both are nonstatic and result from the same elaboration of a constraint
of a subtype_indication or the same evaluation of a range of a discrete_subtype_definition.

2A subtype statically matches another subtype of the same type if they have statically matching con-
straints. ♦

2.aRamification: Statically matching constraints and subtypes are the basis for subtype conformance of profiles (see
6.3.1).

Names and Expressions AVARM;1.0

4.9.1 Statically Matching Constraints and Subtypes 5 October 1995 92

3 Two ranges of the same type statically match if both result from the same evaluation of a range, or if both
are static and have equal corresponding bounds. ♦

4 A constraint is statically compatible with a scalar subtype if it statically matches the constraint of the
subtype, or if both are static and the constraint is compatible with the subtype. A constraint is statically
compatible with ♦ a composite subtype if it statically matches the constraint of the subtype, or if the
subtype is unconstrained. One subtype is statically compatible with a second subtype if the constraint of
the first is statically compatible with the second subtype.

4.a Discussion: ♦

4.b Note that statically compatible with a subtype does not imply compatible with a type. It is OK since the terms are used
in different contexts.

Wording Changes From Ada 83

4.c This subclause is new to Ada 95.

4.10 Logical Expressions
1 A logical expression is a formula that defines a value in the ACL2 logic. The syntax of

logical_expression is simply an extension of expression syntax to annotation contexts. While
logical_expression syntax includes expression, the interpretation of expressions is quite different within a
logical context. For example there is no ambiguity between function_call and indexed_component. Ex-
pressions of the form ‘‘name(arg1, ...)’’ are always function or macro calls within the ACL2 logic.
Logical contexts permit functions of no arguments.

2

Syntax

3 logical_expression ::=
expression

| env_expression
| if logical_expression

then expression
else expression

fi
| logical_expression iff logical_expression
| logical_expression implies logical_expression
| all identifier [in logical_expression] , logical_expression

4 env_expression ::=
@ identifier

| in expression
| out expression

Abstract Syntax

5

list ∈ List == lexpr*

LLiteral ∈ LLiteral == sym | literal | t | nil | list

LO2 ∈ BinaryLOperators == LOl | LO= | LO+ | LO* | LOop
LO∧ == in | not-in | isin | not-isin | iff | -> | and | or
LO= == = | .. | ne | lt | gt | le | ge

AVARM;1.0 Names and Expressions

93 5 October 1995 Logical Expressions 4.10

LO+ == + | - | &
LO* == * | / | mod | rem
LOop == append | power
LO1 ∈ UnaryOperators == abs | minus | not

function-call ∈ FunctionCall == sym lexpr*

instate ∈ InState == instate lexpr
outstate ∈ OutState == outstate lexpr

forall ∈ Forall == forall id lexpr lexpr
if ∈ If == if lexpr lexpr lexpr
set ∈ Set == set lexpr lexpr lexpr E.g. foo[i := 10]
get ∈ Get == get lexpr lexpr E.g. foo[10]

assoc ∈ Assoc == assoc lexpr lexpr
lookup ∈ Lookup == lookup sym vs
in-range ∈ InRange == in-range lexpr lexpr

lexpr ∈ LExpr == LLiteral | lexpr LO2 lexpr | LO1 lexpr
forall | if | get | set | assoc | lookup |
in-range | function-call | instate outstate

Name Resolution Rules

6The names in logical_expressions must resolve to logical variables, functions, or macros unless they are
prefixed by @, in which case they must reference program identifiers.

Formal Dynamic Semantics

7The semantics of expressions contained in logical expressions are different from the normal Ada seman-
tics. See the table below for the tranlation from infix operators to the corresponding ACL2 function
names. The operational meaning of these expressions depends on the annotation context in which they
appear.

8The ‘‘@’’ operator provides the fundamental communication between the Ada state and ACL2. An Ada
variable prefixed by @, say @x, is interpreted to mean the value of the variable in the state, which
defaults to the current state. A state is actually a tuple consisting of a value stack (for function evalua-
tion), an entity stack (containing mappings from unique identifiers to subprogram bodies and objects,
including their type and value), and an assertion stack (to hold the logical forms that must evaluate to true
in the current context).

9The in operator establishes an environment within which the state is the initial state, as defined by the
surrounding logical context. The out operator establishes an environment within which the state is the
current state. Thus a subprogram annotion of the form ‘‘in @x + @y = out @x + @y’’ asserts that the
sum of two variables is identical in the initial state (before the execution of the procedure body) and the
current state (after the execution of the procedure body). This could be stated without using out, but it is
sometimes clearer.

10If then else provides the functionality of the ACL2 ‘‘cond’’.

Names and Expressions AVARM;1.0

4.10 Logical Expressions 5 October 1995 94

11

Operator Translations

Operator ACL2 Function

implies, iff implies, iff

and, or and, or

in member-equal

= equal

& append

+, - +, -

*, /, mod, rem *, /, mod, rem

**, abs, not expt, abs, not

[a, b, c] (list a b c)

x[i := 1] (set-t x i 1)

x[i] (get-t x i)

AVARM;1.0 Statements

95 5 October 1995 Statements 5

5. Statements
1A statement defines an action to be performed upon its execution.

2This section describes the general rules applicable to all statements. Some statements are discussed in
later sections: Procedure_call_statements and return_statements are described in Section 6, ‘‘Sub-
programs’’. ♦ Raise_statements are described in Section 11, ‘‘Exceptions’’♦. The remaining forms of
statements are presented in this section.

Wording Changes From Ada 83

2.aThe description of return_statements has been moved to 6.5, ‘‘Return Statements’’, so that it is closer to the description
of subprograms.

5.1 Simple and Compound Statements - Sequences of Statements
1A statement is either simple or compound. A simple_statement encloses no other statement. A

compound_statement can enclose simple_statements and other compound_statements.

Syntax

2sequence_of_statements ::= statement {statement}

3statement ::=
♦ simple_statement | ♦ ava_compound_statement

4simple_statement ::=
null_statement | assert_annotation

| assignment_statement | exit_statement
| ♦ | procedure_call_statement
| return_statement | ♦
| ♦ | ♦
| ♦ | raise_statement
| ♦

5compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement

6ava_compound_statement ::= compound_statement [transitin_annotation]

7null_statement ::= null;

8♦
9♦

14♦

Abstract Syntax

15

null ∈ Null == null

Dynamic Semantics

13The execution of a null_statement has no effect.

14A transfer of control is the run-time action of an exit_statement or return_statement♦ or the raising of an
exception, ♦ which causes the next action performed to be one other than what would normally be
expected from the other rules of the language.

Statements AVARM;1.0

5.1 Simple and Compound Statements - Sequences of Statements 5 October 1995 96

15 The execution of a sequence_of_statements consists of the execution of the individual statements in
succession until the sequence_ is completed.

15.a Ramification: It could be completed by reaching the end of it, or by a transfer of control.

The elaboration of a transition_annotation of an ava_compound_statement asserts it as an invariant
throughout the execution of the compound_statement. An invariant must be true after every simple
statement within the scope of the compound_statement.

Dynamic Semantics

16 .

♦
Wording Changes From Ada 83

19.a ♦

19.b Completion includes completion caused by a transfer of control, although RM83-5.1(6) did not take this view.

5.2 Assignment Statements
1 An assignment_statement replaces the current value of a variable with the result of evaluating an

expression.

Syntax

2 assignment_statement ::=
variable_name := expression;

3 The execution of an assignment_statement includes the evaluation of the expression and the assignment
of the value of the expression into the target. An assignment operation (as opposed to an assignment_
statement) is performed in other contexts as well, including object initialization and by-copy parameter
passing. The target of an assignment operation is the view of the object to which a value is being
assigned; the target of an assignment_statement is the variable denoted by the variable_name.

3.a Discussion: ♦

3.b Don’t confuse the term ‘‘assignment operation’’ with the assignment_statement. The assignment operation is just one
part of the execution of an assignment_statement. The assignment operation is also a part of the execution of various
other constructs; see 7.6.1, ‘‘Completion and Finalization’’ for a complete list. Note that when we say, ‘‘such-and-
such is assigned to so-and-so’’, we mean that the assignment operation is being applied, and that so-and-so is the target
of the assignment operation.

3.c

Abstract Syntax

4

assign ∈ Assign == assign name expr

Name Resolution Rules

5 The variable_name of an assignment_statement is expected to be of any ♦ type. The expected type for
the expression is the type of the target.

5.a Implementation Note: An assignment_statement as a whole is a "complete context," so if the variable_name of an
assignment_statement is overloaded, the expression can be used to help disambiguate it. ♦

AVARM;1.0 Statements

97 5 October 1995 Assignment Statements 5.2

Legality Rules

6The target denoted by the variable_name shall be a variable.

7♦

Dynamic Semantics

8For the execution of an assignment_statement, the variable_name and the expression are first evaluated
in an arbitrary order.

8.aRamification: Other rules of the language may require that the bounds of the variable be determined prior to
evaluating the expression, but that does not necessarily require evaluation of the variable_name, as pointed out by the
ACID.

9♦

11The value of the expression is converted to the subtype of the target. The conversion might raise an
exception (see 4.6).

11.aRamification: 4.6, ‘‘Type Conversions’’ defines what actions and checks are associated with subtype conversion. For
non-array subtypes, it is just a constraint check presuming the types match. For array subtypes, it checks the lengths
and slides if the target is constrained. ‘‘Sliding’’ means the array doesn’t have to have the same bounds, so long as it is
the same length.

12♦ ♦ The converted value of the expression is then assigned to the target♦.

♦
Examples

17Examples of assignment statements:
18Value := Max_Value - 1;

Shade := Blue;

19♦
U := Dot_Product(V, W); -- see 6.3

20♦
Birthdate := (Day => 1, Month => May, Year => 1960); -- see 3.8

21Examples involving scalar subtype conversions:
22I, J : Integer range 1 .. 10 := 5;

K : Integer range 1 .. 20 := 15;
...

23I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise Constraint_Error if K > 10

24Examples involving array subtype conversions:
25♦

subtype low_index is integer range 1..20;
subtype high_index is integer range 3..22;
subtype S1 is STRING(low_index);
subtype S2 is STRING(high_index);

26A : S1 := "This is a test. ";
B : S2 := A; -- same number of components

NOTES
281 ♦

♦

Statements AVARM;1.0

5.2 Assignment Statements 5 October 1995 98

Wording Changes From Ada 83

28.b The special case of array assignment is subsumed by the concept of a subtype conversion, which is applied for all kinds
of types, not just arrays. ♦ For numeric types it provides conversion of a value of a universal type to the specific type
of the target. For other types, it generally has no run-time effect, other than a constraint check.

28.c ♦

5.3 If Statements
1 An if_statement selects for execution at most one of the enclosed sequences_of_statements, depending

on the (truth) value of one or more corresponding conditions.

Syntax

2 if_statement ::=
if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

3 condition ::= boolean_expression

Name Resolution Rules

4 A condition is expected to be of ♦ boolean type.

Abstract Syntax

5

ifarm ∈ IfArm == ifarm expr stmt*

if-stmt ∈ IfStmt == if-stmt ifarm*

Dynamic Semantics

6 For the execution of an if_statement, the condition specified after if, and any conditions specified after
elsif, are evaluated in succession (treating a final else as elsif True then), until one evaluates to True or all
conditions are evaluated and yield False. If a condition evaluates to True, then the corresponding
sequence_of_statements is executed; otherwise none of them is executed.

6.a Ramification: The part about all evaluating to False can’t happen if there is an else, since that is herein considered
equivalent to elsif True then.

Examples

7 Examples of if statements:
8 if Month = December and Day = 31 then

Month := January;
Day := 1;
Year := Year + 1;

end if;

9 if Line_Too_Short then
raise Program_Error;

elsif Line_Full then
Put(Ofile, EOL);
Put(Ofile, Item);

else
Put(Ofile, Item);

end if;

AVARM;1.0 Statements

99 5 October 1995 If Statements 5.3

10♦
if Next_Person.Vehicle.Owner /= Next_Person.Name then -- see 3.8

Report ("Incorrect data");
end if;

5.4 Case Statements
1A case_statement selects for execution one of a number of alternative sequences_of_statements; the

chosen alternative is defined by the value of an expression.6

Syntax

2case_statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

3case_statement_alternative ::=
when discrete_choice_list =>

sequence_of_statements

3discrete_choice_list ::= discrete_choice {| discrete_choice}

3discrete_choice ::= expression | discrete_range | others

Name Resolution Rules

4The expression is expected to be of any discrete type. The expected type for each discrete_choice is the
type of the expression.

Abstract Syntax

5

casearm ∈ CaseArm == casearm choices stmt*

case-stmt ∈ CaseStmt == case-stmt expr casearm*

Legality Rules

4A discrete_choice is defined to cover a value7 in the following cases:

5• A discrete_choice that is an expression covers a value if the value equals the value of the
expression converted to the expected type.

6• A discrete_choice that is a integer_range covers all values (possibly none) that belong to the
range.

7• The discrete_choice others covers all values of its expected type that are not covered by
previous discrete_choice_lists of the same construct.8

7.aRamification: For case_statements, this includes values outside the range of the static subtype (if any) to be
covered by the choices. ♦

6The grammar productions for discrete_choice_list and discrete_choice appeared in Section 3.8.1 of Ada95 Standard, but were
moved here because that section has been removed from the AVA report.

7This paragraph extracted from section 3.8.1 of the AARM.

8Note that subsets of Ada that are concerned with safety rule out the use of others in order that all possible choices will be
explicitly covered in the case statement.

Statements AVARM;1.0

5.4 Case Statements 5 October 1995 100

4 A discrete_choice_list covers a value if one of its discrete_choices covers the value.

5 The expressions and discrete_ranges given as discrete_choices of a case_statement shall be static. A
discrete_choice others, if present, shall appear alone and in the last discrete_choice_list.

6 The possible values of the expression shall be covered as follows:

7 • If the expression is a name (including a type_conversion or a function_call) having a static
and constrained nominal subtype, or is a qualified_expression whose subtype_mark denotes a
static and constrained scalar subtype, then each non-others discrete_choice shall cover only
values in that subtype, and each value of that subtype shall be covered by some discrete_
choice (either explicitly or by others).

7.a Ramification: Although not official names of objects, a value conversion still has a defined nominal subtype,
namely its target subtype. See 4.6.

8 • If the type of the expression is root_integer or universal_integer♦, then the case_statement
shall have an others discrete_choice.

8.a Reason: This is because the base range is implementation defined for root_integer and universal_integer♦.

9 • Otherwise, each value of the base range of the type of the expression shall be covered (either
explicitly or by others).

10 Two distinct discrete_choices of a case_statement shall not cover the same value.
10.a Ramification: The goal of these coverage rules is that any possible value of the expression of a case_statement

should be covered by exactly one discrete_choice of the case_statement, and that this should be checked at compile
time. The goal is achieved in most cases, but there are ♦ minor loopholes:

10.b • ♦

10.c • If the compiler chooses to represent the value of an expression of an unconstrained subtype in a way that
includes values outside the bounds of the subtype, then those values can be outside the covered range. For
example, if X: Integer := Integer’Last;, and the case expression is X+1, then the implementation might
choose to produce the correct value, which is outside the bounds of Integer. (It might raise Constraint_
Error instead.) This case can only happen for ♦ subtypes that are either unconstrained or non-static (or
both). It can only happen if there is no others discrete_choice.

10.d ♦ In the out-of-range case ♦ if there is an others, then the implementation may choose to raise Constraint_Error on the
evaluation of the expression (as usual), or it may choose to correctly evaluate the expression and therefore choose the
others alternative. Otherwise (no others), Constraint_Error is raised ♦ — on the expression evaluation, or for the
case_statement itself.

10.e ♦

Dynamic Semantics

11 For the execution of a case_statement the expression is first evaluated.

12 If the value of the expression is covered by the discrete_choice_list of some case_statement_alternative,
then the sequence_of_statements of the _alternative is executed.

13 Otherwise (the value is not covered by any discrete_choice_list, perhaps due to being outside the base
range), Constraint_Error is raised.

13.a Ramification: In this case, the value is outside the base range of its type.

NOTES
14 2 The execution of a case_statement chooses one and only one alternative. Qualification of the expression of a case_

statement by a static subtype can often be used to limit the number of choices that need be given explicitly.

AVARM;1.0 Statements

101 5 October 1995 Case Statements 5.4

Examples

15Examples of case statements:
16case Sensor is

when Elevation => Record_Elevation(Sensor_Value);
when Azimuth => Record_Azimuth (Sensor_Value);
when Distance => Record_Distance (Sensor_Value);
when others => null;

end case;

17

case Today is
when Mon => Compute_Initial_Balance;
when Fri => Compute_Closing_Balance;
when Tue .. Thu => Generate_Report(Today);
when Sat .. Sun => null;

end case;

18

case Bin_Number(Count) is
when 1 => Update_Bin(1);
when 2 => Update_Bin(2);
when 3 | 4 =>

Empty_Bin(1);
Empty_Bin(2);

when others => raise Program_Error;
end case;

Extensions to Ada 83

18.a♦

18.bIn Ada 95, a function call is the name of an object; this was not true in Ada 83 (see 4.1, ‘‘Names’’). This change
makes the following case_statement legal:

19subtype S is Integer range 1..2;
function F return S;
case F is

when 1 => ...;
when 2 => ...;
-- No others needed.

end case;

19.aNote that the result subtype given in a function renaming_declaration is ignored; for a case_statement whose
expression calls a such a function, the full coverage rules are checked using the result subtype of the original function.
Note that predefined operators such as "+" have an unconstrained result subtype (see 4.5.1). ♦

Wording Changes From Ada 83

19.bAda 83 forgot to say what happens for ‘‘legally’’ out-of-bounds values.

19.c♦

19.dIn the Name Resolution Rule for the case expression, we no longer need RM83-5.4(3)’s ‘‘which must be determinable
independently of the context in which the expression occurs, but using the fact that the expression must be of a discrete
type,’’ because the expression is now a complete context. See 8.6, ‘‘The Context of Overload Resolution’’.

19.eSince type_conversions are now defined as names, their coverage rule is now covered under the general rule for names,
rather than being separated out along with qualified_expressions.

5.5 Loop Statements
1A loop_statement includes a sequence_of_statements that is to be executed repeatedly, zero or more

times.

Syntax

Statements AVARM;1.0

5.5 Loop Statements 5 October 1995 102

2 loop_statement ::=
♦

[iteration_scheme] loop
sequence_of_statements

end loop ♦;

3 iteration_scheme ::= while condition
| for loop_parameter_specification

4 loop_parameter_specification ::=
defining_identifier in [reverse] discrete_subtype_definition

5 ♦

Abstract Syntax

6

loop ∈ Loop == loop stmt*

while-loop ∈ WhileLoop == while-loop expr stmt*

for-loop ∈ ForLoop == for-loop id range stmt*

reverse-for-loop ∈ ReverseForLoop == reverse-for-loop id range stmt*

loop-stmt ∈ LoopStmt == loop | while-loop | for-loop | reverse-for-loop

Static Semantics

7 A loop_parameter_specification declares a loop parameter, which is an object whose subtype is that
defined by the discrete_subtype_definition.

Dynamic Semantics

8 For the execution of a loop_statement, the sequence_of_statements is executed repeatedly, zero or more
times, until the loop_statement is complete. The loop_statement is complete when a transfer of control
occurs that transfers control out of the loop, or, in the case of an iteration_scheme, as specified below.

9 For the execution of a loop_statement with a while iteration_scheme, the condition is evaluated before
each execution of the sequence_of_statements; if the value of the condition is True, the sequence_of_
statements is executed; if False, the execution of the loop_statement is complete.

10 For the execution of a loop_statement with a for iteration_scheme, the loop_parameter_specification is
first elaborated. This elaboration creates the loop parameter and elaborates the discrete_subtype_
definition. If the discrete_subtype_definition defines a subtype with a null range, the execution of the
loop_statement is complete. Otherwise, the sequence_of_statements is executed once for each value of
the discrete subtype defined by the discrete_subtype_definition (or until the loop is left as a consequence
of a transfer of control). Prior to each such iteration, the corresponding value of the discrete subtype is
assigned to the loop parameter. These values are assigned in increasing order unless the reserved word
reverse is present, in which case the values are assigned in decreasing order.

10.a Ramification: The order of creating the loop parameter and evaluating the discrete_subtype_definition doesn’t matter,
since the creation of the loop parameter has no side effects (other than possibly raising Storage_Error, but anything can
do that).

NOTES
11 3 A loop parameter is a constant; it cannot be updated within the sequence_of_statements of the loop (see 3.3).

12 4 An object_declaration should not be given for a loop parameter, since the loop parameter is automatically declared by
the loop_parameter_specification. The scope of a loop parameter extends from the loop_parameter_specification to the end
of the loop_statement, and the visibility rules are such that a loop parameter is only visible within the sequence_of_
statements of the loop.

AVARM;1.0 Statements

103 5 October 1995 Loop Statements 5.5

12.aImplementation Note: An implementation could give a warning if a variable is hidden by a loop_parameter_
specification.

135 The discrete_subtype_definition of a for loop is elaborated just once. Use of the reserved word reverse does not alter
the discrete subtype defined, so that the following iteration_schemes are not equivalent; the first has a null range.

14for J in reverse 1 .. 0
for J in 0 .. 1

14.aRamification: If a loop_parameter_specification has a static discrete range, the subtype of the loop parameter is static.

Examples

15Example of a loop statement without an iteration scheme:
16loop

Get(Current_Character);
exit when Current_Character = ’*’;

end loop;

17Example of a loop statement with a while iteration scheme:
18while Bid(N).Price < Cut_Off.Price loop

Record_Bid(Bid(N).Price);
N := N + 1;

end loop;

19Example of a loop statement with a for iteration scheme:
20for J in Buffer’Range loop -- works even with a null range

if Buffer(J) /= Space then
Put(Standard_Output, Buffer(J));

end if;
end loop;

21♦

Wording Changes From Ada 83

21.aThe constant-ness of loop parameters is specified in 3.3, ‘‘Objects and Named Numbers’’.

5.6 Block Statements
1A block_statement encloses a handled_sequence_of_statements optionally preceded by a declarative_

part.

Syntax

2block_statement ::=
♦

[declare
inner_part]

begin
handled_sequence_of_statements

end ♦;

♦

Abstract Syntax

3

block ∈ Block == block [di] [handler] stmt*

Statements AVARM;1.0

5.6 Block Statements 5 October 1995 104

Static Semantics

4 A block_statement that has no explicit inner_part has an implicit empty inner_part.
4.a Ramification: Thus, other rules can always refer to the inner_part of a block_statement. This may also be refered to

as the declarative_part of the the block_statement.

Dynamic Semantics

5 The execution of a block_statement consists of the elaboration of its inner_part ollowed by the execution
of its handled_sequence_of_statements.

Examples

6 Example of a block statement with a local variable:
7 ♦

declare
Temp : Integer := 1;

begin
Temp := V; V := U; U := Temp;

end ♦;

♦

Wording Changes From Ada 83

7.c The syntax rule for block_statement now uses the syntactic category handled_sequence_of_statements.

5.7 Exit Statements
1 An exit_statement is used to complete the execution of an enclosing loop_statement ♦.

Syntax

2 exit_statement ::=
exit ♦ ;

♦
Abstract Syntax

3

exit ∈ Exit == exit

Legality Rules

4 Each exit_statement applies to a loop_statement; this is the loop_statement being exited. ♦ An exit_
statement ♦ is only allowed within a loop_statement, and applies to the innermost enclosing one. ♦

Dynamic Semantics

5 For the execution of an exit_statement ♦ a transfer of control is done to complete the loop_statement. ♦

♦
Examples

7 Examples of loops with exit statements:
8 for N in 1 .. Max_Num_Items loop

Get_New_Item(New_Item);
Merge_Item(New_Item, Storage_File);
if New_Item = Terminal_Item then @key[exit]; end if

end loop;

9 ♦

AVARM;1.0 Statements

105 5 October 1995 Goto Statements -- Removed 5.8

5.8 Goto Statements -- Removed

5.9 Assert Annotations -- New
The syntax and semantics of assert annotations is given in the sections on annotation declarations 3.12
and logical expressions 4.10.

Statements AVARM;1.0

6 Subprograms 5 October 1995 106

AVARM;1.0 Subprograms

107 5 October 1995 Subprograms 6

6. Subprograms
1A subprogram is a program unit or intrinsic operation whose execution is invoked by a subprogram call.

There are two forms of subprogram: procedures and functions. A procedure call is a statement; a func-
tion call is an expression and returns a value. The definition of a subprogram can be given in two parts: a
subprogram declaration defining its interface, and a subprogram_body defining its execution. Operators
and enumeration literals are functions.

1.aTo be honest: A function call is an expression, but more specifically it is a name.

One or both of the declaration and body can include a subprogram_annotation. The annotation of
a declaration defaults to true. If a body is a completion of a declaration and the body includes a
subprogram_annotation then the body annotation must imply the declaration annotation. The
primary subprogram annotation of a subprogram is that of its body, if present, otherwise it is that
of its declaration.

2A callable entity is a subprogram ♦. A callable entity is invoked by a call; that is, a subprogram call ♦.
A callable construct is a construct that defines the action of a call upon a callable entity: a subprogram_
body♦.

2.aRamification: Note that ‘‘callable entity’’ includes predefined operators, and enumeration literals♦. ‘‘Call’’ includes
calls of these things. ♦

6.1 Subprogram Declarations
1A subprogram_declaration declares a procedure or function.

Syntax

2subprogram_declaration ::=
subprogram_specification; [subprogram_annotation;]

3♦
4subprogram_specification ::=

procedure defining_program_unit_name parameter_profile
| function defining_designator parameter_and_result_profile

5designator ::= [parent_unit_name .] identifier | ♦
6defining_designator ::= defining_program_unit_name | ♦
7defining_program_unit_name ::= [parent_unit_name .] defining_identifier

8The optional parent_unit_name is only allowed for library units (see 10.1.1).

9♦
12parameter_profile ::= [formal_part]

13parameter_and_result_profile ::= [formal_part] return subtype_mark

14formal_part ::=
(parameter_specification {; parameter_specification})

15parameter_specification ::=
defining_identifier_list : mode subtype_mark ♦

| ♦
16mode ::= [in] | in out | ♦

Subprograms AVARM;1.0

6.1 Subprogram Declarations 5 October 1995 108

Abstract Syntax

17

fp ∈ FpSpec == fp id mode type
fpl ∈ Fpl == fpl fp*

dp ∈ Procedure == procedure id fpl nil [block] [specp]
df ∈ Function == function id fpl id [block] [specp]

subprogram ∈ Subprogram == df | dp

Name Resolution Rules

18 A formal parameter is an object directly visible within a subprogram_body that represents the actual
parameter passed to the subprogram in a call; it is declared by a parameter_specification. ♦

Legality Rules

19 The parameter mode of a formal parameter conveys the direction of information transfer with the actual
parameter: in or in out♦. Mode in is the default♦. The formal parameters of a function♦ shall have the
mode in. ♦

20 ♦

21 ♦ A subprogram_declaration ♦ requires a completion: a body ♦. ♦ ♦

22 A name that denotes a formal parameter is not allowed within the formal_part in which it is declared, nor
within the formal_part of a corresponding body ♦. ♦

Static Semantics

23 The profile of (a view of) a callable entity is either a parameter_profile or parameter_and_result_profile;
it embodies information about the interface to that entity — for example, the profile includes information
about parameters passed to the callable entity. All callable entities have a profile — enumeration literals
and other subprograms♦. ♦ Associated with a profile is a calling convention as well as a primary
subprogram annotation. A subprogram_declaration declares a procedure or a function, as indicated by
the initial reserved word, with name and profile as given by its specification.

24 The nominal subtype of a formal parameter is the subtype denoted by the subtype_mark♦ in the
parameter_specification.

25 ♦

26 The subtypes of a profile are:

27 • For any ♦ parameters, the nominal subtype of the parameter.

28 • ♦

29 • For any result, the result subtype.

30 The types of a profile are the types of those subtypes.

31 ♦

AVARM;1.0 Subprograms

109 5 October 1995 Subprogram Declarations 6.1

Dynamic Semantics

32♦ The elaboration of a subprogram_declaration ♦ has no effect.

NOTES
331 A parameter_specification with several identifiers is equivalent to a sequence of single parameter_specifications, as

explained in 3.3.

342 ♦

353 ♦

364 Subprograms can be called recursively ♦.

Examples

37Examples of subprogram declarations:
38procedure Traverse_Tree;

procedure Increment(X : in out Integer);
♦
procedure Switch(From, To : in out Color);

39function Random(I : in Page_Num) return Page_Num;

40♦
function Birth_Date(K : Person) return Date;

41♦

Wording Changes From Ada 83

41.cWe have incorporated the rules from RM83-6.5, ‘‘Function Subprograms’’ here and in 6.3, ‘‘Subprogram Bodies’’

41.dWe have incorporated the definitions of RM83-6.6, ‘‘Parameter and Result Type Profile - Overloading of Sub-
programs’’ here.

41.e♦ The syntax rules for defining_designator and defining_program_unit_name are new.

6.2 Formal Parameter Modes
1A parameter_specification declares a formal parameter of mode in or in out♦.

Static Semantics

2A parameter is passed ♦ by copy ♦.
2.aAVA Implementation requirement: Parameters passed by copy.

♦ The formal parameter denotes a separate object from the actual parameter, and any information transfer
between the two occurs only before and after executing the subprogram body. ♦

Bounded (Run-Time) Errors

3If one name denotes a part of a formal parameter, and a second name denotes a part of a distinct formal
parameter or an object that is not part of a formal parameter, then the two names are considered distinct
access paths. In Ada 95, objects assigned via one access path, and then read via a distinct ac-
cess path may result in a bounded error. The AVA requirement for by copy semantics eliminates
this bounded error. Note, however, that reasoning in such situations will be complicated.

NOTES
135 A formal parameter of mode in is a constant view (see 3.3); it cannot be updated within the subprogram_body.

♦

Subprograms AVARM;1.0

6.3 Subprogram Bodies 5 October 1995 110

6.3 Subprogram Bodies
1 A subprogram_body specifies the execution of a subprogram.

Syntax

2 subprogram_body ::=
subprogram_specification is

inner_declarative_part
begin

handled_sequence_of_statements
end [designator];
[subprogram_annotation;]

3 If a designator appears at the end of a subprogram_body, it shall repeat the defining_designator of
the subprogram_specification.

Legality Rules

4 In contrast to other bodies, a subprogram_body need not be the completion of a previous declaration, in
which case the body declares the subprogram. If the body is a completion, it shall be the completion of a
subprogram_declaration ♦. The profile of a subprogram_body that completes a declaration shall con-
form fully to that of the declaration.

Static Semantics

5 A subprogram_body is considered a declaration. It can either complete a previous declaration, or itself be
the initial declaration of the subprogram. A function subprogram_body is further restricted. It may
not include any procedure calls or assignments to variables not local to some declarative region
of the function body.

6 FORMAL NOTES
7 As a result of this restriction we can prove that for a list of expressions, l1,

permutation(l1,l2)
→ permutation(evall(l1), evall(l2))

That is, if l2 is a permutation of l1 then the result of evaluating the expressions in l2 is a permutation of the result
of evaluating the expressions in l1. This property can be stated this simply because if evall raises any
exception it will return an empty list.

Dynamic Semantics

6 The elaboration of a ♦ subprogram_body has no other effect than to establish that the subprogram can
from then on be called without failing the Elaboration_Check. ♦

7 The execution of a subprogram_body is invoked by a subprogram call. For this execution the
inner_declarative_part is elaborated and the handled_sequence_of_statements is then executed.

Examples

8 Example of procedure body:
9 procedure Push(E : in Element_Type; S : in out Stack) is

begin
if S.Index = S.Size then

raise Program_Error;
else

S.Index := S.Index + 1;
S.Space(S.Index) := E;

end if;
end Push;

AVARM;1.0 Subprograms

111 5 October 1995 Subprogram Bodies 6.3

10Example of a function body:
11function Dot_Product(Left, Right : Vector) return Integer is

Sum : Integer := 0;
begin

Check(Left’First = Right’First and Left’Last = Right’Last);
for J in Left’Range loop

Sum := Sum + Left(J)*Right(J);
end loop;
return Sum;

end Dot_Product;

Extensions to Ada 83

11.a♦
Wording Changes From Ada 83

11.bThe syntax rule for subprogram_body now uses the syntactic category handled_sequence_of_statements.

11.cThe inner_declarative_part of a subprogram_body is now required; that doesn’t make any real difference, because an
inner_declarative_part can be empty.

11.dWe have incorporated some rules from RM83-6.5 here.

11.e♦

6.3.1 Conformance Rules
1When subprogram profiles are given in more than one place, they are required to conform in one of four

ways: type conformance, mode conformance, subtype conformance, or full conformance.

Static Semantics

2♦ A convention can be specified for an entity. For a callable entity ♦, the convention is called the calling
convention. The following conventions are defined by the language:

3• The default calling convention for any subprogram not listed below is Ada. ♦
3.aRamification: ♦

4• The Intrinsic calling convention represents subprograms that are ‘‘built in’’ to the compiler.
The default calling convention is Intrinsic for the following:

5• an enumeration literal;

6• ♦

7• any other implicitly declared subprogram ♦

8• ♦

9• an attribute that is a subprogram;

10• ♦

11♦
11.aRamification: The Intrinsic calling convention really represents any number of calling conventions at the

machine code level; the compiler might have a different instruction sequence for each intrinsic. ♦ We do not
wish to require the implementation to generate an out of line body for an intrinsic.

11.b♦

11.dThe ‘‘implicitly declared subprogram’’ above refers to predefined operators ♦ and the inherited subprograms of
♦ types.

12• ♦

Subprograms AVARM;1.0

6.3.1 Conformance Rules 5 October 1995 112

13 ♦

15 Two profiles are type conformant if they have the same number of parameters, and both have a result if
either does, and corresponding parameter and result types are the same♦. ♦

16 Two profiles are mode conformant if they are type-conformant, and corresponding parameters have iden-
tical modes♦.

17 Two profiles are subtype conformant if they are mode-conformant, corresponding subtypes of the profile
statically match, and the associated calling conventions are the same. ♦

17.a Ramification: ♦

18 Two profiles are fully conformant if they are subtype-conformant, and corresponding parameters have the
same names ♦.

Extensions to Ada 83

18.a The rules for full conformance are relaxed — they are now based on the structure of constructs, rather than the
sequence of lexical elements. This implies, for example, that ‘‘(X, Y: T)’’ conforms fully with ‘‘(X: T; Y: T)’’, and
‘‘(X: T)’’ conforms fully with ‘‘(X: in T)’’.

Implementation Permissions

19 An implementation may declare an operator declared in a language-defined library unit to be intrinsic.

6.3.2 Inline Expansion of Subprograms -- Removed

6.4 Subprogram Calls
1 A subprogram call is either a procedure_call_statement or a function_call; it invokes the execution of the

subprogram_body. The call specifies the association of the actual parameters, if any, with formal
parameters of the subprogram.

Syntax

2 procedure_call_statement ::= procedure_name [actual_parameter_part] ;

3 function_call ::= ♦ | function_prefix actual_parameter_part

4 actual_parameter_part ::= (parameter_association {, parameter_association})

5 parameter_association ::= ♦ explicit_actual_parameter

6 explicit_actual_parameter ::= expression | variable_name

7 A parameter_association is ♦ positional ♦

Abstract Syntax

8

proc-call ∈ ProcCall == proc-call id expr*

function-call ∈ FunctionCall == function-call id expr*

Name Resolution Rules

9 The name ♦ given in a procedure_call_statement shall resolve to denote a callable entity that is a
procedure♦. The ♦ prefix given in a function_call shall resolve to denote a callable entity that is a
function. ♦

AVARM;1.0 Subprograms

113 5 October 1995 Subprogram Calls 6.4

9.aRamification: The function can be an♦ attribute that is a function, etc.

10♦ For each formal parameter of a subprogram, a subprogram call must specify exactly one
corresponding actual parameter. This actual parameter is specified explicitly by a parameter
association. The actual parameter corresponds to the formal parameter with the same position
in the formal_part.

Dynamic Semantics

11For the execution of a subprogram call, the name♦ of the call is evaluated, and each parameter_
association is evaluated (see 6.4.1). ♦ These evaluations are done in an arbitrary order. The current
state is saved as the initial state. The subprogram_body is then executed. The primary subprogram
annotation is evaluated against the inital state and the current state before control is passed
back to the calling environment. Finally, if the subprogram completes normally, then after it is left,
any necessary assigning back of formal to actual parameters occurs (see 6.4.1).

12

12.aTo be honest: ♦

12.fNormally, the subprogram_body that is executed by the above rule is the one for the subprogram being called. For an
enumeration literal, implicitly declared ♦ subprogram, or an attribute that is a subprogram, an implicit body is
assumed. ♦

13The exception Program_Error is raised at the point of a function_call if the function completes normally
without executing a return_statement.

13.aDiscussion: We are committing to raising the exception at the point of call, for uniformity — see AI-00152. This
happens after the function is left, of course.

13.bNote that there is no name for suppressing this check, since the check imposes no time overhead and minimal space
overhead (since it can usually be statically eliminated as dead code).

14A function_call denotes a constant, as defined in 6.5; the nominal subtype of the constant is given by the
result subtype of the function.

12It may be difficult to predict the behavior of programs in which the actual parameters cor-
responding to two different formal parameters of mode in out overlap.9 Thus, given

13procedure Q(X, Y : in out T);

the call "Q(a[1], a[2])" is acceptable, but "Q(a[i], a[j])" will present problems for analysis.

Examples

13Examples of procedure calls:
14Traverse_Tree; -- see 6.1

Table_Manager.Insert(E);
Print_Header(128, Title, True); -- see 6.1

15♦

9Two variables overlap if they are equal or either is a subcomponent of the other. Thus, the array a and a(1) overlap. Array
elements a(i) and a(j) potentially overlap. Any interesting subprogram annotation will almost certainly require an anti-aliasing
hypothesis.

Subprograms AVARM;1.0

6.4 Subprogram Calls 5 October 1995 114

16 Examples of function calls:
17 Dot_Product(U, V) -- see 6.1 and 6.3

♦

18 ♦

Examples

25 Examples of overloaded subprograms:
26 procedure Put(X : in Integer);

procedure Put(X : in String);

27 procedure Set(Tint : in Color);
procedure Set(Signal : in Light);

28 Examples of their calls:
29 Put(28);

Put("no possible ambiguity here");

30 ♦
Set(Light’(Red));
Set(Color’(Red));

31 -- Set(Red) would be ambiguous since Red may
-- denote a value either of type Color or of type Light

Wording Changes From Ada 83

31.a ♦

31.b We have moved wording about run-time semantics of parameter associations to 6.4.1.

31.c We have moved wording about raising Program_Error for a function that falls off the end to here from RM83-6.5.

6.4.1 Parameter Associations
1 A parameter association defines the association between an actual parameter and a formal parameter.

Name Resolution Rules

2 ♦

3 The actual parameter is ♦ the explicit_actual_parameter given in a parameter_association for a given
formal parameter♦. The expected type for an actual parameter is the type of the corresponding formal
parameter. ♦

4 If the mode is in, the actual is interpreted as an expression; otherwise, the actual is interpreted only as a
name, if possible.

4.a Ramification: This formally resolves the ambiguity present in the syntax rule for explicit_actual_parameter. Note that
we don’t actually require that the actual be a name if the mode is not in; we do that below.

Legality Rules

5 If the mode is in out ♦, the actual shall be a name that denotes a variable. Type conversions of actual
parameters associated with an in out formal parameter are not allowed. ♦

5.a Reason: The requirement that the actual be a (variable) name is not an overload resolution rule, since we don’t want
the difference between expression and name to be used to resolve overloading. ♦

♦

AVARM;1.0 Subprograms

115 5 October 1995 Parameter Associations 6.4.1

6♦

Dynamic Semantics

7For the evaluation of a parameter_association:

8• The actual parameter is first evaluated.

9• ♦

10• ♦

11• ♦ The formal parameter object is created, and the value of the actual parameter is converted
to the nominal subtype of the formal parameter and assigned to the formal.

11.aRamification: The conversion mentioned here is a value conversion.

12• ♦

13♦

17After normal completion and leaving of a subprogram, for all in out ♦ parameters♦, the value of the
formal parameter is converted to the subtype of the variable given as the actual parameter and then the
values are assigned to the respective variables10 .

17.aAVA Implementation requirement: Order of copy-back and constraint checking upon subprogram return.

♦
17.bRamification: The conversions mentioned above during parameter passing might raise Constraint_Error — (see 4.6).

17.cRamification: If any conversion or assignment as part of parameter passing propagates an exception, the exception is
raised at the place of the subprogram call; that is, it cannot be handled inside the subprogram_body.

17.dProof: Since these checks happen before or after executing the subprogram_body, the execution of the subprogram_
body does not dynamically enclose them, so it can’t handle the exceptions.

17.eDiscussion: ♦

6.5 Return Statements
1A return_statement is used to complete the execution of the ♦ enclosing subprogram_body♦.

Syntax

2return_statement ::= return [expression];

Abstract Syntax

3

return ∈ Return = return [expr]

Name Resolution Rules

4The expression, if any, of a return_statement is called the return expression. The result subtype of a
function is the subtype denoted by the subtype_mark after the reserved word return in the profile of the
function. The expected type for a return expression is the result type of the corresponding function. ♦

10In Ada95, copy-back and constraint checking can be interleaved in an order that is not defined by the language.

Subprograms AVARM;1.0

6.5 Return Statements 5 October 1995 116

Legality Rules

5 A return_statement shall be within a callable construct, and it applies to the innermost one. ♦

6 A function body shall contain at least one return_statement that applies to the function body♦. A return_
statement shall include a return expression if and only if it applies to a function body.

6.a Reason: The requirement that a function body has to have at least one return_statement is a ‘‘helpful’’ restriction.
There was been some interest in lifting this restriction, or allowing a raise statement to substitute for the return_
statement. However, there was enough interest in leaving it as is that we decided not to change it.

Dynamic Semantics

7 For the execution of a return_statement, the expression (if any) is first evaluated and converted to the
result subtype.

7.a Ramification: The conversion might raise Constraint_Error — (see 4.6).

8 ♦

22 ♦A function result is returned by copy; that is, the converted value is assigned into an anonymous
constant created at the point of the return_statement, and the function call denotes that object. ♦

23 Finally, a transfer of control is performed which completes the execution of the callable construct to
which the return_statement applies, and returns to the caller.

Examples

24 Examples of return statements:
25 return; -- in a procedure body♦

return Key_Value(Last_Index); -- in a function body

♦
Wording Changes From Ada 83

25.c This clause has been moved here from chapter 5, since it has mainly to do with subprograms.

25.d A function now creates an anonymous object. ♦

25.e We have clarified that a return_statement applies to a callable construct, not to a callable entity.

25.f ♦

6.6 Overloading of Operators -- Removed

AVARM;1.0 Packages

117 5 October 1995 Packages 7

7. Packages
1Packages are program units that allow the specification of groups of logically related entities. Typically,

a package contains the declaration of a type (often a private type ♦) along with the declarations of
primitive subprograms of the type, which can be called from outside the package, while their inner work-
ings remain hidden from outside users. A package may also include axioms, purported theorems,
and specification functions.

7.1 Package Specifications and Declarations
1A package is generally provided in two parts: a package_specification and a package_body. Every

package has a package_specification, but not all packages have a package_body.

Syntax

2package_declaration ::= package_specification;

3package_specification ::=
package defining_program_unit_name is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [[parent_unit_name.]identifier]

4If an identifier or parent_unit_name.identifier appears at the end of a package_specification, then this
sequence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

5♦ A package_declaration ♦ requires a completion (a body) if it contains any declarative_item that re-
quires a completion, but whose completion is not in its package_specification. ♦

Abstract Syntax

6

outer == d*

private == d*

inner == d*

p ∈ Package == package id [outer] [private] [inner] [stmt*]

Static Semantics

7The first list of declarative_items of a package_specification of a package ♦ is called the visible part of
the package. The optional list of declarative_items after the reserved word private (of any package_
specification) is called the private part of the package. If the reserved word private does not appear, the
package has an implicit empty private part.

7.aRamification: ♦

7.bThe implicit empty private part is important because certain implicit declarations occur there if the package is a child
package, and it defines types in its visible part that are derived from, or contain as components, private types declared
within the parent package. These implicit declarations are visible in children of the child package. See 10.1.1.

8An entity declared in the private part of a package is visible only within the declarative region of the
package itself (including any child units — see 10.1.1). In contrast, expanded names denoting entities
declared in the visible part can be used even outside the package; furthermore, direct visibility of such
entities can be achieved by means of use_clauses (see 4.1.3 and 8.4).

Dynamic Semantics

9 The elaboration of a package_declaration consists of the elaboration of its basic_declarative_items in the
given order.

NOTES
10 1 The visible part of a package contains all the information that another program unit is able to know about the package.

11 2 If a declaration occurs immediately within the specification of a package, and the declaration has a corresponding
completion that is a body, then that body has to occur immediately within the body of the package.

11.a Proof: This follows from the fact that the declaration and completion are required to occur immediately within the
same declarative region, and the fact that bodies are disallowed (by the Syntax Rules) in package_specifications. ♦

Examples

12 Example of a package declaration:
13 package Rational_Numbers is

14 type Rational is
record

Numerator : Integer;
Denominator : Positive;

end record;

15 function Equal (X,Y : Rational) return Boolean;

16 function Div (X,Y : Integer) return Rational; -- to construct a rational number

17 function Plus (X,Y : Rational) return Rational;
function Minus (X,Y : Rational) return Rational;
function Times (X,Y : Rational) return Rational;
function Div (X,Y : Rational) return Rational;

end Rational_Numbers;

18 There are also many examples of package declarations in the predefined language environment (see
Annex A).

Incompatibilities With Ada 83

18.a In Ada 83, a library package is allowed to have a body even if it doesn’t require one. In Ada 95, a library package
body is either required or forbidden — never optional. ♦

Wording Changes From Ada 83

18.b We have moved the syntax into this clause and the next clause from RM83-7.1, ‘‘Package Structure’’, which we have
removed.

18.c RM83 was unclear on the rules about when a package requires a body. For example, RM83-7.1(4) and RM83-7.1(8)
clearly forgot about the case of an incomplete type declared in a package_declaration but completed in the body. ♦ We
have corrected this rule. ♦

7.2 Package Bodies
1 In contrast to the entities declared in the visible part of a package, the entities declared in the package_

body are visible only within the package_body itself. As a consequence, a package with a package_body
can be used for the construction of a group of related subprograms in which the logical operations avail-
able to clients are clearly isolated from the internal entities.

Syntax

2 package_body ::=
package body defining_program_unit_name is

declarative_part
[begin

handled_sequence_of_statements]
end [[parent_unit_name.]identifier];

AVARM;1.0 Packages

119 5 October 1995 Package Bodies 7.2

3If an identifier or parent_unit_name.identifier appears at the end of a package_body, then this se-
quence of lexical elements shall repeat the defining_program_unit_name.

Legality Rules

4A package_body shall be the completion of a previous package_declaration ♦. A library package_
declaration ♦ shall not have a body unless it requires a body♦.

4.aRamification: The first part of the rule forbids a package_body from standing alone — it has to belong to some
previous package_declaration ♦.

4.bA nonlibrary package_declaration ♦ that does not require a completion may have a corresponding body anyway.

Static Semantics

5In any package_body without statements there is an implicit null_statement. For any package_
declaration without an explicit completion, there is an implicit package_body containing a single null_
statement. For a ♦ nonlibrary package, this body occurs at the end of the declarative_part of the inner-
most enclosing program unit or block_statement; if there are several such packages, the order of the
implicit package_bodies is unspecified. ♦ For a library package, the place is partially determined by the
elaboration dependences (see Section 10).)

5.aDiscussion: Thus, for example, we can refer to something happening just after the begin of a package_body, and we
can refer to the handled_sequence_of_statements of a package_body, without worrying about all the optional pieces.
♦

5.bThe implicit body would be illegal if explicit in the case of a library package that does not require (and therefore does
not allow) a body. This is a bit strange, but not harmful.

Dynamic Semantics

6For the elaboration of a ♦ package_body, its declarative_part is first elaborated, and its handled_
sequence_of_statements is then executed.

NOTES
73 A variable declared in the body of a package is only visible within this body and, consequently, its value can only be

changed within the package_body. ♦

84 The elaboration of the body of a subprogram explicitly declared in the visible part of a package is caused by the
elaboration of the body of the package. Hence a call of such a subprogram by an outside program unit raises the exception
Program_Error if the call takes place before the elaboration of the package_body (see 3.11 and 10.2, ‘‘Program Execu-
tion’’).

Examples

9Example of a package body (see 7.1):
10package body Rational_Numbers is

11procedure Same_Denominator (X,Y : in out Rational) is
begin

-- reduces X and Y to the same denominator:
...

end Same_Denominator;

12function Equal (X,Y : Rational) return Boolean is
U : Rational := X;
V : Rational := Y;

begin
Same_Denominator (U,V);
return U.Numerator = V.Numerator;

end Equal;

Packages AVARM;1.0

7.2 Package Bodies 5 October 1995 120

13 function Div (X,Y : Integer) return Rational is
begin

if Y > 0 then
return (Numerator => X, Denominator => Y);

else
return (Numerator => -X, Denominator => -Y);

end if;
end Div;

14 function Plus (X,Y : Rational) return Rational is ... end Plus;
function Minus (X,Y : Rational) return Rational is ... end Minus;
function Times (X,Y : Rational) return Rational is ... end Times;
function Div (X,Y : Rational) return Rational is ... end Div;

15 end Rational_Numbers;

Wording Changes From Ada 83

15.a The syntax rule for package_body now uses the syntactic category handled_sequence_of_statements.

15.b The declarative_part of a package_body is now required; that doesn’t make any real difference, since a declarative_part
can be empty.

15.c RM83 seems to have forgotten to say that a package_body can’t stand alone, without a previous declaration. We state
that rule here.

15.d ♦

15.e The rule about implicit bodies (from RM83-9.3(5)) is moved here, since it is more generally applicable.

7.3 Private Types
1 The declaration (in the visible part of a package) of a type as a private type ♦ serves to separate the

characteristics that can be used directly by outside program units (that is, the logical properties) from
other characteristics whose direct use is confined to the package (the details of the definition of the type
itself). ♦

Language Design Principles

1.a A private ♦ type can be thought of as a record type with the type of its single (hidden) component being the full view.

1.b ♦
Syntax

2 private_type_declaration ::=
type defining_identifier is private;

3 ♦

Legality Rules

4 A private_type_declaration ♦ declares a partial view of the type; such a declaration is allowed only as a
declarative_item of the visible part of a package, and it requires a completion, which shall be a full_type_
declaration that occurs as a declarative_item of the private part of the package. The view of the type
declared by the full_type_declaration is called the full view. ♦

4.a Reason: We originally used the term ‘‘private view,’’ but this was easily confused with the view provided from the
private part, namely the full view.

5 A type shall be completely defined before it is frozen (see 3.11.1 and 13.14). Thus ♦ the declaration of a
variable of a partial view of a type ♦ is not allowed before the full declaration of the type. ♦

AVARM;1.0 Packages

121 5 October 1995 Private Types 7.3

6♦

Abstract Syntax

7A private type declaration has no type or specification.

dpt ∈ TypeDecl == type id nil nil

Static Semantics

14A private_type_declaration declares a private type and its first subtype. ♦
14.aDiscussion: A package-private type is one declared by a private_type_declaration♦ This term is not used in the RM95

version of this document.

15A declaration of a partial view and the corresponding full_type_declaration define two views of a single
type. The declaration of a partial view together with the visible part define the operations that are
available to outside program units; the declaration of the full view together with the private part define
other operations whose direct use is possible only within the declarative region of the package itself.
Moreover, within the scope of the declaration of the full view, the characteristics of the type are deter-
mined by the full view; in particular, within its scope, the full view determines ♦ which components♦ are
visible, what attributes and other predefined operations are allowed, and whether the first subtype is
static. See 7.3.1.

16♦

Dynamic Semantics

17The elaboration of a private_type_declaration creates a partial view of a type. ♦

NOTES
185 The partial view of a type as declared by a private_type_declaration is defined to be a composite view (in 3.2). The full

view of the type might or might not be composite. ♦

196 ♦

207 ♦

Examples

21Examples of private type declarations:
22type Key is private;

♦

Wording Changes From Ada 83

22.cRM83-7.4.1(4), ‘‘Within the specification of the package that declares a private type and before the end of the
corresponding full type declaration, a restriction applies....’’, is subsumed (and corrected) by the rule that a type shall
be completely defined before it is frozen♦.

7.3.1 Private Operations
1For a type declared in the visible part of a package ♦, certain operations on the type do not become

visible until later in the package — either in the private part or the body. Such private operations are
available only inside the declarative region of the package ♦.

Static Semantics

2The predefined operators that exist for a given type are determined by the classes to which the type
belongs. For example, an integer type has a predefined "+" operator. In most cases, the predefined

Packages AVARM;1.0

7.3.1 Private Operations 5 October 1995 122

operators of a type are declared immediately after the definition of the type; the exceptions are explained
below. ♦

3 For a composite type, the characteristics (see 7.3) of the type are determined in part by the characteristics
of its component types. At the place where the composite type is declared, the only characteristics of
component types used are those characteristics visible at that place. If later within the immediate scope of
the composite type additional characteristics become visible for a component type, then any correspond-
ing characteristics become visible for the composite type. Any additional predefined operators are im-
plicitly declared at that place.

NOTES
10 8 Because a partial view and a full view are two different views of one and the same type, outside of the defining package

the characteristics of the type are those defined by the visible part. Within these outside program units the type is just a
private type♦, and any language rule that applies only to another class of types does not apply. The fact that the full
declaration might implement a private type with a type of a particular class (for example, as an array type) is relevant only
within the declarative region of the package itself including any child units.

11 The consequences of this actual implementation are, however, valid everywhere. ♦

12 9 Partial views provide assignment ♦, membership tests, ♦ qualification, and explicit conversion.

13 10 ♦

Examples

14 Example of a type with private operations:
15 package Key_Manager is

type Key is private;
Null_Key : constant Key; -- a deferred constant declaration (see 7.4)
procedure Get_Key(K : in out Key);
function Lt (X, Y : Key) return Boolean;

private
type Key is array (1..10 of Integer);
Null_Key : constant Key := Key’(Others => 0);

end Key_Manager;

16 package body Key_Manager is
Last_Key : Key := Null_Key;
procedure Get_Key(K : in out Key) is
begin

Last_Key := Last_Key + 1;
K := Last_Key;

end Get_Key;

17 function Lt (X, Y : Key) return Boolean is
begin

return X(1) < Y(1);
end Lt;

end Key_Manager;

NOTES
18 11 Notes on the example: Outside of the package Key_Manager, the operations available for objects of type Key include

assignment, the comparison for equality or inequality, the procedure Get_Key and the function Lt; they do not include
other relational operators such as ">="♦.

19 ♦

20 The value of the variable Last_Key, declared in the package body, remains unchanged between calls of the procedure Get_
Key. (See also the NOTES of 7.2.)

Wording Changes From Ada 83

20.a The phrase in RM83-7.4.2(7), ‘‘...after the full type declaration’’, doesn’t work in the presence of child units, so we
define that rule in terms of visibility.

AVARM;1.0 Packages

123 5 October 1995 Private Operations 7.3.1

20.b♦

7.4 Deferred Constants
1Deferred constant declarations may be used to declare constants in the visible part of a package, but with

the value of the constant given in the private part. ♦

Legality Rules

2A deferred constant declaration is an object_declaration with the reserved word constant but no in-
itialization expression.

2.aProof: This is stated officially in Section 3.

The constant declared by a deferred constant declaration is called a deferred constant. A deferred con-
stant declaration requires a completion, which shall be a full constant declaration (called the full decla-
ration of the deferred constant) ♦.

3A deferred constant declaration that is completed by a full constant declaration shall occur immediately
within the visible part of a package_specification. For this case, the following additional rules apply to
the corresponding full declaration:

4• The full declaration shall occur immediately within the private part of the same package;

5• The deferred and full constants shall have the same type;

6• ♦

7• ♦

8♦

9The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).

Dynamic Semantics

10The elaboration of a deferred constant declaration ♦ has no effect.

NOTES
1112 The full constant declaration for a deferred constant that is of a given private type ♦ is not allowed before the

corresponding full_type_declaration. This is a consequence of the freezing rules for types (see 13.14).

11.aRamification: Multiple or single declarations are allowed for the deferred and the full declarations, provided that the
equivalent single declarations would be allowed.

11.bDeferred constant declarations are useful for declaring constants of private views, and types with components of private
views. ♦

Examples

12Examples of deferred constant declarations:
13Null_Key : constant Key; -- see 7.3.1

14CPU_Identifier : constant String(1..8);
♦

Extensions to Ada 83

14.aIn Ada 83, a deferred constant is required to be of a private type declared in the same visible part. This restriction is
removed for Ada 95; deferred constants can be of any type.

Packages AVARM;1.0

7.4 Deferred Constants 5 October 1995 124

14.b ♦

14.c ♦

14.d ♦

14.e The rules for too-early uses of deferred constants are modified in Ada 95 to allow more cases, and catch all errors at
compile time. This change ♦ has the beneficial side-effect of catching some Ada-83-erroneous programs at compile
time. The new rule fits in well with the new freezing-point rules. Furthermore, we are trying to convert undefined-
value problems into bounded errors, and we were having trouble for the case of deferred constants. ♦

14.f Note that we do not consider this change to be an upward incompatibility, because it merely changes an erroneous
execution in Ada 83 into a compile-time error.

14.g ♦
Wording Changes From Ada 83

14.h Since deferred constants can now be of a nonprivate type, we have made this a stand-alone clause♦.

14.i Deferred constant declarations used to have their own syntax, but now they are simply a special case of object_
declarations.

7.5 Limited Types -- Removed

7.6 Assignment and Finalization
1 Three kinds of actions are fundamental to the manipulation of objects: initialization, finalization, and

assignment. Every object is initialized, either explicitly or by default, after being created (for example, by
an object_declaration ♦). Every object is finalized before being destroyed (for example, by leaving a
subprogram_body containing an object_declaration♦). An assignment operation is used as part of
assignment_statements, explicit initialization, parameter passing, and other operations.

2 Default definitions for these three fundamental operations are provided by the language.♦

Static Semantics

3 ♦

4 ♦ The (default) implementations of Initialize♦ and Finalize have no effect. ♦

Dynamic Semantics

11 ♦

12 Initialize and other initialization operations are done in an arbitrary order, except as follows. Initialize is
applied to an object after initialization of its subcomponents, if any♦. ♦

12.a Reason: The fact that Initialize is done for subcomponents first allows Initialize for a composite object to refer to its
subcomponents knowing they have been properly initialized.

12.b ♦

13 When a target object ♦ is assigned a value, either when created or in a subsequent assignment_statement,
the assignment operation proceeds as follows:

14 • The value of the target becomes the assigned value.

15 • ♦
♦

AVARM;1.0 Packages

125 5 October 1995 Assignment and Finalization 7.6

16♦

11For an assignment_statement, after the name and expression have been evaluated, and any conversion
(including constraint checking) has been done, an anonymous object is created, and the value is assigned
into it; that is, the assignment operation is applied. ♦ The target of the assignment_statement is then
finalized. The value of the anonymous object is then assigned into the target of the assignment_
statement. Finally, the anonymous object is finalized. As explained below, the implementation may
eliminate the intermediate anonymous object, so this description subsumes the one given in 5.2, ‘‘Assign-
ment Statements’’. ♦

♦

7.6.1 Completion and Finalization
1This subclause defines completion and leaving of the execution of constructs and entities. A master is the

execution of a construct that includes finalization of local objects after it is complete ♦ but before leav-
ing. Other constructs and entities are left immediately upon completion.

Dynamic Semantics

2The execution of a construct or entity is complete when the end of that execution has been reached, or
when a transfer of control (see 5.1) causes it to be abandoned. Completion due to reaching the end of
execution, or due to the transfer of control of an exit_ or return_statement♦. Completion is abnormal
otherwise — when control is transferred out of a construct due to abort or the raising of an exception.

2.aDiscussion: Don’t confuse the run-time concept of completion with the compile-time concept of completion defined in
3.11.1.

3After execution of a construct or entity is complete, it is left, meaning that execution continues with the
next action, as defined for the execution that is taking place. Leaving an execution happens immediately
after its completion, except in the case of a master: the execution of ♦ a block_statement or a
subprogram_body♦. A master is finalized after it is complete, and before it is left.

4FORMAL NOTES
5The AVA definition of finalization of masters and objects implies that in all cases finalization has no effect. See (7) below.

6♦

7For the finalization of a master, ♦ each object object whose accessibility level is the same as that of the
master is finalized if the object was successfully initialized and still exists. These actions are performed
whether the master is left by reaching the last statement or via a transfer of control. ♦ When a transfer of
control causes completion of an execution, each included master is finalized in order, from innermost
outward.

7.aTo be honest: Formally, completion and leaving refer to executions of constructs or entities. However, the standard
sometimes (informally) refers to the constructs or entities whose executions are being completed. Thus, for example,
‘‘the subprogram_call ♦ is complete’’ really means ‘‘the execution of the subprogram_call ♦ is complete.’’

8For the finalization of an object:

9• If the object is of an elementary type, finalization has no effect;

10• ♦

Packages AVARM;1.0

7.6.1 Completion and Finalization 5 October 1995 126

11 • ♦

12 • If the object is of a composite type, then after performing the above actions, if any, every
component of the object is finalized in an arbitrary order♦.

13 ♦

AVARM;1.0 Visibility Rules

127 5 October 1995 Visibility Rules 8

8. Visibility Rules
1The rules defining the scope of declarations and the rules defining which identifiers, and character_

literals♦ are visible at (or from) various places in the text of the program are described in this section.
The formulation of these rules uses the notion of a declarative region.

2As explained in Section 3, a declaration declares a view of an entity and associates a defining name with
that view. The view comprises an identification of the viewed entity, and possibly additional properties.
A usage name denotes a declaration. It also denotes the view declared by that declaration, and denotes
the entity of that view. Thus, two different usage names might denote two different views of the same
entity; in this case they denote the same entity. ♦

Wording Changes From Ada 83

2.bWe no longer define the term ‘‘basic operation;’’ thus we no longer have to worry about the visibility of them. Since
they were essentially always visible in Ada 83, this change has no effect. The reason for this change is that the
definition in Ada 83 was confusing, and not quite correct, and we found it difficult to fix. For example, one wonders
why an if_statement was not a basic operation of type Boolean. For another example, one wonders what it meant for a
basic operation to be ‘‘inherent in’’ something. Finally, this fixes the problem addressed by AI-00027/07.

8.1 Declarative Region
Static Semantics

1For each of the following constructs, there is a portion of the program text called its declarative region,
within which nested declarations can occur:

2• any declaration, other than that of an enumeration type, that is not a completion of a previous
declaration;

3• a block_statement;

4• a loop_statement;

5• ♦

6• an exception_handler.

7The declarative region includes the text of the construct together with additional text determined (recur-
sively), as follows:

8• If a declaration is included, so is its completion, if any.

9• If the declaration of a library unit (including Standard — see 10.1.1) is included, so are the
declarations of any child units (and their completions, by the previous rule). The child
declarations occur after the declaration.

10• ♦

11• ♦

12The declarative region of a declaration is also called the declarative region of any view or entity declared
by the declaration.

12.aReason: The constructs that have declarative regions are the constructs that can have declarations nested inside them.
Nested declarations are declared in that declarative region. The one exception is for enumeration literals; although they
are nested inside an enumeration type declaration, they behave as if they were declared at the same level as the type.

12.bTo be honest: A declarative region does not include parent_unit_names.

12.cRamification: A declarative region does not include context_clauses.

Visibility Rules AVARM;1.0

8.1 Declarative Region 5 October 1995 128

13 A declaration occurs immediately within a declarative region if this region is the innermost declarative
region that encloses the declaration (the immediately enclosing declarative region), not counting the
declarative region (if any) associated with the declaration itself.

13.a Discussion: Don’t confuse the declarative region of a declaration with the declarative region in which it immediately
occurs.

14 A declaration is local to a declarative region if the declaration occurs immediately within the declarative
region.

14.a Ramification: That is, "occurs immediately within" and "local to" are synonyms (when referring to declarations).

An entity is local to a declarative region if the entity is declared by a declaration that is local to the
declarative region.

14.b Ramification: Thus, ‘‘local to’’ applies to both declarations and entities, whereas ‘‘occurs immediately within’’ only
applies to declarations. We use this term only informally; for cases where precision is required, we use the term
"occurs immediately within", since it is less likely to cause confusion.

15 A declaration is global to a declarative region if the declaration occurs immediately within another
declarative region that encloses the declarative region. An entity is global to a declarative region if the
entity is declared by a declaration that is global to the declarative region.

NOTES
16 1 The children of a parent library unit are inside the parent’s declarative region, even though they do not occur inside the

parent’s declaration or body. This implies that one can use (for example) "P.Q" to refer to a child of P whose defining
name is Q, and that after "use P;" Q can refer (directly) to that child.

17 2 As explained above and in 10.1.1, ‘‘Compilation Units - Library Units’’, all library units are descendants of Standard,
and so are contained in the declarative region of Standard. They are not inside the declaration or body of Standard, but
they are inside its declarative region.

18 3 For a declarative region that comes in multiple parts, the text of the declarative region does not contain any text that
might appear between the parts. Thus, when a portion of a declarative region is said to extend from one place to another in
the declarative region, the portion does not contain any text that might appear between the parts of the declarative region.

18.a Discussion: It is necessary for the things that have a declarative region to include anything that contains declarations
(except for enumeration type declarations). This includes any declaration that has a profile (that is, subprogram_
declaration, subprogram_body, ♦ subprogram_renaming_declaration, ♦ ♦ ♦ and anything that has a component_list
(that is, record type_declaration ♦)♦

Wording Changes From Ada 83

18.b It was necessary to extend Ada 83’s definition of declarative region to take the following Ada 95 features into account:

18.c • Child library units.

18.d • ♦

18.j • ♦

18.k ♦ Enumeration type declarations cannot have ♦a declarative region, because you don’t have to say "Color.Red" to
refer to the literal Red of Color. For other type declarations, it doesn’t really matter whether or not there is an
associated declarative region, so for simplicity, we give one to all types except enumeration types.

18.l ♦

18.o To avoid confusion, we use the term ‘‘local to’’ only informally in Ada 95. Even RM83 used the term incorrectly (see,
for example, RM83-12.3(13)).

18.p In Ada 83, (root) library units were inside Standard; it was not clear whether the declaration or body of Standard was
meant. In Ada 95, they are children of Standard, and so occur immediately within Standard’s declarative region, but
not within either the declaration or the body. (See RM83-8.6(2) and RM83-10.1.1(5).)

AVARM;1.0 Visibility Rules

129 5 October 1995 Scope of Declarations 8.2

8.2 Scope of Declarations
1For each declaration, the language rules define a certain portion of the program text called the scope of

the declaration. The scope of a declaration is also called the scope of any view or entity declared by the
declaration. Within the scope of an entity, and only there, there are places where it is legal to refer to the
declared entity. These places are defined by the rules of visibility and overloading.

Static Semantics

2The immediate scope of a declaration is a portion of the declarative region immediately enclosing the
declaration. The immediate scope starts at the beginning of the declaration, except in the case of an
overloadable declaration, in which case the immediate scope starts just after the place where the profile of
the callable entity is determined (which is at the end of the _specification for the callable entity♦).

2.aReason: The reason for making overloadable declarations with profiles special is to simplify compilation: until the
compiler has determined the profile, it doesn’t know which other declarations are homographs of this one, so it doesn’t
know which ones this one should hide. Without this rule, two passes over the _specification ♦ would be required to
resolve names that denote things with the same name as this one.

The immediate scope extends to the end of the declarative region, with the following exceptions:

3• The immediate scope of a library_item includes only its semantic dependents.
3.aReason: Section 10 defines only a partial ordering of library_items. Therefore, it is a good idea to restrict the

immediate scope (and the scope, defined below) to semantic dependents.

3.bConsider also examples like this:

3.cpackage P is end P;

3.dpackage P.Q is
I : Integer := 0;

end P.Q;

3.ewith P;
package R is

package X renames P;
X.Q.I := 17; -- Illegal!

end R;

3.fThe scope of P.Q does not contain R. Hence, neither P.Q nor X.Q are visible within R. However, the name
R.X.Q would be visible in some other library unit where both R and P.Q are visible (assuming R were made
legal by removing the offending declaration).

4• The immediate scope of a declaration in the private part of a library unit does not include the
visible part of any public descendant of that library unit.

4.aRamification: For a public child subprogram, this means that the parent’s private part is not visible in the
formal_parts of the declaration and of the body. This is true even for subprogram_bodies that are not
completions. ♦

5The visible part of (a view of) an entity is a portion of the text of its declaration containing declarations
that are visible from outside. The private part of (a view of) an entity that has a visible part contains all
declarations within the declaration of (the view of) the entity, except those in the visible part; these are
not visible from outside. Visible and private parts are defined only for these kinds of entities: callable
entities, other program units, and composite types.

6• The visible part of a view of a callable entity is its profile.

7• The visible part of a composite type♦ consists of the declarations of all components declared
(explicitly or implicitly) within the type_declaration.

8• ♦

9• The visible part of a package♦ consists of declarations in the package’s declaration other
than those following the reserved word private, if any; see 7.1 ♦.

Visibility Rules AVARM;1.0

8.2 Scope of Declarations 5 October 1995 130

10 The scope of a declaration always contains the immediate scope of the declaration. In addition, for a
given declaration that occurs immediately within the visible part of an outer declaration, or is a public
child of an outer declaration, the scope of the given declaration extends to the end of the scope of the
outer declaration, except that the scope of a library_item includes only its semantic dependents.

10.a Ramification: Note the recursion. If a declaration appears in the visible part of a library unit, its scope extends to the
end of the scope of the library unit, but since that only includes dependents of the declaration of the library unit, the
scope of the inner declaration also only includes those dependents. If X renames library package P, which has a child
Q, a with_clause mentioning P.Q is necessary to be able to refer to X.Q, even if P.Q is visible at the place where X is
declared.

11 The immediate scope of a declaration is also the immediate scope of the entity or view declared by the
declaration. Similarly, the scope of a declaration is also the scope of the entity or view declared by the
declaration.

11.a Ramification: The rule for immediate scope implies the following:

11.b • If the declaration is that of a library unit, then the immediate scope includes the declarative region of the
declaration itself, but not other places, unless they are within the scope of a with_clause that mentions the
library unit.

11.c It is necessary to attach the semantics of with_clauses to [immediate] scopes (as opposed to visibility), in
order for various rules to work properly. A library unit should hide a homographic implicit declaration that
appears in its parent, but only within the scope of a with_clause that mentions the library unit. Otherwise,
we would violate the "legality determinable via semantic dependences" rule of Section 10, ‘‘Program
Structure and Compilation Issues’’. The declaration of a library unit should be allowed to be a homograph
of an explicit declaration in its parent’s body, so long as that body does not mention the library unit in a
with_clause.

11.d This means that one cannot denote the declaration of the library unit, but one might still be able to denote
the library unit via another view.

11.e A with_clause does not make the declaration of a library unit visible; the lack of a with_clause prevents it
from being visible. Even if a library unit is mentioned in a with_clause, its declaration can still be hidden.

11.f • The completion of the declaration of a library unit (assuming that’s also a declaration) is not visible,
neither directly nor by selection, outside that completion.

11.g • The immediate scope of a declaration immediately within the body of a library unit does not include any
child of that library unit.

11.h This is needed to prevent children from looking inside their parent’s body. The children are in the
declarative region of the parent, and they might be after the parent’s body. Therefore, the scope of a
declaration that occurs immediately within the body might include some children.

NOTES
12 4 There are notations for denoting visible declarations that are not directly visible. For example, parameter_specifications

are in the visible part of a subprogram_declaration ♦. For another example, declarations of the visible part of a package
can be denoted by expanded names appearing outside the package, and can be made directly visible by a use_clause. ♦

Extensions to Ada 83

12.a The fact that the immediate scope of an overloadable declaration does not include its profile is new to Ada 95. It
replaces RM83-8.3(16), which said that within a subprogram specification ♦, all declarations with the same designator
as the subprogram ♦ were hidden from all visibility. The RM83-8.3(16) rule seemed to be overkill, and created both
implementation difficulties and unnecessary semantic complexity.

Wording Changes From Ada 83

12.c We no longer need to talk about the scope of notations, identifiers, character_literals, and operator_symbols.

12.d The notion of "visible part" has been extended in Ada 95. ♦ It was necessary to extend the concept to subprograms ♦
in order for the visibility rules related to child library units to work properly. ♦ Extending the concept to composite
types made the definition of scope slightly simpler. We define visible part for some things elsewhere, since it makes a
big difference to the user for those things. For composite types and subprograms, however, the concept is used only in
arcane visibility rules, so we localize it to this clause.

12.e In Ada 83, the semantics of with_clauses was described in terms of visibility. It is now described in terms of
[immediate] scope.

AVARM;1.0 Visibility Rules

131 5 October 1995 Scope of Declarations 8.2

12.fWe have clarified that the following is illegal (where Q and R are library units):

12.gpackage Q is
I : Integer := 0;

end Q;

12.hpackage R is
package X renames Standard;
X.Q.I := 17; -- Illegal!

end R;

12.ieven though Q is declared in the declarative region of Standard, because R does not mention Q in a with_clause.

8.3 Visibility
1The visibility rules, given below, determine which declarations are visible and directly visible at each

place within a program. The visibility rules apply to both explicit and implicit declarations.

Static Semantics

2A declaration is defined to be directly visible at places where a name consisting of only an identifier or
operator_symbol is sufficient to denote the declaration; that is, no selected_component notation or spe-
cial context ♦ is necessary to denote the declaration. A declaration is defined to be visible wherever it is
directly visible, as well as at other places where some name (such as a selected_component) can denote
the declaration.

3The syntactic category direct_name is used to indicate contexts where direct visibility is required. The
syntactic category selector_name is used to indicate contexts where visibility, but not direct visibility, is
required.

4There are two kinds of direct visibility: immediate visibility and use-visibility. A declaration is im-
mediately visible at a place if it is directly visible because the place is within its immediate scope. A
declaration is use-visible if it is directly visible because of a use_clause (see 8.4). Both conditions can
apply.

5A declaration can be hidden, either from direct visibility, or from all visibility, within certain parts of its
scope. Where hidden from all visibility, it is not visible at all (neither using a direct_name nor a selector_
name). Where hidden from direct visibility, only direct visibility is lost; visibility using a selector_name
is still possible.

6Two or more declarations are overloaded if they all have the same defining name and there is a place
where they are all directly visible.

7The declarations of callable entities (including enumeration literals) are overloadable, meaning that over-
loading is allowed for them. ♦

8Two declarations are homographs if they have the same defining name, and, if both are overloadable,
their profiles are type conformant. An inner declaration hides any outer homograph from direct visibility.

9Two homographs are not ♦ allowed immediately within the same declarative region ♦.

10A declaration is visible within its scope, except where hidden from all visibility, as follows:

11• ♦

Visibility Rules AVARM;1.0

8.3 Visibility 5 October 1995 132

12 • A declaration is hidden from all visibility until the end of the declaration, except:

13 • For a record type ♦, the declaration is hidden from all visibility only until the reserved
word record;

14 • For a package_declaration♦ or subprogram_body, the declaration is hidden from all
visibility only until the reserved word is of the declaration. ♦

15 • If the completion of a declaration is a declaration, then within the scope of the completion,
the first declaration is hidden from all visibility. Similarly, a ♦ parameter_specification is
hidden within the scope of a corresponding ♦ parameter_specification of a corresponding
completion♦.

15.a Ramification: This rule means, for example, that within the scope of a full_type_declaration that completes a
private_type_declaration, the name of the type will denote the full_type_declaration, and therefore the full view
of the type. On the other hand, if the completion is not a declaration, then it doesn’t hide anything, and you
can’t denote it.

16 • The declaration of a library unit (including a library_unit_renaming_declaration) is hidden
from all visibility except at places that are within its declarative region or within the scope of
a with_clause that mentions it.

17 A declaration with a defining_identifier♦ is immediately visible (and hence directly visible) within its
immediate scope except where hidden from direct visibility, as follows:

18 • A declaration is hidden from direct visibility within the immediate scope of a homograph of
the declaration, if the homograph occurs within an inner declarative region;

19 • A declaration is also hidden from direct visibility where hidden from all visibility.

Name Resolution Rules

20 A direct_name shall resolve to denote a directly visible declaration whose defining name is the same as
the direct_name. A selector_name shall resolve to denote a visible declaration whose defining name is
the same as the selector_name. ♦

21 These rules on visibility and direct visibility do not apply in a context_clause or a parent_unit_name, ♦.
For those contexts, see the rules in 10.1.6, ‘‘Environment-Level Visibility Rules’’.

21.a Ramification: Direct visibility is irrelevant for character_literals. In terms of overload resolution character_literals are
similar to other literals, ♦ — see 4.2. For character_literals, there is no need to worry about hiding, since there is no
way to declare homographs.

Legality Rules

22 An explicit declaration is illegal if there is a homograph occurring immediately within the same declara-
tive region that is visible at the place of the declaration, and is not hidden from all visibility by the explicit
declaration. Similarly, the context_clause for a subunit is illegal if it mentions (in a with_clause) some
library unit, and there is a homograph of the library unit that is visible at the place of the corresponding
stub, and the homograph and the mentioned library unit are both declared immediately within the same
declarative region. ♦

22.a Discussion: Normally, these rules just mean you can’t explicitly declare two homographs immediately within the same
declarative region. The wording is designed to handle the following special cases:

22.b • If the second declaration completes the first one, the second declaration is legal.

22.c • ♦

22.d Note that we need to be careful which things we make "hidden from all visibility" versus which things we make simply
illegal for names to denote. The distinction is subtle. The rules that disallow names denoting components within a
type declaration do not make the components invisible at those places, so that the above rule makes components with
the same name illegal. The same is true for the rule that disallows names denoting formal parameters within a formal_
part (see 6.1).

♦

AVARM;1.0 Visibility Rules

133 5 October 1995 Visibility 8.3

NOTES
235 Visibility for compilation units follows from the definition of the environment in 10.1.4, except that it is necessary to

apply a with_clause to obtain visibility to a library_unit_declaration or library_unit_renaming_declaration.

246 In addition to the visibility rules given above, the meaning of the occurrence of a direct_name or selector_name at a
given place in the text can depend on the overloading rules (see 8.6).

257 Not all contexts where an identifier or character_literal ♦ are allowed require visibility of a corresponding declaration.
Contexts where visibility is not required are identified by using one of these ♦ syntactic categories directly in a syntax rule,
rather than using direct_name or selector_name.

25.aRamification: An identifier or character_literal ♦ that occurs in one of the following contexts is not required to denote
a visible or directly visible declaration:

25.b1. A defining name.

25.c2. The identifiers ♦ that appear after the reserved word end in a proper_body. Similarly for ‘‘end loop’’,
etc.

25.d3. An attribute_designator.

25.e4. ♦

25.f5. ♦

25.g6. ♦

25.hThe visibility rules have nothing to do with the above cases; the meanings of such things are defined elsewhere.
Reserved words are not identifiers; the visibility rules don’t apply to them either.

25.iBecause of the way we have defined "declaration", it is possible for a usage name to denote a subprogram_body, either
within that body, or (for a non-library unit) after it (since the body hides the corresponding declaration, if any). Other
bodies do not work that way. Completions of type_ and deferred_constant_declarations do work that way. ♦

25.jThe scope of a subprogram does not start until after its profile. Thus, the following is legal:

25.kX : constant Integer := 17;
package P is

procedure X(Y : in Integer range (1 .. X));
end P;

25.lThe body of the subprogram will probably be illegal, however, since the constant X will be hidden by then.

25.m♦

Extensions to Ada 83

25.nDeclarations with the same defining name as that of a subprogram ♦ being defined are nevertheless visible within the
subprogram specification ♦.

Wording Changes From Ada 83

25.pThe term ‘‘visible by selection’’ is no longer defined. We use the terms ‘‘directly visible’’ and ‘‘visible’’ (among other
things). There are only two regions of text that are of interest, here: the region in which a declaration is visible, and the
region in which it is directly visible.

25.qVisibility is defined only for declarations.

8.4 Use Clauses
1A use_package_clause achieves direct visibility of declarations that appear in the visible part of a

package♦.

Language Design Principles

1.aIf and only if the visibility rules allow P.A, "use P;" should make A directly visible (barring name conflicts). This
means, for example, that child library units♦ should be made visible by a use_clause for the appropriate package.

1.bThe rules for use_clauses were carefully constructed to avoid so-called Beaujolais effects, where the addition or
removal of a single use_clause, or a single declaration in a "use"d package, would change the meaning of a program
from one legal interpretation to another.

Visibility Rules AVARM;1.0

8.4 Use Clauses 5 October 1995 134

Syntax

2 use_clause ::= use_package_clause | ♦
3 use_package_clause ::= use package_name {, package_name};

♦

Legality Rules

5 A package_name of a use_package_clause shall denote a package.
5.a Ramification: This includes formal packages.

Static Semantics

6 For each use_clause, there is a certain region of text called the scope of the use_clause. For a use_
clause within a context_clause of a library_unit_declaration or library_unit_renaming_declaration, the
scope is the entire declarative region of the declaration. For a use_clause within a context_clause of a
body, the scope is the entire body and any subunits (including multiply nested subunits). The scope does
not include context_clauses themselves.

7 For a use_clause immediately within a declarative region, the scope is the portion of the declarative
region starting just after the use_clause and extending to the end of the declarative region. ♦

8 For each package denoted by a package_name of a use_package_clause whose scope encloses a place,
each declaration that occurs immediately within the declarative region of the package is potentially use-
visible at this place if the declaration is visible at this place. ♦

8.a Ramification: ♦

8.b The semantics described here should be similar to the semantics for expanded names given in 4.1.3, ‘‘Selected
Components’’ so as to achieve the effect requested by the ‘‘principle of equivalence of use_clauses and selected_
components.’’ Thus, child library units ♦ are potentially use-visible when their enclosing package is use’d.

8.c The "visible at that place" part implies that applying a use_clause to a parent unit does not make all of its children
use-visible — only those that have been made visible by a with_clause. It also implies that we don’t have to worry
about hiding in the definition of "directly visible" — a declaration cannot be use-visible unless it is visible.

8.d ♦

9 A declaration is use-visible if it is potentially use-visible, except in these naming-conflict cases:

10 • A potentially use-visible declaration is not use-visible if the place considered is within the
immediate scope of a homograph of the declaration.

11 • Potentially use-visible declarations that have the same identifier are not use-visible unless
each of them is an overloadable declaration.

11.a Ramification: Overloadable declarations don’t cancel each other out, even if they are homographs, though if
they are not distinguishable by formal parameter names ♦, any use will be ambiguous. ♦ Direct visibility is
irrelevant for character_literals.

Dynamic Semantics

12 The elaboration of a use_clause has no effect.
Examples

13 Example of a use clause in a context clause:
14 with Ada.Calendar; use Ada;

♦

AVARM;1.0 Visibility Rules

135 5 October 1995 Use Clauses 8.4

15

15.aRamification: In ‘‘use X, Y;’’, Y cannot refer to something made visible by the ‘‘use’’ of X. Thus, it’s not (quite)
equivalent to ‘‘use X; use Y;’’.

15.bIf a given declaration is already immediately visible, then a use_clause that makes it potentially use-visible has no
effect. ♦

15.c♦

15.dReason: We considered adding a rule that prevented several declarations of views of the same entity that all have the
same semantics from cancelling each other out. For example, if a (possibly implicit) subprogram_declaration for "+" is
potentially use-visible, and a fully conformant renaming of it is also potentially use-visible, then they (annoyingly)
cancel each other out; neither one is use-visible. The considered rule would have made just one of them use-visible.
We gave up on this idea due to the complexity of the rule. It would have had to account for both overloadable and
non-overloadable renaming_declarations, the case where the rule should apply only to some subset of the declarations
with the same defining name, and the case of subtype_declarations (since they are claimed to be sufficient for renaming
of subtypes).

♦
Wording Changes From Ada 83

15.fThe phrase ‘‘omitting from this set any packages that enclose this place’’ is no longer necessary to avoid making
something visible outside its scope, because we explicitly state that the declaration has to be visible in order to be
potentially use-visible.

8.5 Renaming Declarations
1A renaming_declaration declares another name for an entity, such as an object, ♦ package, or sub-

program, ♦ but not an attribute. ♦

Syntax

2renaming_declaration ::=
object_renaming_declaration

| ♦
| package_renaming_declaration
| subprogram_renaming_declaration
| ♦

Abstract Syntax

3

renamepkg ∈ RenamePackage == rename-package id id
renamep ∈ RenameSubprogram == rename-subprogram subprogram id
renameo ∈ RenameObj == rename-obj id type id
rename ∈ Rename == renamepkg | renamep | renameo

Dynamic Semantics

4The elaboration of a renaming_declaration evaluates the name that follows the reserved word renames
and thereby determines the view and entity denoted by this name (the renamed view and renamed entity).
A name that denotes the renaming_declaration denotes (a new view of) the renamed entity.

NOTES
58 Renaming may be used to resolve name conflicts and to act as a shorthand. Renaming with a different identifier ♦ does

not hide the old name; the new name and the old name need not be visible at the same places.

69 ♦

710 A subtype defined without any additional constraint can be used to achieve the effect of renaming another subtype
(including a task or protected subtype) as in

Visibility Rules AVARM;1.0

8.5 Renaming Declarations 5 October 1995 136

8 subtype Mode is Ada.Text_IO.File_Mode;

Wording Changes From Ada 83

8.a The second sentence of RM83-8.5(3), ‘‘At any point where a renaming declaration is visible, the identifier, or operator
symbol of this declaration denotes the renamed entity.’’ is incorrect. It doesn’t say directly visible. Also, such an
identifier might resolve to something else.

8.b The verbiage about renamings being legal ‘‘only if exactly one...’’, which appears in RM83-8.5(4) (for objects) and
RM83-8.5(7) (for subprograms) is removed, because it follows from the normal rules about overload resolution. For
language lawyers, these facts are obvious; for programmers, they are irrelevant, since failing these tests is highly
unlikely.

8.5.1 Object Renaming Declarations
1 An object_renaming_declaration is used to rename an object.

Syntax

2 object_renaming_declaration ::= defining_identifier : subtype_mark renames object_name;

Name Resolution Rules

3 The type of the object_name shall resolve to the type determined by the subtype_mark.

Legality Rules

4 The renamed entity shall be an object.

5 ♦

Static Semantics

6 An object_renaming_declaration declares a new view of the renamed object whose properties are iden-
tical to those of the renamed view. Thus, the properties of the renamed object are not affected by the
renaming_declaration. In particular, its value and whether or not it is a constant are unaffected♦

Examples

7 Example of renaming an object:
8 declare

L : Person renames Next_Person -- see 3.8
begin

L.Age := L.Age + 1;
end;

8.5.2 Exception Renaming Declarations -- Removed

8.5.3 Package Renaming Declarations
1 A package_renaming_declaration is used to rename a package.

Syntax

2 package_renaming_declaration ::= package defining_program_unit_name renames package_name;

Legality Rules

3 The renamed entity shall be a package.

AVARM;1.0 Visibility Rules

137 5 October 1995 Package Renaming Declarations 8.5.3

Static Semantics

4A package_renaming_declaration declares a new view of the renamed package.

Examples

5Example of renaming a package:
6package TM renames Table_Manager;

8.5.4 Subprogram Renaming Declarations
1♦ A subprogram_renaming_declaration ♦is called a renaming-as-declaration, and is used to rename a

subprogram (possibly an enumeration literal)♦. ♦

Syntax

2subprogram_renaming_declaration ::= subprogram_specification renames callable_entity_name;

Name Resolution Rules

3The expected profile for the callable_entity_name is the profile given in the subprogram_specification.

Legality Rules

4The profile of a renaming-as-declaration shall be mode-conformant with that of the renamed callable
entity.

5♦

6A name that denotes a formal parameter of the subprogram_specification is not allowed within the
callable_entity_name.

6.aReason: ♦

6.b♦

Static Semantics

7A renaming-as-declaration declares a new view of the renamed entity. The profile of this new view takes
its subtypes, parameter modes, and calling convention from the original profile of the callable entity,
while taking the formal parameter names ♦ from the profile given in the subprogram_renaming_
declaration. The new view is a function or procedure♦. ♦

♦

NOTES
911 A procedure can only be renamed as a procedure. A function♦ can be renamed only with an identifier ♦.

Enumeration literals can be renamed as functions♦ Attributes and operators cannot be renamed.

1012 ♦

Examples

13Examples of subprogram renaming declarations:
14♦

function No_Free_Space (Foo : Integer) return Boolean renames Free_List_Empty;

15♦

16♦

Visibility Rules AVARM;1.0

8.5.4 Subprogram Renaming Declarations 5 October 1995 138

17 ♦

8.5.5 Generic Renaming Declarations -- Removed

8.6 The Context of Overload Resolution
1 Because declarations can be overloaded, it is possible for an occurrence of a usage name to have more

than one possible interpretation; in most cases, ambiguity is disallowed. This clause describes how the
possible interpretations resolve to the actual interpretation.

2 Certain rules of the language (the Name Resolution Rules) are considered ‘‘overloading rules’’. If a
possible interpretation violates an overloading rule, it is assumed not to be the intended interpretation;
some other possible interpretation is assumed to be the actual interpretation. On the other hand, viola-
tions of non-overloading rules do not affect which interpretation is chosen; instead, they cause the con-
struct to be illegal. To be legal, there usually has to be exactly one acceptable interpretation of a construct
that is a ‘‘complete context’’, not counting any nested complete contexts.

3 The syntax rules of the language and the visibility rules given in 8.3 determine the possible interpreta-
tions. Most type checking rules (rules that require a particular type, or a particular class of types, for
example) are overloading rules. Various rules for the matching of formal and actual parameters are
overloading rules.

Language Design Principles

3.a The type resolution rules are intended to minimize the need for implicit declarations and preference rules associated
with implicit conversion ♦.

Name Resolution Rules

4 Overload resolution is applied separately to each complete context, not counting inner complete contexts.
Each of the following constructs is a complete context:

5 • A context_item.

6 • A declarative_item or declaration.
6.a Ramification: A loop_parameter_specification is a declaration, and hence a complete context.

7 • A statement.

8 • ♦

9 • The expression of a case_statement.
9.a Ramification: This means that the expression is resolved without looking at the choices.

10 An (overall) interpretation of a complete context embodies its meaning, and includes the following infor-
mation about the constituents of the complete context, not including constituents of inner complete con-
texts:

11 • for each constituent of the complete context, to which syntactic categories it belongs, and by
which syntax rules; and

11.a Ramification: Syntactic categories is plural here, because there are lots of trivial productions — an expression
might also be all of the following, in this order: identifier, name, primary, factor, term, simple_expression, and
relation. Basically, we’re trying to capture all the information in the parse tree here, without using compiler-
writer’s jargon like ‘‘parse tree’’.

AVARM;1.0 Visibility Rules

139 5 October 1995 The Context of Overload Resolution 8.6

12• for each usage name, which declaration it denotes (and, therefore, which view and which
entity it denotes); and ♦

13• for a complete context that is a declarative_item, whether or not it is a completion of a
declaration, and (if so) which declaration it completes.

13.aRamification: Unfortunately, we are not confident that the above list is complete. We’ll have to live with that.

13.bTo be honest: For ‘‘possible’’ interpretations, the above information is tentative.

13.cDiscussion: A possible interpretation (an input to overload resolution) contains information about what a usage name
might denote, but what it actually does denote requires overload resolution to determine. Hence the term ‘‘tentative’’ is
needed for possible interpretations; otherwise, the definition would be circular.

14A possible interpretation is one that obeys the syntax rules and the visibility rules. An acceptable inter-
pretation is a possible interpretation that obeys the overloading rules, that is, those rules that specify an
expected type or expected profile, or specify how a construct shall resolve or be interpreted.

14.aTo be honest: One rule that falls into this category, but does not use the above-mentioned magic words, is the rule
about numbers of parameter associations in a call (see 6.4).

14.bRamification: The Name Resolution Rules are the ones that appear under the Name Resolution Rules heading. Some
Syntax Rules are written in English, instead of BNF. No rule is a Syntax Rule or Name Resolution Rule unless it
appears under the appropriate heading.

15The interpretation of a constituent of a complete context is determined from the overall interpretation of
the complete context as a whole. Thus, for example, ‘‘interpreted as a function_call,’’ means that the
construct’s interpretation says that it belongs to the syntactic category function_call.

16Each occurrence of a usage name denotes the declaration determined by its interpretation. It also denotes
the view declared by its denoted declaration.♦ ♦

19A usage name that denotes a view also denotes the entity of that view.
19.aRamification: Usually, a usage name denotes only one declaration, and therefore one view and one entity.

20The expected type for a given expression, name, or other construct determines, according to the type
resolution rules given below, the types considered for the construct during overload resolution. The type
resolution rules provide support for ♦ universal numeric literals♦:

20.aRamification: Expected types are defined throughout the RM95. The most important definition is that, for a
subprogram, the expected type for the actual parameter is the type of the formal parameter.

20.bThe type resolution rules are trivial unless either the actual or expected type is universal♦.

21• If a construct is expected to be of any type in a class of types, or of the universal or class-
wide type for a class, then the type of the construct shall resolve to a type in that class or to a
universal type that covers the class.

21.aRamification: This matching rule handles (among other things) cases like the Val attribute, which denotes a
function that takes a parameter of type universal_integer.

21.b♦

22• If the expected type for a construct is a specific type T, then the type of the construct shall
resolve either to T, or:

22.aRamification: This rule is not intended to create a preference for the specific type — such a preference would
cause Beaujolais effects.

23• ♦

Visibility Rules AVARM;1.0

8.6 The Context of Overload Resolution 5 October 1995 140

24 • to a universal type that covers T; ♦

25 • ♦

26 In certain contexts, such as in a subprogram_renaming_declaration, the Name Resolution Rules define an
expected profile for a given name; in such cases, the name shall resolve to the name of a callable entity
whose profile is type conformant with the expected profile.

26.a Ramification: The parameter and result subtypes are not used in overload resolution. Only type conformance of
profiles is considered during overload resolution. Legality rules generally require at least mode-conformance in
addition, but those rules are not used in overload resolution.

Legality Rules

27 When the expected type for a construct is required to be a single type in a given class, the type expected
for the construct shall be determinable solely from the context in which the construct appears, excluding
the construct itself, but using the requirement that it be in the given class; the type of the construct is then
this single expected type. Furthermore, the context shall not be one that expects any type in some class
that contains types of the given class; in particular, the construct shall not be the operand of a type_
conversion. ♦

28 A complete context shall have at least one acceptable interpretation; if there is exactly one, then that one
is chosen.

28.a Ramification: This, and the rule below about ambiguity, are the ones that suck in all the Syntax Rules and Name
Resolution Rules as compile-time rules. Note that this and the ambiguity rule have to be Legality Rules.

29 There is a preference for the primitive operators (and ranges) of the root numeric type root_integer ♦. In
particular, if two acceptable interpretations of a constituent of a complete context differ only in that one is
for a primitive operator (or range) of the type root_integer ♦, and the other is not, the interpretation using
the primitive operator (or range) of the root numeric type is preferred.

29.a Reason: The reason for this preference is so that expressions involving literals and named numbers can be
unambiguous. For example, without the preference rule, the following would be ambiguous:

29.b N : constant := 123;
if N > 100 then -- Preference for root_integer ">" operator.

...
end if;

30 For a complete context, if there is exactly one overall acceptable interpretation where each constituent’s
interpretation is the same as or preferred (in the above sense) over those in all other overall acceptable
interpretations, then that one overall acceptable interpretation is chosen. Otherwise, the complete context
is ambiguous.

31 A complete context ♦ shall not be ambiguous.

32 ♦

NOTES
33 13 If a usage name has only one acceptable interpretation, then it denotes the corresponding entity. However, this does

not mean that the usage name is necessarily legal since other requirements exist which are not considered for overload
resolution; for example, the fact that an expression is static, whether an object is constant, mode and subtype conformance
rules, freezing rules, order of elaboration, and so on.

34 Similarly, subtypes are not considered for overload resolution (the violation of a constraint does not make a program illegal
but raises an exception during program execution).

AVARM;1.0 Visibility Rules

141 5 October 1995 The Context of Overload Resolution 8.6

Incompatibilities With Ada 83

34.aThe new preference rule for operators of type root_integer is upward incompatible, but only in cases that involved
Beaujolais effects in Ada 83. Such cases are ambiguous in Ada 95.

Extensions to Ada 83

34.bThe rule that allows an expected type to match an actual expression of a universal type, in combination with the new
preference rule for operators of type root_integer, subsumes the Ada 83 "implicit conversion" rules for universal
types.

Wording Changes From Ada 83

34.cIn Ada 83, it is not clear what the ‘‘syntax rules’’ are. AI-00157 states that a certain textual rule is a syntax rule, but
it’s still not clear how one tells in general which textual rules are syntax rules. We have solved the problem by stating
exactly which rules are syntax rules — the ones that appear under the ‘‘Syntax’’ heading.

34.dRM83 has a long list of the ‘‘forms’’ of rules that are to be used in overload resolution (in addition to the syntax rules).
It is not clear exactly which rules fall under each form. We have solved the problem by explicitly marking all rules that
are used in overload resolution. Thus, the list of kinds of rules is unnecessary. It is replaced with some introductory
(intentionally vague) text explaining the basic idea of what sorts of rules are overloading rules.

34.eIt is not clear from RM83 what information is embodied in a ‘‘meaning’’ or an ‘‘interpretation.’’ ‘‘Meaning’’ and
‘‘interpretation’’ were intended to be synonymous; we now use the latter only in defining the rules about overload
resolution. ‘‘Meaning’’ is used only informally. This clause attempts to clarify what is meant by ‘‘interpretation.’’

34.fFor example, RM83 does not make it clear that overload resolution is required in order to match subprogram_bodies
with their corresponding declarations (and even to tell whether a given subprogram_body is the completion of a
previous declaration). Clearly, the information needed to do this is part of the ‘‘interpretation’’ of a subprogram_body.
The resolution of such things is defined in terms of the ‘‘expected profile’’ concept. Ada 95 has some new cases where
expected profiles are needed ♦.

34.gRM83-8.7(2) might seem to imply that an interpretation embodies information about what is denoted by each usage
name, but not information about which syntactic category each construct belongs to. However, it seems necessary to
include such information, since the Ada grammar is highly ambiguous. For example, X(Y) might be a function_call or
an indexed_component, and no context-free/syntactic information can tell the difference. It seems like we should view
X(Y) as being, for example, ‘‘interpreted as a function_call’’ (if that’s what overload resolution decides it is). Note that
there are examples where the denotation of each usage name does not imply the syntactic category. However, even if
that were not true, it seems that intuitively, the interpretation includes that information. ♦

34.kIt is the intent that the Ada 95 preference rule for ♦root_integer operators is more locally enforceable than that of
RM83-4.6(15). It should also eliminate interpretation shifts due to the addition or removal of a use_clause (the so
called Beaujolais effect).

34.lRM83-8.7 seems to be missing some complete contexts, ♦ declarative_items that are not declarations ♦, and context_
items. We have added these, and also replaced the ‘‘must be determinable’’ wording of RM83-5.4(3) with the notion
that the expression of a case_statement is a complete context.

34.mCases like the Val attribute are now handled using the normal type resolution rules, instead of having special cases that
explicitly allow things like ‘‘any integer type.’’

Visibility Rules AVARM;1.0

9 Tasks and Synchronization -- Removed 5 October 1995 142

AVARM;1.0 Tasks and Synchronization -- Removed

143 5 October 1995 Tasks and Synchronization -- Removed 9

9. Tasks and Synchronization -- Removed

Tasks and Synchronization -- Removed AVARM;1.0

10 Program Structure and Compilation Issues 5 October 1995 144

AVARM;1.0 Program Structure and Compilation Issues

145 5 October 1995 Program Structure and Compilation Issues 10

10. Program Structure and Compilation Issues
1The overall structure of programs and the facilities for separate compilation are described in this section.

A program is a ♦ partition which may execute in a separate address space♦.

2As explained below, a partition is constructed from library units. Syntactically, the declaration of a
library unit is a library_item, as is the body of a library unit. An implementation may support a concept of
a program library (or simply, a ‘‘library’’), which contains library_items. Library units may be organized
into a hierarchy of children, grandchildren, and so on.

3This section has two clauses: 10.1, ‘‘Separate Compilation’’ discusses compile-time issues related to
separate compilation. 10.2, ‘‘Program Execution’’ discusses issues related to what is traditionally known
as ‘‘link time’’ and ‘‘run time’’ — building and executing partitions.

Language Design Principles

3.aWe should avoid specifying details that are outside the domain of the language itself. The standard is intended (at least
in part) to promote portability of Ada programs at the source level. It is not intended to standardize extra-language
issues such as how one invokes the compiler (or other tools), how one’s source is represented and organized, version
management, the format of error messages, etc.

3.bThe rules of the language should be enforced even in the presence of separate compilation. Using separate compilation
should not make a program less safe.

3.cIt should be possible to determine the legality of a compilation unit by looking only at the compilation unit itself and
the compilation units upon which it depends semantically. As an example, it should be possible to analyze the legality
of two compilation units in parallel if they do not depend semantically upon each other.

3.dOn the other hand, it may be necessary to look outside that set in order to generate code ♦. Also on the other hand, it is
generally necessary to look outside that set in order to check Post-Compilation Rules.

3.e♦
Wording Changes From Ada 83

3.fThe section organization mentioned above is different from that of RM83.

10.1 Separate Compilation
1A program unit is either a package♦ or an explicitly declared subprogram other than an enumeration

literal. Certain kinds of program units can be separately compiled. Alternatively, they can appear physi-
cally nested within other program units.

2The text of a program can be submitted to the compiler in one or more compilations. Each compilation is
a succession of compilation_units. A compilation_unit contains either the declaration or the body ♦. The
representation for a compilation is implementation-defined.

2.aImplementation defined: The representation for a compilation.

2.bRamification: Some implementations might choose to make a compilation be a source (text) file. Others might allow
multiple source files to be automatically concatenated to form a single compilation. Others still may represent the
source in a nontextual form such as a parse tree. Note that the RM95 does not even define the concept of a source file.

2.c♦

3A library unit is a separately compiled program unit, and is always a package or a subprogram♦. Library
units may have other (logically nested) library units as children, and may have other program units
physically nested within them. A root library unit, together with its children and grandchildren and so
on, form a subsystem.

Program Structure and Compilation Issues AVARM;1.0

10.1 Separate Compilation 5 October 1995 146

Implementation Permissions

4 An implementation may impose implementation-defined restrictions on compilations that contain multiple
compilation_units.

4.a Implementation defined: Any restrictions on compilations that contain multiple compilation_units.

4.b Discussion: For example, an implementation might disallow a compilation that contains two versions of the same
compilation unit, or that contains the declarations for library packages P1 and P2, where P1 precedes P2 in the
compilation but P1 has a with_clause that mentions P2.

Wording Changes From Ada 83

4.c The interactions between language issues and environmental issues are left open in Ada 95. The environment concept
is new. In Ada 83, the concept of the program library, for example, appeared to be quite concrete, although the rules
had no force, since implementations could get around them simply by defining various mappings from the concept of
an Ada program library to whatever data structures were actually stored in support of separate compilation. Indeed,
implementations were encouraged to do so.

4.d In RM83, it was unclear which was the official definition of ‘‘program unit.’’ Definitions appeared in RM83-5, 6, 7,
and 9, but not 12. Placing it here seems logical, since a program unit is sort of a potential compilation unit.

10.1.1 Compilation Units - Library Units
1 A library_item is a compilation unit that is the declaration or body♦ of a library unit. Each library unit

(except Standard) has a parent unit, which is a library package♦. A library unit is a child of its parent
unit. The root library units are the children of the predefined library package Standard.

1.a Ramification: Standard is a library unit.

Syntax

2 compilation ::= {compilation_unit}

3 compilation_unit ::=
context_clause library_item

| ♦
4 library_item ::= ♦ library_unit_declaration

| library_unit_body
| ♦

5 library_unit_declaration ::=
subprogram_declaration | package_declaration

| ♦
6 ♦
7 library_unit_body ::= subprogram_body | package_body

8 parent_unit_name ::= name

9 A library unit is a program unit that is declared by a library_item. When a program unit is a library unit,
the prefix ‘‘library’’ is used to refer to it ♦, as well as to its declaration and body, as in ‘‘library proce-
dure’’ or ‘‘library package_body’’♦. The term compilation unit is used to refer to a compilation_unit.
When the meaning is clear from context, the term is also used to refer to the library_item of a compilation_
unit ♦.

9.a Discussion: In this example:

9.b with Ada.Text_IO;
package P is

...
end P;

AVARM;1.0 Program Structure and Compilation Issues

147 5 October 1995 Compilation Units - Library Units 10.1.1

9.cthe term ‘‘compilation unit’’ can refer to this text: ‘‘with Ada.Text_IO; package P is ... end P;’’ or to this text:
‘‘package P is ... end P;’’. We use this shorthand because it corresponds to common usage.

9.dWe like to use the word ‘‘unit’’ for declaration-plus-body things, and ‘‘item’’ for declaration or body separately (as in
declarative_item). The terms ‘‘compilation_unit’’ and ‘‘compilation unit’’ ♦ are exceptions to this rule. We considered
changing ‘‘compilation_unit’’ and ‘‘compilation unit’’ to ‘‘compilation_item’’ and ‘‘compilation item,’’ respectively,
but we decided not to.

10The parent declaration of a library_item (and of the library unit) is the declaration denoted by the parent_
unit_name, if any, of the defining_program_unit_name of the library_item. If there is no parent_unit_
name, the parent declaration is the declaration of Standard, the library_item is a root library_item, and the
library unit ♦ is a root library unit ♦. The declaration and body of Standard itself have no parent
declaration. The parent unit of a library_item or library unit is the library unit declared by its parent
declaration.

10.aDiscussion: The declaration and body of Standard are presumed to exist from the beginning of time, as it were. There
is no way to actually write them, since there is no syntactic way to indicate lack of a parent. An attempt to compile a
package Standard would result in Standard.Standard.

10.bReason: Library units (other than Standard) have ‘‘parent declarations’’ and ‘‘parent units’’. ♦

11The children of a library unit occur immediately within the declarative region of the declaration of the
library unit. The ancestors of a library unit are itself, its parent, its parent’s parent, and so on. (Standard
is an ancestor of every library unit.) The descendant relation is the inverse of the ancestor relation.

11.aReason: ♦ We use the unadorned term ‘‘ancestors’’ here to concisely define both ‘‘ancestor unit’’ and ‘‘ancestor
declaration.’’

12A library_unit_declaration ♦ is ♦ public. ♦ The public descendants of a library unit are the library unit
itself, and the public descendants of its public children. ♦

Legality Rules

13The parent unit of a library_item shall be a library package ♦.

14If a defining_program_unit_name of a given declaration or body has a parent_unit_name, then the given
declaration or body shall be a library_item. The body of a program unit shall be a library_item if and only
if the declaration of the program unit is a library_item. ♦

14.aDiscussion: We could have allowed nested program units to be children of other program units; their semantics would
make sense. We disallow them to keep things simpler and because they wouldn’t be particularly useful.

15A parent_unit_name (which can be used within a defining_program_unit_name of a library_item ♦) and
each of its prefixes, shall not denote a renaming_declaration. ♦

16♦ ♦

17♦

Abstract Syntax

18

with == id*

use == id*

compilation ∈ Compilation == compilation comp-unit*

comp-unit ∈ CompUnit == comp-unit library-unit context
context ∈ Context == context [with] [use]

Program Structure and Compilation Issues AVARM;1.0

10.1.1 Compilation Units - Library Units 5 October 1995 148

Static Semantics

19 ♦ There are two kinds of dependences among compilation units:

20 • The semantic dependences (see below) are the ones needed to check the compile-time rules
across compilation unit boundaries; a compilation unit depends semantically on the other
compilation units needed to determine its legality. The visibility rules are based on the
semantic dependences.

21 • The elaboration dependences (see 10.2) determine the order of elaboration of library_items.

♦

22 A library_item depends semantically upon its parent declaration. ♦ A library_unit_body depends seman-
tically upon the corresponding library_unit_declaration, if any.

22.a Discussion: The ‘‘if any’’ is necessary because library subprograms are not required to have a subprogram_
declaration.

A compilation unit depends semantically upon each library_item mentioned in a with_clause of the com-
pilation unit. The semantic dependence relationship is transitive. ♦

22.b Discussion: ♦ Note that in almost all cases, the dependence will need to exist due to with_clauses, even without this
rule. Hence, the rule has very little effect on programmers.

22.c Note that the semantic dependence does not have the same effect as a with_clause; in order to denote a declaration in
one of those packages, a with_clause will generally be needed.

22.d ♦

NOTES
23 1 A simple program may consist of a single compilation unit. A compilation need not have any compilation units ♦.

23.a Ramification: ♦ A compilation can even be entirely empty, which is probably not useful.

23.b Some interesting properties of the three kinds of dependence: The elaboration dependences also include the semantic
dependences, except that subunits are taken together with their parents. The semantic dependences partly determine
the order in which the compilation units appear in the environment at compile time. At run time, the order is partly
determined by the elaboration dependences.

23.c The model whereby a child is inside its parent’s declarative region, after the parent’s declaration, as explained in 8.1,
has the following ramifications:

23.d • The restrictions on ‘‘early’’ use of a private type (RM83-7.4.1(4)) or a deferred constant (RM83-7.4.3(2))
do not apply to uses in child units, because they follow the full declaration.

23.e • A library subprogram is never primitive, even if its profile includes a type declared immediately within the
parent’s package_specification, because the child is not declared immediately within the same package_
specification as the type (so it doesn’t declare a new primitive subprogram) ♦. It is immediately within the
same declarative region, but not the same package_specification. Thus, ♦ it is not possible for the user to
declare primitive subprograms of the types declared in the declaration of Standard, such as Integer .

23.f • When the parent unit is ‘‘used’’ the simple names of the with’d child units are directly visible (see 8.4,
‘‘Use Clauses’’).

23.g • When a parent body with’s its own child, the defining name of the child is directly visible, and the parent
body is not allowed to include a declaration of a homograph of the child unit immediately within the
declarative_part of the body (RM83-8.3(17)).

23.h Note that ‘‘declaration of a library unit’’ is different from ‘‘library_unit_declaration’’ — the former includes
subprogram_body. ♦

23.i ♦

24 2 ♦ Within a partition, two library subprograms are required to have distinct names and hence cannot overload each
other. However, renaming_declarations are allowed to define overloaded names for such subprograms, and a locally
declared subprogram is allowed to overload a library subprogram. The expanded name Standard.L can be used to denote a
root library unit L (unless the declaration of Standard is hidden) since root library unit declarations occur immediately
within the declarative region of package Standard.

AVARM;1.0 Program Structure and Compilation Issues

149 5 October 1995 Compilation Units - Library Units 10.1.1

♦
Extensions to Ada 83

36.n♦

36.oChildren (other than children of Standard) are new in Ada 95.

36.p♦
Wording Changes From Ada 83

36.qStandard is considered a library unit in Ada 95. This simplifies the descriptions, since it implies that the parent of each
library unit is a library unit. (Standard itself has no parent, of course.) As in Ada 83, the language does not define any
way to recompile Standard, since the name given in the declaration of a library unit is always interpreted in relation to
Standard. That is, an attempt to compile a package Standard would result in Standard.Standard.

10.1.2 Context Clauses - With Clauses
1A context_clause is used to specify the library_items whose names are needed within a compilation unit.

Language Design Principles

1.aThe reader should be able to understand a context_clause without looking ahead. Similarly, when compiling a context_
clause, the compiler should not have to look ahead at subsequent context_items, nor at the compilation unit to which the
context_clause is attached. (We have not completely achieved this.)

Syntax

2context_clause ::= {context_item}

3context_item ::= with_clause | use_clause

4with_clause ::= with library_unit_name {, library_unit_name};

Name Resolution Rules

5The scope of a with_clause that appears on a library_unit_declaration ♦ consists of the entire declarative
region of the declaration, which includes all children ♦. The scope of a with_clause that appears on a
body consists of the body♦.

5.aDiscussion: ♦

5.bA with_clause also affects visibility within subsequent use_clauses ♦ of the same context_clause, even though those
are not in the scope of the with_clause.

6A library_item is mentioned in a with_clause if it is denoted by a library_unit_name or a prefix in the
with_clause.

6.aDiscussion: With_clauses control the visibility of declarations or renamings of library units. Mentioning a root library
unit in a with_clause makes its declaration directly visible. Mentioning a non-root library unit makes its declaration
visible. See Section 8 for details.

6.bNote that this rule implies that ‘‘with A.B.C;’’ is equivalent to ‘‘with A, A.B, A.B.C;’’ The reason for making a with_
clause apply to all the ancestor units is to avoid ‘‘visibility holes’’ — situations in which an inner program unit is
visible while an outer one is not. Visibility holes would cause semantic complexity and implementation difficulty.

7Outside its own declarative region, the declaration ♦ of a library unit can be visible only within the scope
of a with_clause that mentions it. The visibility of the declaration ♦ of a library unit otherwise follows
from its placement in the environment.

♦

NOTES
93 A library_item mentioned in a with_clause of a compilation unit is visible within the compilation unit and hence acts just

like an ordinary declaration. Thus, within a compilation unit that mentions its declaration, the name of a library package
can be given in use_clauses and can be used to form expanded names, and a library subprogram can be called ♦.

Program Structure and Compilation Issues AVARM;1.0

10.1.2 Context Clauses - With Clauses 5 October 1995 150

9.a Ramification: The rules given for with_clauses are such that the same effect is obtained whether the name of a library
unit is mentioned once or more than once by the applicable with_clauses, or even within a given with_clause.

9.b ♦

Extensions to Ada 83

9.c The syntax rule for with_clause is modified to allow expanded name notation.

9.d A use_clause in a context_clause may be for a package ♦ nested in a library package.
Wording Changes From Ada 83

9.e The syntax rule for context_clause is modified to more closely reflect the semantics. The Ada 83 syntax rule implies
that the use_clauses that appear immediately after a particular with_clause are somehow attached to that with_clause,
which is not true. The new syntax allows a use_clause to appear first, but that is prevented by a textual rule that
already exists in Ada 83.

9.f The concept of ‘‘scope of a with_clause’’ (which is a region of text) replaces RM83’s notion of ‘‘apply to’’ (a with_
clause applies to a library_item) The visibility rules are interested in a region of text, not in a set of compilation units.

9.g No need to define ‘‘apply to’’ for use_clauses. Their semantics are fully covered by the ‘‘scope (of a use_clause)’’
definition in 8.4.

10.1.3 Subunits of Compilation Units -- Removed

10.1.4 The Compilation Process
1 Each compilation unit submitted to the compiler is compiled in the context of an environment

declarative_part (or simply, an environment), which is a conceptual declarative_part that forms the out-
ermost declarative region of the context of any compilation. At run time, an environment forms the
declarative_part of the body of the environment task of a partition (see 10.2, ‘‘Program Execution’’).

1.a Ramification: At compile time, there is no particular construct that the declarative region is considered to be nested
within — the environment is the universe.

1.b To be honest: The environment is really just a portion of a declarative_part, since there might, for example, be bodies
that do not yet exist.

2 The declarative_items of the environment are library_items appearing in an order such that there are no
forward semantic dependences. ♦ The visibility rules apply as if the environment were the outermost
declarative region, except that with_clauses are needed to make declarations of library units visible (see
10.1.2).

3 The mechanisms for creating an environment and for adding and replacing compilation units within an
environment are implementation defined.

3.a Implementation defined: The mechanisms for creating an environment and for adding and replacing compilation
units.

3.b Ramification: The traditional model, used by most Ada 83 implementations, is that one places a compilation unit in
the environment by compiling it. Other models are possible. For example, an implementation might define the
environment to be a directory; that is, the compilation units in the environment are all the compilation units in the
source files contained in the directory. In this model, the mechanism for replacing a compilation unit with a new one is
simply to edit the source file containing that compilation unit.

Name Resolution Rules

4 If a library_unit_body that is a subprogram_body is submitted to the compiler, it is interpreted only as a
completion if a library_unit_declaration for a subprogram ♦ with the same defining_program_unit_name
already exists in the environment (even if the profile of the body is not type conformant with that of the
declaration); otherwise the subprogram_body is interpreted as both the declaration and body of a library
subprogram.

AVARM;1.0 Program Structure and Compilation Issues

151 5 October 1995 The Compilation Process 10.1.4

4.aRamification: The principle here is that a subprogram_body should be interpreted as only a completion if and only if
it ‘‘might’’ be legal as the completion of some preexisting declaration, where ‘‘might’’ is defined in a way that does
not require overload resolution to determine.

4.bHence, if the preexisting declaration is a subprogram_declaration ♦, we treat the new subprogram_body as its
completion, because it ‘‘might’’ be legal. If it turns out that the profiles don’t fully conform, it’s an error. In all other
cases (the preexisting declaration is a package ♦ or a renaming, or a ‘‘spec-less’’ subprogram, or in the case where
there is no preexisting thing), the subprogram_body declares a new subprogram.

4.cSee also AI-00266/09.

Legality Rules

5When a compilation unit is compiled, all compilation units upon which it depends semantically shall
already exist in the environment; the set of these compilation units shall be consistent in the sense that the
new compilation unit shall not semantically depend (directly or indirectly) on two different versions of
the same compilation unit, nor on an earlier version of itself.

5.aDiscussion: For example, if package declarations A and B both say ‘‘with X;’’, and the user compiles a compilation
unit that says ‘‘with A, B;’’, then the A and B have to be talking about the same version of X.

5.bRamification: What it means to be a ‘‘different version’’ is not specified by the language. In some implementations,
it means that the compilation unit has been recompiled. In others, it means that the source of the compilation unit has
been edited in some significant way.

5.cNote that an implementation cannot require the existence of compilation units upon which the given one does not
semantically depend. For example, an implementation is required to be able to compile a compilation unit that says
"with A;" when A’s body does not exist. It has to be able to detect errors without looking at A’s body.

5.d♦

Implementation Permissions

6The implementation must require that a compilation unit be legal before inserting it into the environment.
6.aAVA Implementation requirement: The implementation must require that a compilation unit be legal before

inserting it into the environment.

7When a compilation unit that declares or renames a library unit is added to the environment, the im-
plementation may remove from the environment any preexisting library_item with the same defining_
program_unit_name. ♦ When a given compilation unit is removed from the environment, the implemen-
tation may also remove any compilation unit that depends semantically upon the given one. ♦

7.aRamification: The permissions given in this paragraph correspond to the traditional model, where compilation units
enter the environment by being compiled into it, and the compiler checks their legality at that time. A implementation
model in which the environment consists of all source files in a given directory might not want to take advantage of
these permissions. Compilation units would not be checked for legality as soon as they enter the environment; legality
checking would happen later, when compilation units are compiled. In this model, compilation units might never be
automatically removed from the environment; they would be removed when the user explicitly deletes a source file.

7.bNote that the rule is recursive♦.

7.cNote that here we are talking about dependences among existing compilation units in the environment; it doesn’t matter
what with_clauses are attached to the new compilation unit that triggered all this.

7.dAn implementation may have other modes in which compilation units in addition to the ones mentioned above are
removed. ♦

NOTES
84 The rules of the language are enforced across compilation and compilation unit boundaries, just as they are enforced

within a single compilation unit.

8.aRamification: Note that Section 1 requires an implementation to detect illegal compilation units at compile time.

95 An implementation may support a concept of a library, which contains library_items and their subunits. If multiple
libraries are supported, the implementation has to define how a single environment is constructed when a compilation unit

Program Structure and Compilation Issues AVARM;1.0

10.1.4 The Compilation Process 5 October 1995 152

is submitted to the compiler. Naming conflicts between different libraries might be resolved by treating each library as the
root of a hierarchy of child library units.

9.a Implementation Note: Alternatively, naming conflicts could be resolved via some sort of hiding rule.

9.b Discussion: For example, the implementation might support a command to import library Y into library X. If a root
library unit called LU (that is, Standard.LU) exists in Y, then from the point of view of library X, it could be called
Y.LU. X might contain library units that say, ‘‘with Y.LU;’’.

10 6 ♦

10.1.5 Pragmas and Program Units -- Removed

10.1.6 Environment-Level Visibility Rules
1 The normal visibility rules do not apply within a parent_unit_name or a context_clause, ♦. The special

visibility rules for those contexts are given here. ♦

Static Semantics

2 Within the parent_unit_name at the beginning of a library_item, and within a with_clause, the only
declarations that are visible are those that are library_items of the environment, and the only declarations
that are directly visible are those that are root library_items of the environment.

2.a Ramification: In ‘‘package P.Q.R is ... end P.Q.R;’’, this rule requires P to be a root library unit, and Q to be a library
unit (because those are the things that are directly visible and visible). Note that visibility does not apply between the
‘‘end’’ and the ‘‘;’’.

2.b Physically nested declarations are not visible at these places.

2.c Reason: Although Standard is visible at these places, it is impossible to name it, since it is not directly visible, and it
has no parent.

3 ♦ Within a use_clause ♦ that is within a context_clause, each library_item mentioned in a previous with_
clause of the same context_clause is visible, and each root library_item so mentioned is directly visible.
In addition, within such a use_clause, if a given declaration is visible or directly visible, each declaration
that occurs immediately within the given declaration’s visible part is also visible. No other declarations
are visible or directly visible.

3.a Discussion: Note the word ‘‘same’’. For example, if a with_clause on a declaration mentions X, this does not make X
visible in use_clauses ♦ that are on the body. The reason for this rule is the one-pass context_clauses Language
Design Principle.

3.b ♦

4 ♦

Wording Changes From Ada 83

6.b The special visibility rules that apply within a parent_unit_name or a context_clause♦ are clarified.

6.c Note that a context_clause is not part of any declarative region.

6.d We considered making the visibility rules within parent_unit_names and context_clauses follow from the context of
compilation. However, this attempt failed for various reasons. For example, it would require use_clauses in context_
clauses to be within the declarative region of Standard, which sounds suspiciously like a kludge. And we would still
need a special rule to prevent seeing things (in our own context_clause) that were with-ed by our parent, etc.

AVARM;1.0 Program Structure and Compilation Issues

153 5 October 1995 Environment-Level Visibility Rules 10.1.6

10.2 Program Execution
1An Ada program consists of a single partition.

Post-Compilation Rules

2A partition is a program or part of a program that can be invoked from outside the Ada implementation.
For example, on many systems, a partition might be an executable file generated by the system linker.
The user can explicitly assign library units to a partition. The assignment is done in an implementation-
defined manner. The compilation units included in a partition are those of the explicitly assigned library
units, as well as other compilation units needed by those library units. The compilation units needed by a
given compilation unit are determined as follows (unless specified otherwise ♦ or by some ♦
implementation-defined means): ♦

2.aImplementation defined: The manner of explicitly assigning library units to a partition.

2.bImplementation defined: The implementation-defined means, if any, of specifying which compilation units are
needed by a given compilation unit.

♦
3• A compilation unit needs itself;

4• If a compilation unit is needed, then so are any compilation units upon which it depends
semantically;

5• If a library_unit_declaration is needed, then so is any corresponding library_unit_body;

6• ♦
6.aDiscussion: Note that a child unit is not included just because its parent is included — to include a child, mention it in

a with_clause.

7The user must designate (in an implementation-defined manner) one subprogram as the main sub-
program for the partition. A main subprogram, if specified, shall be a subprogram.

7.aDiscussion: This may seem superfluous, since it follows from the definition. But we would like to have every error
message that might be generated (before run time) by an implementation correspond to some explicitly stated ‘‘shall’’
rule.

7.bOf course, this does not mean that the ‘‘shall’’ rules correspond one-to-one with an implementation’s error messages.
For example, the rule that says overload resolution ‘‘shall’’ succeed in producing a single interpretation would
correspond to many error messages in a good implementation — the implementation would want to explain to the user
exactly why overload resolution failed. This is especially true for the syntax rules — they are considered part of
overload resolution, but in most cases, one would expect an error message based on the particular syntax rule that was
violated.

7.cImplementation defined: The manner of designating the main subprogram of a partition.

7.dRamification: An implementation cannot require the user to specify, say, all of the library units to be included. It has
to support, for example, perhaps the most typical case, where the user specifies just one library unit, the main program.
The implementation has to do the work of tracking down all the other ones.

8♦A partition has an anonymous environment task, which is an implicit outermost task whose execution
elaborates the library_items of the environment declarative_part, and then calls the main subprogram, if
there is one. ♦

8.aRamification: An environment task has no master♦ (see 7.6, ‘‘Assignment and Finalization’’).

8.b♦

9Program execution consists of the execution of the partition that defines the program.

Program Structure and Compilation Issues AVARM;1.0

10.2 Program Execution 5 October 1995 154

10 The order of elaboration of library units is determined primarily by the elaboration dependences. There
is an elaboration dependence of a given library_item upon another if the given library_item ♦ depends
semantically on the other library_item. ♦

10 It is required that when a library_item is a library_unit_body, the item is elaborated immediately after
the library_unit which it completes. This avoids certain erroneous programs based on order of
elaboration. It has some other effects.

11 • It rules out mutual recursion between routines defined in different packages.

12 • If package specification B depends on package A, then the package body of A (if
there is one) is elaborated before package specification B.

13 • A package specification is always elaborated before its body.
13.a AVA Implementation requirement: A library_item that is a library_unit_body is elaborated immediately after the

library_unit which it completes.

13.b Discussion: See above for a definition of which library_items are ‘‘needed by’’ a given declaration.

13.c Note that elaboration dependences are among library_items, whereas the other two forms of dependence are among
compilation units. Note that elaboration dependence includes semantic dependence. ♦ It follows from the definition
that the elaboration dependence relationship is transitive. ♦

14 ♦

18 There shall be a total order of the library_items that obeys the above rules. The order is otherwise
implementation defined. ♦

18.a Implementation defined: The order of elaboration of library_items.

18.b To be honest: Notwithstanding what the RM95 says elsewhere, each rule that requires a declaration to have a
corresponding completion is considered to be a Post-Compilation Rule when the declaration is that of a library unit.

18.c Discussion: Such rules may be checked at ‘‘link time,’’ for example. Rules requiring the completion to have certain
properties, on the other hand, are checked at compile time of the completion.

19 The full expanded names of the library units ♦ included in a given partition shall be distinct.

20 ♦
20.a Reason: This is a Post-Compilation Rule because making it a Legality Rule would violate the Language Design

Principle labeled ‘‘legality determinable via semantic dependences.’’

21 ♦

24 The mechanisms for building and running a partition are implementation defined. These might be com-
bined into one operation, as, for example, in dynamic linking, or ‘‘load-and-go’’ systems.

24.a Implementation defined: The mechanisms for building and running partitions.

Dynamic Semantics

25 The execution of a program consists of the execution of its partition. Further details are implementation
defined. The execution of a partition starts with the execution of its environment task and ends when the
environment task terminates♦

25.a Implementation defined: The details of program execution, including program termination.

♦

AVARM;1.0 Program Structure and Compilation Issues

155 5 October 1995 Program Execution 10.2

Implementation Requirements

27The implementation shall ensure that all compilation units included in a partition are consistent with one
another, and are legal according to the rules of the language.

27.aDiscussion: The consistency requirement implies that a partition cannot contain two versions of the same compilation
unit. That is, a partition cannot contain two different library units with the same full expanded name, nor two different
bodies for the same program unit. ♦

Implementation Permissions

28♦

29An implementation may restrict the kinds of subprograms it supports as main subprograms. However, an
implementation is required to support all main subprograms that are public parameterless library
procedures.

29.aRamification: The implementation is required to support main subprograms that are ♦ children of library units other
than Standard. ♦

29.b♦

30♦

Extensions to Ada 83

30.aThe concept of partitions is new to Ada 95.

30.b♦
Wording Changes From Ada 83

30.cAda 95 uses the term ‘‘main subprogram’’ instead of Ada 83’s ‘‘main program’’ (which was inherited from Pascal).
This is done to avoid confusion — a main subprogram is a subprogram, not a program. The program as a whole is an
entirely different thing.

10.2.1 Elaboration Control -- Removed

Program Structure and Compilation Issues AVARM;1.0

11 Exceptions 5 October 1995 156

AVARM;1.0 Exceptions

157 5 October 1995 Exceptions 11

11. Exceptions
1This section defines the facilities for dealing with errors or other exceptional situations that arise during

program execution. An exception represents a kind of exceptional situation; an occurrence of such a
situation (at run time) is called an exception occurrence. To raise an exception is to abandon normal
program execution so as to draw attention to the fact that the corresponding situation has arisen.
Performing some actions in response to the arising of an exception is called handling the exception.

1.aTo be honest: ...or handling the exception occurrence.

1.bRamification: For example, an exception Constraint_Error might represent error situations in which an attempt is
made to divide by zero. During the execution of a partition, there might be numerous occurrences of this exception.

1.cTo be honest: When the meaning is clear from the context, we sometimes use ‘‘occurrence’’ as a short-hand for
‘‘exception occurrence.’’

2There is no facility in AVA for programmer-defined exceptions. An exception is raised initially
either by a raise_statement or by the failure of a language-defined check. When an exception arises,
control can be transferred to a user-provided exception_handler at the end of a handled_sequence_of_
statements, or it can be propagated to a dynamically enclosing execution. If no handler exists, the
exception is propagated out to the main program. AVA places extremely onerous restrictions on
the Ada exception handling mechanism. What remains is intended to allow routines to handle
exceptions, reinitialize themselves, and continue. We have attempted to make it impossible for
AVA programs to use the exception mechanism to distinguish between different implementation
choices in those places where operations may be performed in an arbitrary order.

Wording Changes From Ada 83

2.aWe are more explicit about the difference between an exception and an occurrence of an exception. ♦ Furthermore, we
say that when an exception is propagated, it is the same occurrence that is being propagated (as opposed to a new
occurrence of the same exception). ♦

11.1 Exception Declarations
♦

Abstract Syntax

1

exc ∈ Exception == exception id

Static Semantics

2♦

4The predefined exceptions are the ones declared in the declaration of package Standard: Constraint_
Error, Program_Error, and Storage_Error♦; one of them is raised when a language-defined check fails. ♦

Dynamic Semantics

5♦

6The execution of any construct raises Storage_Error if there is insufficient storage for that execution. The
amount of storage needed for the execution of constructs is unspecified. Since storage error can
occur at so many program locations in an implementation dependent fashion we are forced to
ignore it in the formal semantics. All program proof will therefore be predicated on the assump-
tion that storage error does not occur.

Exceptions AVARM;1.0

11.1 Exception Declarations 5 October 1995 158

6.a Ramification: Note that any execution whatsoever can raise Storage_Error. This allows much implementation
freedom in storage management.

♦

11.2 Exception Handlers
1 The response to one or more exceptions is specified by an exception_handler.

Syntax

2 handled_sequence_of_statements ::=
sequence_of_statements

[exception
exception_handler
♦]

3 exception_handler ::=
when ♦ exception_choice ♦ =>

sequence_of_statements

♦
5 exception_choice ::= ♦ others

5.a To be honest: ‘‘Handler’’ is an abbreviation for ‘‘exception_handler.’’

5.b Within this section, we sometimes abbreviate ‘‘exception_choice’’ to ‘‘choice.’’

Legality Rules

6 An exception_choice can only be others. It covers all exceptions. ♦

Abstract Syntax

7

handler ∈ Handler == stmt*

♦
Dynamic Semantics

10 The execution of a handled_sequence_of_statements consists of the execution of the sequence_of_
statements. The optional handlers are used to handle any exceptions that are propagated by the
sequence_of_statements.

Examples

11 Example of an exception handler:
12 begin

x := y/z; -- sequence of statements
exception

when others =>
Put(Standard_Output, "Fatal Error");
raise Program_Error;

end;

♦

AVARM;1.0 Exceptions

159 5 October 1995 Exception Handlers 11.2

Wording Changes From Ada 83

12.cThe syntax rule for handled_sequence_of_statements is new. These are now used in all the places where handlers are
allowed. This obviates the need to explain (in Sections 5, 6, 7, and 9) what portions of the program are handled by the
handlers. Note that there are more such cases in Ada 95.

12.d♦

11.3 Raise Statements
1A raise_statement raises an exception.

Syntax

2raise_statement ::= raise Program_Error;

Legality Rules

3♦The only exception that may appear in a raise_statement is Program_Error.

Abstract Syntax

4

raise ∈ Raise == raise

Dynamic Semantics

5To raise an exception is to raise a new occurrence of that exception, as explained in 11.4. For the
execution of a raise_statement ♦, the ♦ exception Program_Error is raised. ♦ ♦

Examples

6Example of raise statements:
7♦
8raise Program_Error;

♦

11.4 Exception Handling
1When an exception occurrence is raised, normal program execution is abandoned and control is trans-

ferred to an ♦ exception_handler, if any. To handle an exception occurrence is to respond to the excep-
tional event. To propagate an exception occurrence is to raise it again in another context; that is, to fail to
respond to the exceptional event in the present context.

1.aRamification: In other words, if the execution of a given construct raises an exception, but does not handle it, the
exception is propagated to an enclosing execution ♦.

1.bPropagation involves re-raising the same exception occurrence ♦.

Dynamic Semantics

2♦ If the execution of construct a is defined by this Reference Manual to consist (in part) of the execution
of construct b, then while b is executing, the execution of a is said to dynamically enclose the execution
of b. The innermost dynamically enclosing execution of a given execution is the dynamically enclosing
execution that started most recently.

2.aTo be honest: If the execution of a dynamically encloses that of b, then we also say that the execution of b is included
in the execution of a.

Exceptions AVARM;1.0

11.4 Exception Handling 5 October 1995 160

2.b Ramification: Examples: The execution of an if_statement dynamically encloses the evaluation of the condition after
the if (during that evaluation). (Recall that ‘‘execution’’ includes both ‘‘elaboration’’ and ‘‘evaluation’’, as well as
other executions.) The evaluation of a function call dynamically encloses the execution of the sequence_of_statements
of the function_body (during that execution). Note that, due to recursion, several simultaneous executions of the same
construct can be occurring at once ♦.

2.c ♦

2.d Dynamically enclosing is only defined for executions that are occurring at a given moment in time; if an if_statement is
currently executing the sequence_of_statements after then, then the evaluation of the condition is no longer dynami-
cally enclosed by the execution of the if_statement (or anything else).

3 When an exception occurrence is raised by the execution of a given construct, the rest of the execution of
that construct is abandoned; that is, any portions of the execution that have not yet taken place are not
performed. The construct is first completed, and then left, as explained in 7.6.1. Then:

4 • ♦

5 • If the construct is the sequence_of_statements of a handled_sequence_of_statements that
has a handler ♦, the occurrence is handled by that handler;

6 • Otherwise, the occurrence is propagated to the innermost dynamically enclosing execution,
which means that the occurrence is raised again in that context.

6.a To be honest: As shorthands, we refer to the propagation of an exception, and the propagation by a construct,
if the execution of the construct propagates an exception occurrence.

7 ♦ When an occurrence is handled by a given handler, ♦ the sequence_of_statements of the handler is
executed; this execution replaces the abandoned portion of the execution of the sequence_of_statements.

7.a Ramification: This ‘‘replacement’’ semantics implies that the handler can do pretty much anything the abandoned
sequence could do; for example, in a function, the handler can execute a return_statement that applies to the function.

7.b Ramification: The rules for exceptions raised in library units, main subprograms and partitions follow from the
normal rules, plus the semantics of the elaboration of library units described in Section 10 ♦. If an exception is
propagated by the main subprogram, it is ♦ an error.

NOTES
8 1 Note that exceptions raised in a declarative_part of a body are not handled by the handlers of the handled_sequence_of_

statements of that body.

11.4.1 The Package Exceptions -- Removed

11.4.2 Example of Exception Handling
Examples

1 Exception handling may be used to separate the detection of an error from the response to that error:
2 function Factorial (N : Positive) return Integer is

begin
if N = 1 then
return 1 ;

else
return N * Factorial(N-1);

end if;
exception
when others => return Integer’Last;

end Factorial;

3 If the multiplication raises Constraint_Error, then Integer’Last is returned by the handler. This
value will cause further Constraint_Error exceptions to be raised by the evaluation of the ex-

AVARM;1.0 Exceptions

161 5 October 1995 Example of Exception Handling 11.4.2

pression in each of the remaining invocations of the function, so that for large values of N the
function will ultimately return the value Integer’Last.

4It will be difficult to predict the behavior of programs that depend on particular values of poten-
tially affected global or local variables within the scope of the frame when control is transfered to
an others handler. For safe programming, any such variables that the program depends on
should be reinitialized in the handler.

5package P is
procedure R;
procedure Q;

end P;

6package body P is
procedure Q is
begin

R;
... -- error situation (2)

exception
when others => -- handler E2
...

end Q;
procedure R is
begin
... -- error situation (3)
end R;

7begin
... -- error situation (1)
Q;
...

exception
when others => -- handler E1
...

end P;

The following situations can arise:
81. If the exception Program_Error is raised in the sequence of statements of the

outer package P, the handler E1 provided within P is used to complete the execu-
tion of P.

92. If the exception Program_Error is raised in the sequence of statements of Q, the
handler E2 provided within Q is used to complete the execution of Q. Control will
be returned to the point of call of Q upon completion of the handler.

103. If the exception Program_Error is raised in the body of R, called by Q, the execu-
tion of R is abandoned and the same exception is raised in the body of Q. The
handler E2 is then used to complete the execution of Q, as in situation (2).

Note that in the third situation, the exception raised in R results in (indirectly) transferring control
to a handler that is part of Q and hence not enclosed by R. Note also that if a handler were
provided within R for the exception choice others, situation (3) would cause execution of this
handler, rather than direct termination of R.

11.5 Suppressing Checks -- Removed

Exceptions AVARM;1.0

11.6 Exceptions and Optimization -- Removed 5 October 1995 162

11.6 Exceptions and Optimization -- Removed

AVARM;1.0 Generic Units -- Removed

163 5 October 1995 Generic Units -- Removed 12

12. Generic Units -- Removed

Generic Units -- Removed AVARM;1.0

13 Representation Issues 5 October 1995 164

AVARM;1.0 Representation Issues

165 5 October 1995 Representation Issues 13

13. Representation Issues
1This section describes features for querying and controlling aspects of representation and for interfacing

to hardware.

♦

13.1 Representation Items -- Removed

13.2 Pragma Pack -- Removed

13.3 Representation Attributes -- Removed

13.4 Enumeration Representation Clauses -- Removed

13.5 Record Layout -- Removed

13.6 Change of Representation -- Removed

13.7 The Package System
1For each implementation there is a predefined library package called SYSTEM which includes the defini-

tions of certain configuration-dependent characteristics.

Static Semantics

2The following language-defined library package exists:
2.aImplementation defined: The contents of the visible part of package System and its language-defined children.

3

4package SYSTEM is
♦
type Name is implementation_defined_enumeration_type;

5AVA_System_Name : constant Name := implementation_defined;

6♦
7-- System-Dependent Named Numbers:

8AVA_Min_Int : constant := implementation_defined;
AVA_Max_Int : constant := implementation_defined;
♦

9end SYSTEM;

10Values of the enumeration type Name are the names of alternative machine configurations handled by the
implementation; one of these is the constant AVA_System_Name. ♦

NOTES
111 It is a consequence of the visibility rules that a declaration given in the package STANDARD is not visible in a

compilation unit unless this package is mentioned by a with clause that applies (directly or indirectly) to the compilation
unit.

Representation Issues AVARM;1.0

13.8 Machine Code Insertions -- Removed 5 October 1995 166

13.8 Machine Code Insertions -- Removed

13.9 Unchecked Type Conversions -- Removed

13.10 Unchecked Access Value Creation -- Removed

13.11 Storage Management -- Removed

13.12 Pragma Restrictions -- Removed

13.13 Streams -- Removed

13.14 Freezing Rules
1 This clause defines a place in the program text where each declared entity becomes ‘‘frozen.’’ A use of

an entity, such as a reference to it by name, or (for a type) an expression of the type, causes freezing of
the entity in some contexts, as described below. The Legality Rules forbid certain kinds of uses of an
entity in the region of text where it is frozen.

1.a Reason: This concept has two purposes: a compile-time one and a run-time one.

1.b The compile-time purpose of the freezing rules comes from the fact that the evaluation of static expressions depends on
overload resolution, and overload resolution sometimes depends on the value of a static expression. (The dependence
of static evaluation upon overload resolution is obvious. The dependence in the other direction is more subtle. There
is one rule that requires static expressions in contexts that can appear in declarative places: The expression in an
attribute_designator shall be static. ♦ The compiler needs to know the value of these expressions in order to perform
overload resolution and legality checking.) We wish to allow a compiler to evaluate static expressions when it sees
them in a single pass over the compilation_unit. The freezing rules ensure that.

1.c The run-time purpose of the freezing rules is called the ‘‘linear elaboration model.’’ This means that declarations are
elaborated in the order in which they appear in the program text, and later elaborations can depend on the results of
earlier ones. The elaboration of the declarations of certain entities requires run-time information about the implemen-
tation details of other entities. The freezing rules ensure that this information has been calculated by the time it is used.
For example, suppose the initial value of a constant is the result of a function call that takes a parameter of type T. In
order to pass that parameter, the size of type T has to be known. If T is composite, that size might be known only at run
time.

1.d (Note that in these discussions, words like ‘‘before’’ and ‘‘after’’ generally refer to places in the program text, as
opposed to times at run time.)

1.e Discussion: The ‘‘implementation details’’ we’re talking about above are:

1.f • ♦

1.g • For a type, the full type declaration of any parts (including the type itself) that are private.

1.h • For a deferred constant, the full constant declaration, which gives the constant’s value. (Since this
information necessarily comes after the constant’s type and subtype are fully known, there’s no need to
worry about its type or subtype.)

1.i • ♦

1.j ♦ Similar issues ♦ arise for subprograms♦. However, we do not use freezing there either; 3.11 prevents problems with
run-time Elaboration_Checks.

AVARM;1.0 Representation Issues

167 5 October 1995 Freezing Rules 13.14

Language Design Principles

1.kAn evaluable construct should freeze anything that’s needed to evaluate it.

1.l♦

1.mThe compiler should be allowed to evaluate static expressions without knowledge of their context. (I.e. there should
not be any special rules for static expressions that happen to occur in a context that requires a static expression.)

1.nCompilers should be allowed to evaluate static expressions (and record the results) using the run-time representation of
the type. For example, suppose Color’Pos(Red) = 1, but the internal code for Red is 37. If the value of a static
expression is Red, some compilers might store 1 in their symbol table, and other compilers might store 37. Either
compiler design should be feasible.

1.oCompilers should never be required to detect erroneousness or exceptions at compile time (although it’s very nice if
they do). This implies that we should not require code-generation for a nonstatic expression of type T too early, even if
we can prove that that expression will be erroneous, or will raise an exception.

1.p♦

1.vCompilers should not be required to generate code to load the value of a variable before the address of the variable has
been determined.

1.wAfter an entity has been frozen, no further requirements may be placed on its representation (such as by ♦ a full_type_
declaration).

2The freezing of an entity occurs at one or more places (freezing points) in the program text where the
representation for the entity has to be fully determined. Each entity is frozen from its first freezing point
to the end of the program text (given the ordering of compilation units defined in 10.1.4).

2.aRamification: The ‘‘representation’’ for a subprogram includes its calling convention and means for referencing the
subprogram body, either a ‘‘link-name’’ or specified address. It does not include the code for the subprogram body
itself, nor its address if a link-name is used to reference the body.

3The end of a declarative_part ♦ or a declaration of a library package ♦ causes freezing of each entity
declared within it ♦. A ♦ body causes freezing of each entity declared before it within the same
declarative_part.

3.aDiscussion: This is worded carefully to handle nested packages and private types. Entities declared in a nested
package_specification will be frozen by some containing construct.

3.b♦

3.cRamification: ♦

3.dReason: The reason bodies cause freezing is because ♦ there could be an added implementation burden if an entity
declared in an enclosing declarative_part is frozen within a nested body, since some compilers look at bodies after
looking at the containing declarative_part.

4A construct that (explicitly or implicitly) references an entity can cause the freezing of the entity, as
defined by subsequent paragraphs. At the place where a construct causes freezing, each name, expres-
sion, or range within the construct causes freezing:

4.aRamification: Note that in the sense of this paragraph, a subtype_mark ‘‘references’’ the denoted subtype, but not the
type.

5♦

6The occurrence of an object_declaration that has no corresponding completion causes freezing.
6.aRamification: Note that this does not include a formal_object_declaration.

7♦

Representation Issues AVARM;1.0

13.14 Freezing Rules 5 October 1995 168

8 A static expression causes freezing where it occurs. A nonstatic expression causes freezing where it
occurs♦.

9 The following rules define which entities are frozen at the place where a construct causes freezing:

10 At the place where an expression causes freezing, the type of the expression is frozen♦. ♦

11 At the place where a name causes freezing, the entity denoted by the name is frozen, unless the name is a
prefix of an expanded name; At the place where an object name causes freezing, the nominal subtype
associated with the name is frozen.

11.a Ramification: This only matters in the presence of deferred constants ♦; an object_declaration other than a deferred_
constant_declaration causes freezing of the nominal subtype, plus all component junk.

11.b ♦

12 At the place where a range causes freezing, the type of the range is frozen.
12.a Proof: This is consequence of the facts that expressions freeze their type, and the Range attribute is defined to be

equivalent to a pair of expressions separated by ‘‘..’’.}

13 ♦

14 At the place where a callable entity is frozen, each subtype of its profile is frozen. ♦
14.a Discussion: We don’t worry about freezing for procedure calls ♦, since a body freezes everything that precedes it, and

the end of a declarative part freezes everything in the declarative part.

15 At the place where a subtype is frozen, its type is frozen. At the place where a type is frozen, any
expressions or names within the full type definition cause freezing; the first subtype, and any component
subtypes, index subtypes, and parent subtype of the type are frozen as well. ♦

15.a Ramification: Freezing a type needs to freeze its first subtype in order to preserve the property that the subtype-
specific aspects of statically matching subtypes are the same.

15.b ♦

Legality Rules

16 ♦

17 A type shall be completely defined before it is frozen (see 3.11.1). ♦

18 The completion of a deferred constant declaration shall occur before the constant is frozen (see 7.4).

19 ♦
19.e Ramification: Although we define freezing in terms of the program text as a whole (i.e. after applying the rules of

Section 10), the freezing rules actually have no effect beyond compilation unit boundaries.

19.f Reason: That is important, because Section 10 allows some implementation definedness in the order of things, and we
don’t want the freezing rules to be implementation defined.

19.g Ramification: These rules also have no effect in statements — they only apply within a single declarative_part or
package_specification♦.

19.h Implementation Note: ♦

19.i In implementation terms, the linear elaboration model can be thought of as preventing uninitialized dope. For example,
the implementation might generate dope to contain the size of a private type. This dope is initialized at the place where
the type becomes completely defined. It cannot be initialized earlier, because of the order-of-elaboration rules. ♦

AVARM;1.0 Representation Issues

169 5 October 1995 Freezing Rules 13.14

♦
Wording Changes From Ada 83

22.bThe concept of freezing is based on Ada 83’s concept of ‘‘forcing occurrences.’’ The first freezing point of an entity
corresponds roughly to the place of the first forcing occurrence, in Ada 83 terms. The reason for changing the
terminology is that the new rules do not refer to any particular ‘‘occurrence’’ of a name of an entity. Instead, we refer
to ‘‘uses’’ of an entity, which are sometimes implicit.

22.c♦

22.dThe Ada 83 rules are changed in Ada 9X for the following reasons:

22.e• The Ada 83 rules do not work right for subtype-specific aspects. ♦

22.f• The Ada 83 rules do not achieve the intended effect. In Ada 83, either with or without the AIs, it is
possible to force the compiler to generate code that references uninitialized dope, or force it to detect
erroneousness and exception raising at compile time.

22.g• ♦

Representation Issues AVARM;1.0

13.14 Freezing Rules 5 October 1995 170

AVARM;1.0 The Standard Libraries

171 5 October 1995 The Standard Libraries

The Standard Libraries

Predefined Language Environment AVARM;1.0

A Predefined Language Environment 5 October 1995 172

AVARM;1.0 Predefined Language Environment

173 5 October 1995 Predefined Language Environment A

A. Predefined Language Environment
1This Annex contains the specifications of library units that shall be provided by every implementation.

There are two root library units: Ada ♦ and System; } other library units are children of these:

Standard — A.1
Ada — A.2

AVA_IO — A.10.1
System — 13.7

2

2.aDiscussion: In running text, we generally leave out the ‘‘Ada.’’ when referring to a child of Ada.

2.bReason: We had no strict rule for which of Ada ♦ or System should be the parent of a given library unit. However,
we have tried to place as many things as possible under Ada ♦.

♦
Implementation Permissions

4The implementation may restrict the replacement of language-defined compilation units. The implemen-
tation may restrict children of language-defined library units (other than Standard).

4.aRamification: For example, the implementation may say, ‘‘you cannot compile a library unit called System’’ or ‘‘you
cannot compile a child of package System’’ or ‘‘if you compile a library unit called System, it has to be a package, and
it has to contain at least the following declarations: ...’’.

Wording Changes From Ada 83

4.bMany of Ada 83’s language-defined library units are now children of Ada or System. For upward compatibility, these
are renamed as root library units.

4.cThe order and lettering of the annexes has been changed.

A.1 The Package Standard
1This clause outlines the specification of the package Standard containing all predefined identifiers in the

language. The corresponding package body is not specified by the language.

2The operators that are predefined for the types declared in the package Standard are given in comments
since they are implicitly declared. Italics are used for pseudo-names of anonymous types (such as root_
integer) and for undefined information (such as implementation-defined).

2.aRamification: All of the predefined operators are of convention Intrinsic.

Static Semantics

3The library package Standard has the following declaration:
3.aImplementation defined: The names and characteristics of the numeric subtypes declared in the visible part of

package Standard.

4package Standard is
♦

5type Boolean is (False, True);

6-- The predefined relational operators for this type are as follows:

7-- function "=" (Left, Right : Boolean) return Boolean;
-- function "/=" (Left, Right : Boolean) return Boolean;
-- function "<" (Left, Right : Boolean) return Boolean;
-- function "<=" (Left, Right : Boolean) return Boolean;
-- function ">" (Left, Right : Boolean) return Boolean;
-- function ">=" (Left, Right : Boolean) return Boolean;

Predefined Language Environment AVARM;1.0

A.1 The Package Standard 5 October 1995 174

8 -- The predefined logical operators and the predefined logical
-- negation operator are as follows:

9 -- function "and" (Left, Right : Boolean) return Boolean;
-- function "or" (Left, Right : Boolean) return Boolean;
-- function "xor" (Left, Right : Boolean) return Boolean;

10 -- function "not" (Right : Boolean) return Boolean;

11 -- The integer type root_integer is predefined.
-- The corresponding universal type is universal_integer.
-- The integer type root_integer is predefined.
-- Note that AVA doesn’t permit the syntax below for the definition of Integer.

12 type Integer is range implementation-defined;

13 subtype Natural is Integer range 0 .. Integer’Last;
subtype Positive is Integer range 1 .. Integer’Last;

14 -- The predefined operators for type Integer are as follows:

15 -- function "=" (Left, Right : Integer’Base) return Boolean;
-- function "/=" (Left, Right : Integer’Base) return Boolean;
-- function "<" (Left, Right : Integer’Base) return Boolean;
-- function "<=" (Left, Right : Integer’Base) return Boolean;
-- function ">" (Left, Right : Integer’Base) return Boolean;
-- function ">=" (Left, Right : Integer’Base) return Boolean;

16 -- function "+" (Right : Integer’Base) return Integer’Base;
-- function "-" (Right : Integer’Base) return Integer’Base;
-- function "abs" (Right : Integer’Base) return Integer’Base;

17 -- function "+" (Left, Right : Integer’Base) return Integer’Base;
-- function "-" (Left, Right : Integer’Base) return Integer’Base;
-- function "*" (Left, Right : Integer’Base) return Integer’Base;
-- function "/" (Left, Right : Integer’Base) return Integer’Base;
-- function "rem" (Left, Right : Integer’Base) return Integer’Base;
-- function "mod" (Left, Right : Integer’Base) return Integer’Base;

18 -- function "**" (Left : Integer’Base; Right : Natural) return Integer’Base;

19 -- The specification of each operator for the type
-- root_integer, or for any additional predefined integer
-- type, is obtained by replacing Integer by the name of the type
-- in the specification of the corresponding operator of the type
-- Integer. The right operand of the exponentiation operator
-- remains as subtype Natural.

20 ♦
21 -- Note that AVA doesn’t provide Float, but we insert the declaration below

-- in order to detect conflicts in attempted use. Also, the use of limited
-- is outside the scope of the AVA language, but interpreted in the Ada sense
-- and the AVA declaration restrictions ensures that we cannot create a
-- variable of the type.

22 type Float is limited private;

35

36

-- The declaration of type Character is based on the standard ISO 8859-1 character set.

37 -- There are no character literals corresponding to the positions for control characters.
-- They are indicated in italics in this definition. See 3.5.2.

type Character is

(nul, soh, stx, etx, eot, enq, ack, bel, --0 (16#00#) .. 7 (16#07#)
bs, ht, lf, vt, ff, cr, so, si, --8 (16#08#) .. 15 (16#0F#)

dle, dc1, dc2, dc3, dc4, nak, syn, etb, --16 (16#10#) .. 23 (16#17#)
can, em, sub, esc, fs, gs, rs, us, --24 (16#18#) .. 31 (16#1F#)

’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’, --32 (16#20#) .. 39 (16#27#)
’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’, --40 (16#28#) .. 47 (16#2F#)

AVARM;1.0 Predefined Language Environment

175 5 October 1995 The Package Standard A.1

’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, --48 (16#30#) .. 55 (16#37#)
’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’, --56 (16#38#) .. 63 (16#3F#)

’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’, --64 (16#40#) .. 71 (16#47#)
’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’, --72 (16#48#) .. 79 (16#4F#)

’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’, --80 (16#50#) .. 87 (16#57#)
’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’, --88 (16#58#) .. 95 (16#5F#)

’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’, --96 (16#60#) .. 103 (16#67#)
’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’, --104 (16#68#) .. 111 (16#6F#)

’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’, --112 (16#70#) .. 119 (16#77#)
’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, del, --120 (16#78#) .. 127 (16#7F#)

reserved_128, reserved_129, bph, nbh, --128 (16#80#) .. 131 (16#83#)
reserved_132, nel, ssa, esa, --132 (16#84#) .. 135 (16#87#)
hts, htj, vts, pld, plu, ri, ss2, ss3, --136 (16#88#) .. 143 (16#8F#)

dcs, pu1, pu2, sts, cch, mw, spa, epa, --144 (16#90#) .. 151 (16#97#)
sos, reserved_153, sci, csi, --152 (16#98#) .. 155 (16#9B#)
st, osc, pm, apc, --156 (16#9C#) .. 159 (16#9F#)

’ ’, ’¡’, ’¢’, ’£’, ’¤’, ’¥’, ’¦’, ’§’, --160 (16#A0#) .. 167 (16#A7#)
’¨’, ’©’, ’ª’, ’«’, ’¬’, ’-’, ’®’, ’¯’, --168 (16#A8#) .. 175 (16#AF#)

’°’, ’±’, ’²’, ’³’, ’´’, ’µ’, ’¶’, ’·’, --176 (16#B0#) .. 183 (16#B7#)
’¸’, ’¹’, ’º’, ’»’, ’¼’, ’½’, ’¾’, ’¿’, --184 (16#B8#) .. 191 (16#BF#)

’À’, ’Á’, ’Â’, ’Ã’, ’Ä’, ’Å’, ’Æ’, ’Ç’, --192 (16#C0#) .. 199 (16#C7#)
’È’, ’É’, ’Ê’, ’Ë’, ’Ì’, ’Í’, ’Î’, ’Ï’, --200 (16#C8#) .. 207 (16#CF#)

’Ð’, ’Ñ’, ’Ò’, ’Ó’, ’Ô’, ’Õ’, ’Ö’, ’×’, --208 (16#D0#) .. 215 (16#D7#)
’Ø’, ’Ù’, ’Ú’, ’Û’, ’Ü’, ’Ý’, ’Þ’, ’ß’, --216 (16#D8#) .. 223 (16#DF#)

’à’, ’á’, ’â’, ’ã’, ’ä’, ’å’, ’æ’, ’ç’, --224 (16#E0#) .. 231 (16#E7#)
’è’, ’é’, ’ê’, ’ë’, ’ì’, ’í’, ’î’, ’ï’, --232 (16#E8#) .. 239 (16#EF#)

’ð’, ’ñ’, ’ò’, ’ó’, ’ô’, ’õ’, ’ö’, ’÷’, --240 (16#F0#) .. 247 (16#F7#)
’ø’, ’ù’, ’ú’, ’û’, ’ü’, ’ý’, ’þ’, ’ÿ’); --248 (16#F8#) .. 255 (16#FF#)

38-- The predefined operators for the type Character are the same as for
-- any enumeration type.

♦
type Wide_Character is limited private;

package ASCII is ... end ASCII; --Obsolescent; see I.5

-- Predefined string types:

39type String is array(Positive range <>) of Character;
♦

40-- The predefined operators for this type are as follows:

41-- function "=" (Left, Right: String) return Boolean;
-- function "/=" (Left, Right: String) return Boolean;
-- function "<" (Left, Right: String) return Boolean;
-- function "<=" (Left, Right: String) return Boolean;
-- function ">" (Left, Right: String) return Boolean;
-- function ">=" (Left, Right: String) return Boolean;

42-- function "&" (Left: String; Right: String) return String;
-- function "&" (Left: Character; Right: String) return String;
-- function "&" (Left: String; Right: Character) return String;
-- function "&" (Left: Character; Right: Character) return String;

43♦
44type Wide_String is limited private;
45

-- The predefined exceptions:

Predefined Language Environment AVARM;1.0

A.1 The Package Standard 5 October 1995 176

45 ♦
Program_Error : exception;
♦

46 end Standard;

47 Standard has no private part.
47.a Reason: This is important for portability. All library packages are children of Standard, and if Standard had a private

part then it would be visible to all of them.

48 In ♦the type Character ♦, the character literals for the space character (position 32) and the non-
breaking space character (position 160) correspond to different values. Unless indicated otherwise, each
occurrence of the character literal ’ ’ in this Reference Manual refers to the space character. Similarly, the
character literals for hyphen (position 45) and soft hyphen (position 173) correspond to different values.
Unless indicated otherwise, each occurrence of the character literal ’-’ in this Reference Manual refers to
the hyphen character.

Dynamic Semantics

49 Elaboration of the body of Standard has no effect. ♦

♦
Implementation Advice

52 ♦

NOTES
53 1 Certain aspects of the predefined entities cannot be completely described in the language itself. For example, although

the enumeration type Boolean can be written showing the two enumeration literals False and True, the short-circuit control
forms cannot be expressed in the language.

54 2 As explained in 8.1, ‘‘Declarative Region’’ and 10.1.4, ‘‘The Compilation Process’’, the declarative region of the
package Standard encloses every library unit and consequently the main subprogram; the declaration of every library unit
is assumed to occur within this declarative region. Library_items are assumed to be ordered in such a way that there are no
forward semantic dependences. However, as explained in 8.3, ‘‘Visibility’’, the only library units that are visible within a
given compilation unit are the library units named by all with_clauses that apply to the given unit, and moreover, within the
declarative region of a given library unit, that library unit itself.

55 3 ♦ The name of a library unit cannot be a homograph of a name (such as Integer) that is already declared in Standard.

56 4 ♦

56.a Discussion: The declaration of Natural needs to appear between the declaration of Integer and the (implicit)
declaration of the "**" operator for Integer, because a formal parameter of "**" is of subtype Natural. This would be
impossible in normal code, because the implicit declarations for a type occur immediately after the type declaration,
with no possibility of intervening explicit declarations. But we’re in Standard, and Standard is somewhat magic
anyway.

56.b Using Natural as the subtype of the formal of "**" seems natural; it would be silly to have a textual rule about
Constraint_Error being raised when there is a perfectly good subtype that means just that. Furthermore, by not using
Integer for that formal, it helps remind the reader that the exponent remains Natural even when the left operand is
replaced with the derivative of Integer. It doesn’t logically imply that, but it’s still useful as a reminder.

56.c In any case, declaring these general-purpose subtypes of Integer close to Integer seems more readable than declaring
them much later.

Extensions to Ada 83

56.d ♦

56.e Discussion: The introduction of the types Wide_Character and Wide_String is not an Ada 9X extension to Ada 83,
since ISO WG9 has approved these as an authorized extension of the original Ada 83 standard that is part of that
standard.

AVARM;1.0 Predefined Language Environment

177 5 October 1995 The Numerics Packages -- Removed A.5

Wording Changes From Ada 83

56.fNumeric_Error is made obsolescent.

56.gThe declarations of Natural and Positive are moved to just after the declaration of Integer, so that "**" can refer to
Natural without a forward reference. There’s no real need to move Positive, too — it just came along for the ride.

A.2 The Package Ada
Static Semantics

1The following language-defined library package exists:
2package Ada is

♦
end Ada;

3Ada serves as the parent of most of the other language-defined library units; its declaration is empty ♦.

Legality Rules

4In the standard mode, it is illegal to compile a child of package Ada. ♦

Extensions to Ada 83

4.aThis clause is new to Ada 9X.

A.3 Character Handling -- Removed

A.4 String Handling -- Removed

A.5 The Numerics Packages -- Removed

A.6 Input-Output

1Input-output is provided through language-defined packages, each of which is a child of the root package
Ada. Operations for text input-output are supplied in the package AVA-IO.11

A.7 External Files and File Objects
Static Semantics

1Values input from the external environment of the program, or output to the external environment, are
considered to occupy external files. An external file can be anything external to the program that can
produce a value to be read or receive a value to be written. An external file is identified in a system-
dependent fashion

2Input and output operations are expressed as operations on objects of some file type, rather than directly
in terms of the external files. In the remainder of this section, the term file is always used to refer to a file

11Note that this package should be trivially implementable using Ada’s language-defined Text_IO. The reason we define a
completely new package is in order to avoid turning ambiguous Ada programs into unambiguous AVA programs. Text_IO
makes extensive use of default parameters, which we have excluded from our subset.

Predefined Language Environment AVARM;1.0

A.7 External Files and File Objects 5 October 1995 178

object; the term external file is used otherwise. File objects are essentially indices into tables main-
tained by the AVA_IO package. As such, they are always passed to predefined routines as
constant (in) parameters. Any actual changes occur in these internal tables.

3 ♦

5 Before input or output operations can be performed on a file, the file first has to be associated with an
external file. While such an association is in effect, the file is said to be open, and otherwise the file is
said to be closed. This association is accomplished in an implementation-dependent manner.
The objects of file type that are passed into the main program and declared in AVA_IO are
already open. Once closed they cannot be reopened.

6 The language does not define what happens to external files after the completion of the main program♦
(in particular, if corresponding files have not been closed). ♦

7 An open file has a current mode, which is a value of ♦ the following enumeration type:
8 type File_Mode is (In_File, ♦ Out_File); -- for AVA_IO

9 These values correspond respectively to the cases where only reading♦ or only writing are to be per-
formed. ♦

10 ♦

12 The mode of a file cannot be changed.

13 ♦

14 ♦ The only exception that can be raised by a call of an input-output subprogram is Program_
Error;12 the situations in which it can be raised are described, either following the description of
the subprogram or in Appendix L in the case of error situations that are implementation-
dependent.

14.a Implementation defined: Any implementation-defined characteristics of the input-output packages.

NOTES
15 5 ♦

A.8 Sequential and Direct Files
Static Semantics

1 One kind of access to external files is defined in this subclause: sequential access ♦. ♦ A file object to
be used for sequential access is called a sequential file♦. ♦.

2 For sequential access, the external file is viewed as a sequence of values that are transferred in the order
of their appearance (as produced by the program or by the external environment). When the file is
opened with mode In_File or Out_File, transfer starts respectively from or to the beginning of the file. ♦

12To help the reader relate these exceptions to those defined for Text_IO in Ada, we use the notation Program_Errororiginal to
indicate what original exception was replaced by Program_Error. E.g., Program_Errorstatus, Program_Errormode, ...

AVARM;1.0 Predefined Language Environment

179 5 October 1995 Sequential and Direct Files A.8

5NOTES
66 A capability for appending to a file is a system-dependent property. In particular it depends on the manner in

which external files are associated with parameters to the main program. See [AI-00278] for discussion in the
context of full Ada.

A.8.1 The Generic Package Sequential_IO
Relevant portions moved to subclause A.8.2.

A.8.2 File Management
Static Semantics

1The procedures and functions described in this subclause provide for the control of external files. ♦ The
only allowed file modes for text files are the modes In_File and Out_File. ♦

9procedure Close(File : in out File_Type);

Severs the association between the given file and its associated external file. The given file is
left closed. In addition, for sequential files, if the file being closed has mode Out_File, outputs
a file terminator.♦

The exception Program_Errorstatus is propagated if the given file is not open.
10♦
18function Mode(File : in File_Type) return File_Mode;

Returns the current mode of the given file, either In_File or Out_File.

The exception Program_Errorstatus is propagated if the file is not open.
19♦
27function Is_Open(File : in File_Type) return Boolean;

Returns True if the file is open (that is, if it is associated with an external file), otherwise returns
False.

30

31function End_Of_File(File : in File_Type) return Boolean;

32Operates on a file of mode In_File. Returns True if no more elements can be read from the given
file; otherwise returns False.

The exception Program_Errormode is propagated if the mode is not In_File. The exception
Program_Errorstatus is propagated if the file is not open.

♦

A.8.3 Sequential Input-Output Operations
Relevant portions moved to subclause A.8.2.

A.8.4 The Generic Package Direct_IO -- Removed

Predefined Language Environment AVARM;1.0

A.8.5 Direct Input-Output Operations -- Removed 5 October 1995 180

A.8.5 Direct Input-Output Operations -- Removed

A.9 The Generic Package Storage_IO -- Removed

A.10 Text Input-Output
Static Semantics

1 This clause further describes the package AVA_IO facilities for input and output in human-readable
form. Each file is read or written sequentially, as a sequence of characters ♦

2 The facilities for file management given above, in subclause A.8.2 ♦, are available for text input-output.
♦ There are also procedures Get and Put that input values of types Character and String from text
files, and output values to them. These values are provided to the Put procedures, and returned by the Get
procedures, in a parameter Item. ♦

5 At the beginning of program execution the default input and output files are the so-called standard input
file and standard output file. These files are open, have respectively the current modes In_File and Out_
File, and are associated with two implementation-defined external files. ♦

5.a Implementation defined: external files for standard input, standard output, and standard error

6 ♦

7 From a logical point of view, a text file is a sequence of ♦ characters♦. One character constant is
provided to mark the end of a line, EOL. The terminator is generated during output; either by calls
of procedures provided expressly for that purpose♦ or by passing the value of this constant as a
character to be output.13

8 ♦

12 When a file is initially open with mode Out_File, its size is unbounded. Storage_Error is
propagated if external file size limits are encountered.

♦

A.10.1 The Package AVA_IO
Static Semantics

1 The library package AVA_IO has the following declaration:
2 package AVA_IO is

type File_Type is private;

type File_Mode is (In_File, Out_File);

-- File Management

13This means that an entire file can be copied by Get-ting and Put-ting characters, without any knowledge of the underlying
file structure.

AVARM;1.0 Predefined Language Environment

181 5 October 1995 The Package AVA_IO A.10.1

procedure Close (File : in out File_Type);
function Mode (File : in File_Type) return File_Mode;
function Is_Open(File : in File_Type) return Boolean;
function End_Of_File(File : in File_Type) return Boolean;

-- Standard input and output files

Standard_Input : constant File_Type; -- Why not constant functions?
Standard_Output : constant File_Type;

-- Line Control

EOL : constant CHARACTER;

-- Character Input-Output

procedure Get(File : in File_Type; Item : in out Character);
procedure Put(File : in File_Type; Item : in Character);

-- String Input-Output

procedure Get(File : in File_Type; Item : in out String);
procedure Put(File : in File_Type; Item : in String);

procedure Get_Line(File : in File_Type; Item : in out String; Last : in out Natural);
procedure Put_Line(File : in File_Type; Item : in String);

-- Exceptions:
-- These exceptions are not defined in AVA. They are raised as Program_Error.
-- But they are documented here in order that we can maintain the sense of
-- the various reasons for exceptions raised by predefined I/O operations.

-- Status_Error : exception;
-- Mode_Error : exception;
-- Name_Error : exception;
-- Use_Error : exception;
-- Device_Error : exception;
-- End_Error : exception;
-- Data_Error : exception;
-- Layout_Error : exception;

private
-- implementation-dependent

end AVA_IO;

A.10.2 Text File Management
See subclause A.8.2.

A.10.3 Default Input, Output, and Error Files
The following constants provide one means to access the file pointers to the standard input and
output files.

7Standard_Input : constant File_Type;

Value is a pointer to the standard input file.
9Standard_Output : constant File_Type;

Value is a pointer to the standard output file.

Predefined Language Environment AVARM;1.0

A.10.4 Specification of Line and Page Lengths -- Removed 5 October 1995 182

A.10.4 Specification of Line and Page Lengths -- Removed

A.10.5 Operations on Columns, Lines, and Pages
The end of line constant described in this subclause and the procedures Put_Line and Get_Line
described in subclause A.10.6 provide the only explicit control of line structure in files.

1 EOL: constant Character := implementation_dependent

A.10.6 Get and Put Procedures
Static Semantics

1 The procedures Get and Put for items of the types Character and String♦ are described in subsequent
subclauses. Features of these procedures that are common to ♦ these types are described in this sub-
clause. The Get and Put procedures for items of type Character and String deal with sequences of
individual character values♦.

2 All procedures Get and Put have forms with a file parameter, written first. ♦ Each procedure Get
operates on a file of mode In_File. Each procedure Put operates on a file of mode Out_File ♦.

3 ♦

9 The exception Program_Errorstatus is propagated by any of the procedures Get, Get_Line, Put, and Put_
Line if the file to be used is not open. The exception Program_Errormode is propagated by the
procedures Get and Get_Line if the mode of the file to be used is not In_File; and by the procedures Put
and Put_Line, if the mode is not Out_File ♦.

10 The exception Program_Errorend is propagated by a Get procedure if an attempt is made to skip a file
terminator. ♦

A.10.7 Input-Output of Characters and Strings
Static Semantics

1 For an item of type Character the following procedures are provided:
2 procedure Get(File : in File_Type; Item : out Character);14

♦

3 ♦ Reads the next character from the specified input file and returns the value of this character in the
in out parameter Item.

The exception Program_Errorend is propagated if an attempt is made to read past the end
of a file.

4

5 procedure Put(File : in File_Type; Item : in Character);
♦

6 ♦ Outputs the given character to the file.

14Because of the constraints that AVA places on parameter modes, excluding mode out, this and subsequent Ada out parameters are instead of in out mode.

AVARM;1.0 Predefined Language Environment

183 5 October 1995 Input-Output of Characters and Strings A.10.7

7♦

10For an item of type String the following procedures are provided:
11procedure Get(File : in File_Type; Item : in out String);

♦

12Determines the length of the given string and attempts that number of Get operations for successive
characters of the string (in particular, no operation is performed if the string is null).

13

14procedure Put(File : in File_Type; Item : in String);
♦

15Determines the length of the given string and attempts that number of Put operations for successive
characters of the string (in particular, no operation is performed if the string is null).

16

17procedure Get_Line(File : in File_Type; Item : in out String; Last : in out Natural);
♦

18Reads successive characters from the specified input file and assigns them to successive characters
of the specified string. Reading stops if the end of the string is met. Reading also stops if EOL
is met ♦or if the end of file is encountered. If an EOL ended the Get_Line, it is skipped.
The values of characters not assigned are left unchanged.

If characters are read, returns in Last the index value such that Item(Last) is the last character
assigned (the index of the first character assigned is 0). If no characters are read, returns in Last
an index value that is one less than 0. The exception Program_Errorend is propagated if an
attempt is made to read past the end of a file.

19

20procedure Put_Line(File : in File_Type; Item : in String);
♦

21Calls the procedure Put for the given string, and then outputs an EOL.

♦

NOTES
217 ♦

228 In a literal string parameter of Put, the enclosing string bracket characters are not output. Each doubled string bracket
character in the enclosed string is output as a single string bracket character, as a consequence of the rule for string literals
(see 2.6).

239 ♦

2410 End of lines encountered by a Get will be skipped over, whicle Put may insert a number of them in the
course of outputting a string.

A.10.8 Input-Output for Integer Types -- Removed

Predefined Language Environment AVARM;1.0

A.10.9 Input-Output for Real Types -- Removed 5 October 1995 184

A.10.9 Input-Output for Real Types -- Removed

A.10.10 Input-Output for Enumeration Types -- Removed

A.11 Wide Text Input-Output -- Removed

A.12 Stream Input-Output -- Removed

A.13 Exceptions in Input-Output
1 ♦The following exceptions are included for expository reasons. They cannot be raised by input-

output operations since they have all been renamed to PROGRAM_ERROR. PROGRAM_ER-
ROR is raised in AVA_IO at the points where the io exceptions were raised in TEXT_IO. Only
outline descriptions are given of the conditions under which exceptions are raised; for full details
see Appendix L.

Static Semantics

2 ♦
3 package Ada.IO_Exceptions is

♦
Status_Error : exception;
Mode_Error : exception;
Name_Error : exception;
Use_Error : exception;
Device_Error : exception;
End_Error : exception;
Data_Error : exception;
Layout_Error : exception;

end Ada.IO_Exceptions;

4 If more than one error condition exists, the corresponding exception that appears earliest in the following
list is the one that is propagated.

5 The exception Program_Errorstatus is propagated by an attempt to operate upon a file that is not open,
and by an attempt to open a file that is already open.

6 The exception Program_Errormode is propagated by an attempt to read from, or test for, the end of a file
whose current mode is Out_File ♦, and also by an attempt to write to a file whose current mode is In_
File. ♦

7 ♦

8 The exception Program_Erroruse is propagated if an operation is attempted that is not possible for
reasons that depend on characteristics of the external file. ♦

9 The exception Program_Errordevice is propagated if an input-output operation cannot be completed
because of a malfunction of the underlying system.

AVARM;1.0 Predefined Language Environment

185 5 October 1995 File Sharing -- Removed A.14

10The exception Program_Errorend is propagated by an attempt to skip (read past) the end of a file.

11♦

Documentation Requirements

12The implementation shall document the conditions under which Program_Errorname, Program_
Erroruse and Program_Errordevice are propagated.

A.14 File Sharing -- Removed

A.15 The Package Command_Line -- Removed

Interface to Other Languages -- Removed AVARM;1.0

B Interface to Other Languages -- Removed 5 October 1995 186

AVARM;1.0 Interface to Other Languages -- Removed

187 5 October 1995 Interface to Other Languages -- Removed B

B. Interface to Other Languages -- Removed

Systems Programming -- Removed AVARM;1.0

C Systems Programming -- Removed 5 October 1995 188

AVARM;1.0 Systems Programming -- Removed

189 5 October 1995 Systems Programming -- Removed C

C. Systems Programming -- Removed

Real-Time Systems -- Removed AVARM;1.0

D Real-Time Systems -- Removed 5 October 1995 190

AVARM;1.0 Real-Time Systems -- Removed

191 5 October 1995 Real-Time Systems -- Removed D

D. Real-Time Systems -- Removed

Distributed Systems -- Removed AVARM;1.0

E Distributed Systems -- Removed 5 October 1995 192

AVARM;1.0 Distributed Systems -- Removed

193 5 October 1995 Distributed Systems -- Removed E

E. Distributed Systems -- Removed

Information Systems -- Removed AVARM;1.0

F Information Systems -- Removed 5 October 1995 194

AVARM;1.0 Information Systems -- Removed

195 5 October 1995 Information Systems -- Removed F

F. Information Systems -- Removed

Numerics -- Removed AVARM;1.0

G Numerics -- Removed 5 October 1995 196

AVARM;1.0 Numerics -- Removed

197 5 October 1995 Numerics -- Removed G

G. Numerics -- Removed

Safety and Security AVARM;1.0

H Safety and Security 5 October 1995 198

AVARM;1.0 Safety and Security

199 5 October 1995 Safety and Security H

H. Safety and Security
Removed.

Obsolescent Features AVARM;1.0

I Obsolescent Features 5 October 1995 200

AVARM;1.0 Obsolescent Features

201 5 October 1995 Obsolescent Features I

I. Obsolescent Features
1This Annex contains descriptions of features of the language whose functionality is largely redundant

with other features defined by this Reference Manual. Use of these features is not recommended in newly
written programs.

1.aRamification: These features are still part of the language, and have to be implemented by conforming implemen-
tations. The primary reason for putting these descriptions here is to get redundant features out of the way of most
readers. The designers of the next version of Ada after Ada 9X will have to assess whether or not it makes sense to
drop these features from the language.

♦

I.1 Renamings of Ada 83 Library Units -- Removed

I.2 Allowed Replacements of Characters -- Removed

I.3 Reduced Accuracy Subtypes -- Removed

I.4 The Constrained Attribute -- Removed

I.5 ASCII

Static Semantics

1The following declaration exists in the declaration of package Standard:
2package ASCII is

3-- Control characters:

4

NUL : constant Character := nul; SOH : constant Character := soh;
STX : constant Character := stx; ETX : constant Character := etx;
EOT : constant Character := eot; ENQ : constant Character := enq;
ACK : constant Character := ack; BEL : constant Character := bel;
BS : constant Character := bs; HT : constant Character := ht;
LF : constant Character := lf; VT : constant Character := vt;
FF : constant Character := ff; CR : constant Character := cr;
SO : constant Character := so; SI : constant Character := si;
DLE : constant Character := dle; DC1 : constant Character := dc1;
DC2 : constant Character := dc2; DC3 : constant Character := dc3;
DC4 : constant Character := dc4; NAK : constant Character := nak;
SYN : constant Character := syn; ETB : constant Character := etb;
CAN : constant Character := can; EM : constant Character := em;
SUB : constant Character := sub; ESC : constant Character := esc;
FS : constant Character := fs; GS : constant Character := gs;
RS : constant Character := rs; US : constant Character := us;
DEL : constant Character := del;

5-- Other characters:

Obsolescent Features AVARM;1.0

I.5 ASCII 5 October 1995 202

6 Exclam : constant Character:= ’!’; Quotation : constant Character:= ’"’;
Sharp : constant Character:= ’#’; Dollar : constant Character:= ’$’;
Percent : constant Character:= ’%’; Ampersand : constant Character:= ’&’;
Colon : constant Character:= ’:’; Semicolon : constant Character:= ’;’;
Query : constant Character:= ’?’; At_Sign : constant Character:= ’@’;
L_Bracket : constant Character:= ’[’; Back_Slash: constant Character:= ’\’;
R_Bracket : constant Character:= ’]’; Circumflex: constant Character:= ’^’;
Underline : constant Character:= ’_’; Grave : constant Character:= ’‘’;
L_Brace : constant Character:= ’{’; Bar : constant Character:= ’|’;
R_Brace : constant Character:= ’}’; Tilde : constant Character:= ’~’;

7 -- Lower case letters:

8 LC_A: constant Character:= ’a’;
...
LC_Z: constant Character:= ’z’;

9 end ASCII;
;

I.6 Numeric_Error -- Removed

I.7 At Clauses -- Removed

I.7.1 Interrupt Entries -- Removed

I.8 Mod Clauses -- Removed

I.9 The Storage_Size Attribute -- Removed

AVARM;1.0 Language-Defined Attributes

203 5 October 1995 Language-Defined Attributes J

J. Language-Defined Attributes
1This annex summarizes the definitions given elsewhere of the language-defined attributes.

S’Base For every scalar subtype S: 2

S’Base denotes an unconstrained subtype of the type of S. See 3.5(15). 3

A’First(N) For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 4

A’First(N) denotes the lower bound of the N-th index range; its type is the cor- 5

responding index type. See 3.6.2(3).

A’First For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 6

A’First denotes the lower bound of the first index range; its type is the corresponding 7

index type. See 3.6.2(2).

S’First For every scalar subtype S: 8

S’First denotes the lower bound of the range of S. The value of this attribute is of the 9

type of S. See 3.5(12).

S’Image For every scalar subtype S: 10

S’Image denotes a function with the following specification: 11

12function S’Image(Arg : S’Base)
return String

The function returns an image of the value of Arg as a String. See 3.5(34). 13

A’Last(N) For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 14

A’Last(N) denotes the upper bound of the N-th index range; its type is the cor- 15

responding index type. See 3.6.2(5).

A’Last For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 16

A’Last denotes the upper bound of the first index range; its type is the corresponding 17

index type. See 3.6.2(4).

S’Last For every scalar subtype S: 18

S’Last denotes the upper bound of the range of S. The value of this attribute is of the 19

type of S. See 3.5(13).

A’Length(N) For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 20

A’Length(N) denotes the number of values of the N-th index range (zero for a null 21

range); its type is universal_integer. See 3.6.2(9).

A’Length For a prefix A that is of an array type ♦, or denotes a constrained array subtype: 22

A’Length denotes the number of values of the first index range (zero for a null range); 23

its type is universal_integer. See 3.6.2(8).

S’Pos For every discrete subtype S: 24

S’Pos denotes a function with the following specification: 25

26function S’Pos(Arg : S’Base)
return universal_integer

This function returns the position number of the value of Arg, as a value of type 27

universal_integer. See 3.5.5(1).

S’Pred For every scalar subtype S: 28

S’Pred denotes a function with the following specification: 29

30function S’Pred(Arg : S’Base)
return S’Base

Language-Defined Attributes AVARM;1.0

J Language-Defined Attributes 5 October 1995 204

For an enumeration type, the function returns the value whose position number is one31

less than that of the value of Arg; Constraint_Error is raised if there is no such value
of the type. For an integer type, the function returns the result of subtracting one
from the value of Arg. ♦ Constraint_Error is raised if there is no such machine
number. See 3.5(24).

A’Range(N) For a prefix A that is of an array type ♦, or denotes a constrained array subtype:32

A’Range(N) is equivalent to the range A’First(N) .. A’Last(N), except that the prefix33

A is only evaluated once. See 3.6.2(7).

A’Range For a prefix A that is of an array type ♦, or denotes a constrained array subtype:34

A’Range is equivalent to the range A’First .. A’Last, except that the prefix A is only35

evaluated once. See 3.6.2(6).

S’Succ For every scalar subtype S:36

S’Succ denotes a function with the following specification:37

38 function S’Succ(Arg : S’Base)
return S’Base

For an enumeration type, the function returns the value whose position number is one39

more than that of the value of Arg; Constraint_Error is raised if there is no such value
of the type. For an integer type, the function returns the result of adding one to the
value of Arg. ♦ Constraint_Error is raised if there is no such machine number. See
3.5(21).

S’Val For every discrete subtype S:40

S’Val denotes a function with the following specification:41

42 function S’Val(Arg : integer)
return S’Base

This function returns a value of the type of S whose position number equals the value43

of Arg. See 3.5.5(4).

S’Value For every scalar subtype S:44

S’Value denotes a function with the following specification:45

46 function S’Value(Arg : String)
return S’Base

This function returns a value given an image of the value as a String, ignoring any47

leading or trailing spaces. See 3.5(51).

AVARM;1.0 Language-Defined Pragmas -- Removed

205 5 October 1995 Language-Defined Pragmas -- Removed K

K. Language-Defined Pragmas -- Removed

Implementation-Defined Characteristics AVARM;1.0

L Implementation-Defined Characteristics 5 October 1995 206

AVARM;1.0 Implementation-Defined Characteristics

207 5 October 1995 Implementation-Defined Characteristics L

L. Implementation-Defined Characteristics
1The Ada language allows for certain machine dependences in a controlled manner. Each Ada implemen-

tation must document all implementation-defined characteristics:
1.aRamification: It need not document unspecified characteristics.

1.b♦

2• Capacity limitations of the implementation. See 1.1.3(3).

3• The coded representation for the text of an AVA program. See 2.1(4).

4• The control functions allowed in comments. See 2.1(15).

5• The representation for an end of line. See 2.2(2).

6• Maximum supported line length and lexical element length. See 2.2(15).

7• Range bounds evaluated left to right. AVA Requirement. See 3.5(10).

8• Check that the subprogram body has been elaborated before the evaluation of the actual
parameters. AVA Requirement. See 3.11(11).

9• Prefix of indexed_component evaluated before indices, which are then evaluated left to right.
AVA Requirement. See 4.1.1(8).

10• Implementation-defined attributes. See 4.1.4(14).

11• Obtaining the values and the assignments in an aggregate proceeds left to right. AVA
Requirement. See 4.3(5).

12• Expression evaluation in a record_component_association_list occurs from left to right.
AVA Requirement. See 4.3.1(19).

13• Array component expressions of an aggregate are evaluated from left to right. AVA
Requirement. See 4.3.3(22).

14• The two operands of an expression of the form X op Y are evaluated left to right, before
application of the operator. AVA Requirement. See 4.5(14).

15• Optimization of integer expressions. AVA Requirement. See 4.5(14).

16• For the evaluation of a membership test, the simple_expression and the range are evaluated
from left to right. AVA Requirement. See 4.5.2(27).

17• Parameters passed by copy. AVA Requirement. See 6.2(2).

18• Order of copy-back and constraint checking upon subprogram return. AVA Requirement.
See 6.4.1(17).

19• The representation for a compilation. See 10.1(2).

20• Any restrictions on compilations that contain multiple compilation_units. See 10.1(4).

21• The mechanisms for creating an environment and for adding and replacing compilation units.
See 10.1.4(3).

22• The implementation must require that a compilation unit be legal before inserting it into the
environment. AVA Requirement. See 10.1.4(6).

23• The manner of explicitly assigning library units to a partition. See 10.2(2).

24• The implementation-defined means, if any, of specifying which compilation units are needed
by a given compilation unit. See 10.2(2).

Implementation-Defined Characteristics AVARM;1.0

L Implementation-Defined Characteristics 5 October 1995 208

25 • The manner of designating the main subprogram of a partition. See 10.2(7).

26 • A library_item that is a library_unit_body is elaborated immediately after the library_unit
which it completes. AVA Requirement. See 10.2(13).

27 • The order of elaboration of library_items. See 10.2(18).

28 • The mechanisms for building and running partitions. See 10.2(24).

29 • The details of program execution, including program termination. See 10.2(25).

30 • The contents of the visible part of package System and its language-defined children. See
13.7(2).

31 • The names and characteristics of the numeric subtypes declared in the visible part of package
Standard. See A.1(3).

32 • Any implementation-defined characteristics of the input-output packages. See A.7(14).

33 • external files for standard input, standard output, and standard error See A.10(5).

AVARM;1.0 Glossary

209 5 October 1995 Glossary M

M. Glossary
1This Annex contains informal descriptions of some terms used in this Reference Manual. To find more

formal definitions, look the term up in the index.

2Ada Commentary Integration Document. The Ada Commentary Integration Document (ACID) is an
edition of RM83 in which clearly marked insertions and deletions indicate the effect of integrating the
approved AIs.

3Ada Issue. An Ada Issue (AI) is a numbered ruling from the ARG.

4Ada Rapporteur Group. The Ada Rapporteur Group (ARG) interprets the RM83.

5Array type. An array type is a composite type whose components are all of the same type. Components
are selected by indexing.

6Character type. A character type is an enumeration type whose values include characters.

7Compilation unit. The text of a program can be submitted to the compiler in one or more compilations.
Each compilation is a succession of compilation_units. A compilation_unit contains either the declaration
or the body ♦.

8Composite type. A composite type has components.

9Construct. A construct is a piece of text (explicit or implicit) that is an instance of a syntactic category
defined under ‘‘Syntax.’’

10Declaration. A declaration is a language construct that associates a name with (a view of) an entity. A
declaration may appear explicitly in the program text (an explicit declaration), or may be supposed to
occur at a given place in the text as a consequence of the semantics of another construct (an implicit
declaration).

11Definition. All declarations contain a definition for a view of an entity. A view consists of an identifica-
tion of the entity (the entity of the view), plus view-specific characteristics that affect the use of the entity
through that view (such as ♦ formal parameter names♦, or visibility to components of a type). In most
cases, a declaration also contains the definition for the entity itself (a renaming_declaration is an example
of a declaration that does not define a new entity, but instead defines a view of an existing entity (see
8.5)).

12Discrete type. A discrete type is either an integer type or an enumeration type. Discrete types may be
used, for example, in case_statements and as array indices.

13Elementary type. An elementary type does not have components.

14Enumeration type. An enumeration type is defined by an enumeration of its values, which may be
named by identifiers or character literals.

15Exception. An exception represents a kind of exceptional situation; an occurrence of such a situation (at
run time) is called an exception occurrence. To raise an exception is to abandon normal program
execution so as to draw attention to the fact that the corresponding situation has arisen. Performing
some actions in response to the arising of an exception is called handling the exception.

Glossary AVARM;1.0

M Glossary 5 October 1995 210

16 Execution. The process by which a construct achieves its run-time effect is called execution.
Execution of a declaration is also called elaboration. Execution of an expression is also called
evaluation.

17 Integer type. Integer types comprise the signed integer types♦. A signed integer type has a base range
that includes both positive and negative numbers, and has operations that may raise an exception when
the result is outside the base range. ♦

18 Library unit. A library unit is a separately compiled program unit, and is always a package or a
subprogram♦. Library units may have other (logically nested) library units as children, and may have
other program units physically nested within them. A root library unit, together with its children and
grandchildren and so on, form a subsystem.

19 Object. An object is either a constant or a variable. An object contains a value. An object is created by
an object_declaration ♦. A formal parameter is (a view of) an object. A subcomponent of an object is an
object.

20 Package. Packages are program units that allow the specification of groups of logically related entities.
Typically, a package contains the declaration of a type (often a private type ♦) along with the declarations
of primitive subprograms of the type, which can be called from outside the package, while their inner
workings remain hidden from outside users. A package may also include axioms, purported
theorems, and specification functions.

21 Partition. A partition is a ♦ program. ♦ A partition consists of a set of library units. ♦ A program may
only contain one partition.

22 Primitive operations. The primitive operations of a type are the operations (such as subprograms)
declared together with the type declaration. They are inherited by other types in the same class of types.
♦

23 Private type. A private type is a partial view of a type whose full view is hidden from its clients.

24 Program unit. A program unit is either a package♦ or an explicitly declared subprogram other than an
enumeration literal. Certain kinds of program units can be separately compiled. Alternatively, they can
appear physically nested within other program units.

25 Program. A program is a ♦ partition which may execute in a separate address space ♦. A partition
consists of a set of library units.

26 Protected type. A protected type is a composite type whose components are protected from concurrent
access by multiple tasks.

27 Record type. A record type is a composite type consisting of zero or more named components, possibly
of different types.

28 Scalar type. A scalar type is ♦ a discrete type♦.

29 Subtype. A subtype is a type together with a constraint, which constrains the values of the subtype to
satisfy a certain condition. The values of a subtype are a subset of the values of its type.

AVARM;1.0 Glossary

211 5 October 1995 Glossary M

30Type. Each object has a type. A type has an associated set of values, and a set of primitive operations
which implement the fundamental aspects of its semantics. Types are grouped into classes. The types of
a given class share a set of primitive operations. ♦

31Uniformity Issue. A Uniformity Issue (UI) is a numbered recommendation from the URG.

32Uniformity Rapporteur Group. The Uniformity Rapporteur Group (URG) issues recommendations
intended to increase uniformity across Ada implementations.

33View. (See Definition.)

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 212

AVARM;1.0 Syntax Summary

213 5 October 1995 Syntax Summary N

N. Syntax Summary
1This Annex summarizes the complete syntax of the language. See 1.1.4 for a description of the notation

used.

2

2.1:
character ::= graphic_character | format_effector | other_control_function

2.1:
graphic_character ::= identifier_letter | digit | space_character | special_character

2.3:
identifier ::=

identifier_letter {[underline] letter_or_digit}

2.3:
letter_or_digit ::= identifier_letter | digit

2.4:
numeric_literal ::= decimal_literal | based_literal

2.4.1:
decimal_literal ::= numeral ♦ [exponent]

2.4.1:
numeral ::= digit {[underline] digit}

2.4.1:
exponent ::= E + numeral | ♦

2.4.2:
based_literal ::=

base # based_numeral ♦ # [exponent]

2.4.2:
base ::= numeral

2.4.2:
based_numeral ::=

extended_digit {[underline] extended_digit}

2.4.2:
extended_digit ::= digit | A | B | C | D | E | F

2.5:
character_literal ::= ’graphic_character’

2.6:
string_literal ::= "{string_element}"

2.6:
string_element ::= "" | non_quotation_mark_graphic_character

A string_element is either a pair of quotation marks (""),
or a single graphic_character other than a quotation mark.

2.7:
comment ::= --{non_end_of_line_character}

2.10:
annotation_line ::= --|{non_end_of_line_character}

3.1:
basic_declaration ::=

type_declaration | subtype_declaration
| inner_declaration | ♦
| subprogram_declaration | ♦
| package_declaration | renaming_declaration
| axiom_decl
| theorem_decl
| defun_decl
| ♦ | ♦
| ♦

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 214

3.1:
defining_identifier ::= identifier

3.1:
inner_declaration ::=

object_declaration
| number_declaration
| invariant_annotation

3.2.1:
type_declaration ::= full_type_declaration

| ♦
| private_type_declaration
| ♦

3.2.1:
full_type_declaration ::=

type defining_identifier ♦ is type_definition;
| ♦

3.2.1:
type_definition ::=

enumeration_type_definition | ♦
| ♦ | array_type_definition
| record_type_definition | ♦
| ♦

3.2.2:
subtype_declaration ::=

subtype defining_identifier is subtype_indication;

3.2.2:
subtype_indication ::= subtype_mark [constraint]

3.2.2:
subtype_mark ::= subtype_name

3.2.2:
constraint ::= scalar_constraint | composite_constraint

3.2.2:
scalar_constraint ::=

range_constraint | ♦

3.2.2:
composite_constraint ::=

index_constraint | ♦

3.3.1:
object_declaration ::=

defining_identifier_list : [constant] subtype_indication [:= expression];
| ♦
| ♦
| ♦

3.3.1:
defining_identifier_list ::= defining_identifier {, defining_identifier}

3.3.2:
number_declaration ::=

defining_identifier_list : constant := static_expression;

3.5:
range_constraint ::= range range

3.5:
range ::= range_attribute_reference

| simple_expression .. simple_expression

3.5.1:
enumeration_type_definition ::=

(enumeration_literal_specification {, enumeration_literal_specification})

3.5.1:
enumeration_literal_specification ::= defining_identifier | defining_character_literal

AVARM;1.0 Syntax Summary

215 5 October 1995 Syntax Summary N

3.5.1:
defining_character_literal ::= character_literal

3.6:
array_type_definition ::=

unconstrained_array_definition | constrained_array_definition

3.6:
unconstrained_array_definition ::=

array(index_subtype_definition {, index_subtype_definition}) of component_definition

3.6:
index_subtype_definition ::= subtype_mark range <>

3.6:
constrained_array_definition ::=

array (integer_subtype_definition {, integer_subtype_definition}) of component_definition

3.6:
discrete_subtype_definition ::= discrete_subtype_mark | range

3.6:
integer_subtype_definition ::=
integer_subtype_mark | range

3.6:
component_definition ::= ♦ subtype_indication

3.6.1:
index_constraint ::= (discrete_range {, discrete_range})

3.6.1:
discrete_range ::= discrete_subtype_indication | range

3.8:
record_type_definition ::= ♦ record_definition

3.8:
record_definition ::=

record
component_list

end record
| ♦

3.8:
component_list ::=

component_item {component_item}
| ♦
| null;

3.8:
component_item ::= component_declaration♦

3.8:
component_declaration ::=

defining_identifier_list : component_definition ♦;

3.11:
declarative_part ::= {declarative_item}

3.11:
declarative_item ::=

basic_declarative_item | body

3.11:
basic_declarative_item ::=

basic_declaration | ♦

3.11:
body ::= proper_body | ♦

3.11:
proper_body ::=

subprogram_body | package_body | ♦

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 216

3.11:
inner_declarative_part ::= inner_declaration

3.12:
assert_annotation ::= assert logical_expression ;

3.12:
invariant_annotation ::= invariant logical_expression ;

3.12:
transition_annotation ::= where logical_expression ;

3.12:
subprogram_annotation ::=

where logical_expression
| where return [identifier ,] logical_expression

3.12:
axiom_decl ::= axiom identifier logical_expression ;

3.12:
theorem_decl ::= theorem identifier logical_expression ;

3.12:
defun_decl ::= defun identifier arglist logical_expression ;

3.12:
arglist ::= ({identifier})

4.1:
name ::=

direct_name | ♦
| indexed_component | ♦
| selected_component | attribute_reference
| type_conversion | function_call
| character_literal

4.1:
direct_name ::= identifier | ♦

4.1:
prefix ::= name | ♦

4.1.1:
indexed_component ::= prefix(expression {, expression})

4.1.3:
selected_component ::= prefix . selector_name

4.1.3:
selector_name ::= identifier | ♦

4.1.4:
attribute_reference ::= prefix’attribute_designator

4.1.4:
attribute_designator ::=

identifier[(static_expression)]
| ♦

4.1.4:
range_attribute_reference ::= prefix’range_attribute_designator

4.1.4:
range_attribute_designator ::= Range[(static_expression)]

4.3:
aggregate ::= record_aggregate | ♦ | array_aggregate

4.3.1:
record_aggregate ::= (record_component_association_list)

4.3.1:
record_component_association_list ::=

record_component_association {, record_component_association}
| ♦

AVARM;1.0 Syntax Summary

217 5 October 1995 Syntax Summary N

4.3.1:
record_component_association ::=

[component_choice_list =>] expression

4.3.1:
component_choice_list ::=

component_selector_name {| component_selector_name}
| others

4.3.3:
array_aggregate ::=

positional_array_aggregate | named_array_aggregate

4.3.3:
positional_array_aggregate ::=

(expression, expression {, expression})
| ♦

4.3.3:
named_array_aggregate ::=

(others => expression)

4.4:
expression ::=

relation {and relation} | relation {and then relation}
| relation {or relation} | relation {or else relation}
| relation {xor relation}

4.4:
relation ::=

simple_expression [relational_operator simple_expression]
| simple_expression [not] in range
| simple_expression [not] in subtype_mark

4.4:
simple_expression ::= [unary_adding_operator] term {binary_adding_operator term}

4.4:
term ::= factor {multiplying_operator factor}

4.4:
factor ::= primary [** primary] | abs primary | not primary

4.4:
primary ::=

numeric_literal | ♦ | string_literal | aggregate
| name | qualified_expression | ♦ | (expression)

4.5:
logical_operator ::= and | or | xor

4.5:
relational_operator ::= = | /= | < | <= | > | >=

4.5:
binary_adding_operator ::= + | – | &

4.5:
unary_adding_operator ::= + | –

4.5:
multiplying_operator ::= * | / | mod | rem

4.5:
highest_precedence_operator ::= ** | abs | not

4.6:
type_conversion ::=

subtype_mark(expression)
| ♦

4.7:
qualified_expression ::=

subtype_mark’(expression) | subtype_mark’aggregate

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 218

4.10:
logical_expression ::=

expression
| env_expression
| if logical_expression

then expression
else expression

fi
| logical_expression iff logical_expression
| logical_expression implies logical_expression
| all identifier [in logical_expression] , logical_expression

4.10:
env_expression ::=

@ identifier
| in expression
| out expression

5.1:
sequence_of_statements ::= statement {statement}

5.1:
statement ::=

♦ simple_statement | ♦ ava_compound_statement

5.1:
simple_statement ::=

null_statement | assert_annotation
| assignment_statement | exit_statement
| ♦ | procedure_call_statement
| return_statement | ♦
| ♦ | ♦
| ♦ | raise_statement
| ♦

5.1:
compound_statement ::=

if_statement | case_statement
| loop_statement | block_statement

5.1:
ava_compound_statement ::=
[logical_annotation] compound_statement

5.1:
null_statement ::= null;

5.2:
assignment_statement ::=

variable_name := expression;

5.3:
if_statement ::=

if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

5.3:
condition ::= boolean_expression

5.4:
case_statement ::=

case expression is
case_statement_alternative
{case_statement_alternative}

end case;

AVARM;1.0 Syntax Summary

219 5 October 1995 Syntax Summary N

5.4:
case_statement_alternative ::=

when discrete_choice_list =>
sequence_of_statements

5.4:
discrete_choice_list ::= discrete_choice {| discrete_choice}

5.4:
discrete_choice ::= expression | discrete_range | others

5.5:
loop_statement ::=

♦
[iteration_scheme] loop

sequence_of_statements
end loop ♦;

5.5:
iteration_scheme ::= while condition

| for loop_parameter_specification

5.5:
loop_parameter_specification ::=

defining_identifier in [reverse] discrete_subtype_definition

5.6:
block_statement ::=

♦
[declare

inner_part]
begin

handled_sequence_of_statements
end ♦;

5.7:
exit_statement ::=

exit ♦ ;

6.1:
subprogram_declaration ::=

subprogram_specification; [subprogram_annotation;]

6.1:
subprogram_specification ::=

procedure defining_program_unit_name parameter_profile
| function defining_designator parameter_and_result_profile

6.1:
designator ::= [parent_unit_name .] identifier | ♦

6.1:
defining_designator ::= defining_program_unit_name | ♦

6.1:
defining_program_unit_name ::= [parent_unit_name .] defining_identifier

6.1:
parameter_profile ::= [formal_part]

6.1:
parameter_and_result_profile ::= [formal_part] return subtype_mark

6.1:
formal_part ::=

(parameter_specification {; parameter_specification})

6.1:
parameter_specification ::=

defining_identifier_list : mode subtype_mark ♦
| ♦

6.1:
mode ::= [in] | in out | ♦

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 220

6.3:
subprogram_body ::=

subprogram_specification is
inner_declarative_part

begin
handled_sequence_of_statements

end [designator];
[subprogram_annotation;]

6.4:
procedure_call_statement ::= procedure_name [actual_parameter_part] ;

6.4:
function_call ::= ♦ | function_prefix actual_parameter_part

6.4:
actual_parameter_part ::= (parameter_association {, parameter_association})

6.4:
parameter_association ::= ♦ explicit_actual_parameter

6.4:
explicit_actual_parameter ::= expression | variable_name

6.5:
return_statement ::= return [expression];

7.1:
package_declaration ::= package_specification;

7.1:
package_specification ::=

package defining_program_unit_name is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [[parent_unit_name.]identifier]

7.2:
package_body ::=

package body defining_program_unit_name is
declarative_part

[begin
handled_sequence_of_statements]

end [[parent_unit_name.]identifier];

7.3:
private_type_declaration ::=

type defining_identifier is private;

8.4:
use_clause ::= use_package_clause | ♦

8.4:
use_package_clause ::= use package_name {, package_name};

8.5:
renaming_declaration ::=

object_renaming_declaration
| ♦
| package_renaming_declaration
| subprogram_renaming_declaration
| ♦

8.5.1:
object_renaming_declaration ::= defining_identifier : subtype_mark renames object_name;

8.5.3:
package_renaming_declaration ::= package defining_program_unit_name renames package_name;

8.5.4:
subprogram_renaming_declaration ::= subprogram_specification renames callable_entity_name;

10.1.1:
compilation ::= {compilation_unit}

AVARM;1.0 Syntax Summary

221 5 October 1995 Syntax Summary N

10.1.1:
compilation_unit ::=

context_clause library_item
| ♦

10.1.1:
library_item ::= ♦ library_unit_declaration
| library_unit_body
| ♦

10.1.1:
library_unit_declaration ::=

subprogram_declaration | package_declaration
| ♦

10.1.1:
library_unit_body ::= subprogram_body | package_body

10.1.1:
parent_unit_name ::= name

10.1.2:
context_clause ::= {context_item}

10.1.2:
context_item ::= with_clause | use_clause

10.1.2:
with_clause ::= with library_unit_name {, library_unit_name};

11.2:
handled_sequence_of_statements ::=

sequence_of_statements
[exception

exception_handler
♦]

11.2:
exception_handler ::=
when ♦ exception_choice ♦ =>

sequence_of_statements

11.2:
exception_choice ::= ♦ others

11.3:
raise_statement ::= raise Program_Error;

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 222

Syntax Cross Reference

_subtype_definition
constrained_array_definition 3.6

actual_parameter_part
function_call 6.4
procedure_call_statement 6.4

aggregate
primary 4.4
qualified_expression 4.7

arglist
defun_decl 3.12

array_aggregate
aggregate 4.3

array_type_definition
type_definition 3.2.1

assert_annotation
simple_statement 5.1

assignment_statement
simple_statement 5.1

attribute_designator
attribute_reference 4.1.4

attribute_reference
name 4.1

axiom_decl
basic_declaration 3.1

base
based_literal 2.4.2

based_literal
numeric_literal 2.4

based_numeral
based_literal 2.4.2

basic_declaration
basic_declarative_item 3.11

basic_declarative_item
declarative_item 3.11
package_specification 7.1

binary_adding_operator
simple_expression 4.4

block_statement
compound_statement 5.1

body
declarative_item 3.11

case_statement
compound_statement 5.1

case_statement_alternative
case_statement 5.4

character
annotation_line 2.10
comment 2.7

character_literal
defining_character_literal 3.5.1
name 4.1

compilation_unit
compilation 10.1.1

component_choice_list
record_component_association 4.3.1

component_declaration
component_item 3.8

component_definition
component_declaration 3.8
constrained_array_definition 3.6
unconstrained_array_definition 3.6

component_item
component_list 3.8

component_list
record_definition 3.8

composite_constraint
constraint 3.2.2

condition
if_statement 5.3
iteration_scheme 5.5

constrained_array_definition
array_type_definition 3.6

constraint
subtype_indication 3.2.2

context_clause
compilation_unit 10.1.1

context_item
context_clause 10.1.2

decimal_literal
numeric_literal 2.4

declarative_item
declarative_part 3.11

declarative_part
package_body 7.2

defining_character_literal
enumeration_literal_specification 3.5.1

defining_designator
subprogram_specification 6.1

defining_identifier
defining_identifier_list 3.3.1
defining_program_unit_name 6.1
enumeration_literal_specification 3.5.1

AVARM;1.0 Syntax Summary

223 5 October 1995 Syntax Summary N

full_type_declaration 3.2.1
loop_parameter_specification 5.5
object_renaming_declaration 8.5.1
private_type_declaration 7.3
subtype_declaration 3.2.2

defining_identifier_list
component_declaration 3.8
number_declaration 3.3.2
object_declaration 3.3.1
parameter_specification 6.1

defining_program_unit_name
defining_designator 6.1
package_body 7.2
package_renaming_declaration 8.5.3
package_specification 7.1
subprogram_specification 6.1

defun_decl
basic_declaration 3.1

designator
subprogram_body 6.3

digit
extended_digit 2.4.2
graphic_character 2.1
letter_or_digit 2.3
numeral 2.4.1

direct_name
name 4.1

discrete_choice
discrete_choice_list 5.4

discrete_choice_list
case_statement_alternative 5.4

discrete_range
discrete_choice 5.4
index_constraint 3.6.1

discrete_subtype_definition
loop_parameter_specification 5.5

enumeration_literal_specification
enumeration_type_definition 3.5.1

enumeration_type_definition
type_definition 3.2.1

env_expression
logical_expression 4.10

exception_choice
exception_handler 11.2

exception_handler
handled_sequence_of_statements 11.2

exit_statement
simple_statement 5.1

explicit_actual_parameter
parameter_association 6.4

exponent

based_literal 2.4.2
decimal_literal 2.4.1

expression
assignment_statement 5.2
attribute_designator 4.1.4
case_statement 5.4
condition 5.3
discrete_choice 5.4
env_expression 4.10
explicit_actual_parameter 6.4
indexed_component 4.1.1
logical_expression 4.10
number_declaration 3.3.2
object_declaration 3.3.1
positional_array_aggregate 4.3.3
primary 4.4
qualified_expression 4.7
range_attribute_designator 4.1.4
record_component_association 4.3.1
return_statement 6.5
type_conversion 4.6

extended_digit
based_numeral 2.4.2

factor
term 4.4

formal_part
parameter_and_result_profile 6.1
parameter_profile 6.1

format_effector
character 2.1

full_type_declaration
type_declaration 3.2.1

function_call
name 4.1

graphic_character
character 2.1
character_literal 2.5
string_element 2.6

handled_sequence_of_statements
block_statement 5.6
package_body 7.2
subprogram_body 6.3

identifier
arglist 3.12
attribute_designator 4.1.4
axiom_decl 3.12
defining_identifier 3.1
defun_decl 3.12
designator 6.1
direct_name 4.1
env_expression 4.10
logical_expression 4.10
package_body 7.2
package_specification 7.1
selector_name 4.1.3
subprogram_annotation 3.12
theorem_decl 3.12

identifier_letter

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 224

graphic_character 2.1
identifier 2.3
letter_or_digit 2.3

if_statement
compound_statement 5.1

index_constraint
composite_constraint 3.2.2

index_subtype_definition
unconstrained_array_definition 3.6

indexed_component
name 4.1

inner_declaration
basic_declaration 3.1

inner_declarative_part
subprogram_body 6.3

inner_part
block_statement 5.6

iteration_scheme
loop_statement 5.5

letter_or_digit
identifier 2.3

library_item
compilation_unit 10.1.1

library_unit_body
library_item 10.1.1

library_unit_declaration
library_item 10.1.1

logical_expression
assert_annotation 3.12
axiom_decl 3.12
defun_decl 3.12
invariant_annotation 3.12
logical_expression 4.10
subprogram_annotation 3.12
theorem_decl 3.12
transition_annotation 3.12

loop_parameter_specification
iteration_scheme 5.5

loop_statement
compound_statement 5.1

mode
parameter_specification 6.1

multiplying_operator
term 4.4

name
assignment_statement 5.2
explicit_actual_parameter 6.4
object_renaming_declaration 8.5.1
package_renaming_declaration 8.5.3
parent_unit_name 10.1.1
prefix 4.1

primary 4.4
procedure_call_statement 6.4
raise_statement 11.3
subprogram_renaming_declaration 8.5.4
subtype_mark 3.2.2
use_package_clause 8.4
with_clause 10.1.2

named_array_aggregate
array_aggregate 4.3.3

null_statement
simple_statement 5.1

numeral
base 2.4.2
decimal_literal 2.4.1
exponent 2.4.1

numeric_literal
primary 4.4

object_renaming_declaration
renaming_declaration 8.5

other_control_function
character 2.1

package_body
library_unit_body 10.1.1
proper_body 3.11

package_declaration
basic_declaration 3.1
library_unit_declaration 10.1.1

package_renaming_declaration
renaming_declaration 8.5

package_specification
package_declaration 7.1

parameter_and_result_profile
subprogram_specification 6.1

parameter_association
actual_parameter_part 6.4

parameter_profile
subprogram_specification 6.1

parameter_specification
formal_part 6.1

parent_unit_name
defining_program_unit_name 6.1
designator 6.1
package_body 7.2
package_specification 7.1

positional_array_aggregate
array_aggregate 4.3.3

prefix
attribute_reference 4.1.4
function_call 6.4
indexed_component 4.1.1
range_attribute_reference 4.1.4
selected_component 4.1.3

AVARM;1.0 Syntax Summary

225 5 October 1995 Syntax Summary N

primary
factor 4.4

private_type_declaration
type_declaration 3.2.1

procedure_call_statement
simple_statement 5.1

proper_body
body 3.11

qualified_expression
primary 4.4

raise_statement
simple_statement 5.1

range
discrete_range 3.6.1
discrete_subtype_definition 3.6
range_constraint 3.5
relation 4.4

range_attribute_designator
range_attribute_reference 4.1.4

range_attribute_reference
range 3.5

range_constraint
scalar_constraint 3.2.2

record_aggregate
aggregate 4.3

record_component_association
record_component_association_list 4.3.1

record_component_association_list
record_aggregate 4.3.1

record_definition
record_type_definition 3.8

record_type_definition
type_definition 3.2.1

relation
expression 4.4

relational_operator
relation 4.4

renaming_declaration
basic_declaration 3.1

return_statement
simple_statement 5.1

scalar_constraint
constraint 3.2.2

selected_component
name 4.1

selector_name
component_choice_list 4.3.1
selected_component 4.1.3

sequence_of_statements
case_statement_alternative 5.4
exception_handler 11.2
handled_sequence_of_statements 11.2
if_statement 5.3
loop_statement 5.5

simple_expression
range 3.5
relation 4.4

space_character
graphic_character 2.1

special_character
graphic_character 2.1

statement
sequence_of_statements 5.1

string_element
string_literal 2.6

string_literal
primary 4.4

subprogram_annotation
subprogram_body 6.3
subprogram_declaration 6.1

subprogram_body
library_unit_body 10.1.1
proper_body 3.11

subprogram_declaration
basic_declaration 3.1
library_unit_declaration 10.1.1

subprogram_renaming_declaration
renaming_declaration 8.5

subprogram_specification
subprogram_body 6.3
subprogram_declaration 6.1
subprogram_renaming_declaration 8.5.4

subtype_
discrete_subtype_definition 3.6

subtype_declaration
basic_declaration 3.1

subtype_indication
component_definition 3.6
discrete_range 3.6.1
object_declaration 3.3.1
subtype_declaration 3.2.2

subtype_mark
index_subtype_definition 3.6
object_renaming_declaration 8.5.1
parameter_and_result_profile 6.1
parameter_specification 6.1
qualified_expression 4.7
relation 4.4
subtype_indication 3.2.2
type_conversion 4.6

term

Syntax Summary AVARM;1.0

N Syntax Summary 5 October 1995 226

simple_expression 4.4

theorem_decl
basic_declaration 3.1

type_conversion
name 4.1

type_declaration
basic_declaration 3.1

type_definition
full_type_declaration 3.2.1

unary_adding_operator
simple_expression 4.4

unconstrained_array_definition
array_type_definition 3.6

underline
based_numeral 2.4.2
identifier 2.3
numeral 2.4.1

use_clause
context_item 10.1.2

use_package_clause
use_clause 8.4

with_clause
context_item 10.1.2

AVARM;1.0 Syntax Summary

227 5 October 1995

References

[ARTEWG 87] ACM Special Interest Group on Ada, Runtime Environment Working Group.
Catalogue of Ada Runtime Implementation Dependencies.
ACM, 1987.

[Carre 88] B. A. Carre and T. J. Jennings.
SPARK - The SPADE Ada Kernel (Version 1.0).
Technical Report, University of Southampton, March, 1988.

[Courant 83] Ada Project.
Ada/Ed Semantic Actions (Version 1.1).
Technical Report, Courant Institute, New York University, 1983.

[Courant 84] Ada Project.
Executable Semantic Model for Ada (Version 1.4).
Technical Report, Courant Institute, New York University, 1984.

[DDC 87] The Draft Formal Definition of Ada
Denmark, 1987.

[DoD 83] Reference Manual for the Ada Programming Language
United States Department of Defense, 1983.
ANSI/MIL-STD-1815 A.

[ISO 94] Annotated Ada Reference Manual, Language and Standard Libraries, Version 6.0
ISO/IEC, Cambridge, Massachusetts, 1994.
ISO/IEC JTC1/SC22 WG9 N 193.

[Kaufmann 94] M.J. Kaufmann, J S. Moore.
Design Goals of ACL2.
Technical Report 101, Computational Logic, Inc., August, 1994.

[Luckham 90] D. Kapur (editor).
Texts and Monographs in Computer Science: Programming With Specifications. An

Introduction to ANNA, A Language for Annotating Ada Programs.
Springer-Verlag, 1990.

[Marsh 94] William Marsh.
Formal Semantics of SPARK, Static Semantics.
Technical Report, Program Validation Ltd., October, 1994.

[O’Neill 94] Ian O’Neill.
Formal Semantics of SPARK, Dynamic Semantics.
Technical Report, Program Validation Ltd., October, 1994.

[Polak 88] Wolfgang Polak.
A Technique for Defining Predicate Transformers.
Technical Report 17-4, Odyssey Research Associates, Ithaca, NY, October, 1988.

[Ramsey 88] Norman Ramsey.
Developing Formally Verified Ada Programs.
Technical Report 17-3, Odyssey Research Associates, Ithaca, NY, October, 1988.

[Smith 92] M.K. Smith.
The AVA Reference Manual.
Technical Report 64, Computational Logic, Inc., February, 1992.
Derived from ANSI/MIL-STD-1815A-1983.

Syntax Summary AVARM;1.0

5 October 1995 228

[Smith 95] M.K. Smith.
Dynamic Formal Semantics for AVA 95.
Technical Report 112, Computational Logic, Inc., September, 1995.

AAVARM;5.0 & operator / BMP

229 Draft 5 October 1995 Index

Index
& operator 4.4(1), 4.5.3(3)

* operator 4.4(1), 4.5.5(1)
** operator 4.4(1), 4.5.5(1)

+ operator 4.4(1), 4.5.3(1), 4.5.4(1)

- operator 4.4(1), 4.5.3(1), 4.5.4(1)

/ operator 4.4(1), 4.5.5(1)
/= operator 4.4(1), 4.5.2(1)

10646-1:1993, ISO/IEC standard 1.2(7)

6429:1992, ISO/IEC standard 1.2(4)
646:1991, ISO/IEC standard 1.2(1)

8859-1:1987, ISO/IEC standard 1.2(5)

< operator 4.4(1), 4.5.2(1)
<= operator 4.4(1), 4.5.2(1)

= operator 4.4(1), 4.5.2(1)

> operator 4.4(1), 4.5.2(1)
>= operator 4.4(1), 4.5.2(1)

@ operator 4.10(2)

abnormal completion 7.6.1(2)
abs operator 4.4(1), 4.5.6(1)
absolute value 4.4(1), 4.5.6(1)
acceptable interpretation 8.6(14)
access paths

distinct 6.2(11)
ACID M(2)
ACK I.5(4)
actual parameter

for a formal parameter 6.4.1(3)
actual subtype 3.3(23)

of an object 3.3.1(10)
actual_parameter_part 6.4(4)

used 6.4(2), 6.4(3), N(2)
Ada A.2(2)

library unit A.2(2)
Ada calling convention 6.3.1(3)
Ada Commentary Integration Document

M(2)
Ada Issue M(3)
Ada Rapporteur Group M(4)
Ada.IO_Exceptions

library unit A.13(3)
aggregate 4.3(1), 4.3(2)

See also composite type 3.2(2)
used 4.4(7), 4.7(2), N(2)

AI M(3)
aliasing

See distinct access paths 6.2(11)
all operator 4.10(2)
ambiguous 8.6(30)
ambiguous grammar 1.1.4(14)
ampersand 2.1(16)
ampersand operator 4.4(1), 4.5.3(3)
ancestor

of a library unit 10.1.1(11)
of a type 3.4.1(10)

ultimate 3.4.1(10)
and operator 4.4(1), 4.5.1(2)
and then (short-circuit control form) 4.4(1),

4.5.1(1)
Annex

informative 1.1.2(19)
normative 1.1.2(15)
Specialized Needs 1.1.2(7)

annotation_line 2.10(6)
apostrophe 2.1(16)
applicable index constraint 4.3.3(10)
application areas 1.1.2(7)
apply

to a loop_statement by an exit_statement
5.7(4)

to a callable construct by a return_
statement 6.5(5)

ARG M(4)
arglist 3.12(14)

used 3.12(13), N(2)
array 3.6(1)
array component expression 4.3.3(6)
array indexing

See indexed_component 4.1.1(1)
array type 3.6(1), M(5)
array_aggregate 4.3.3(2)

used 4.3(2), N(2)
array_type_definition 3.6(2)

used 3.2.1(4), N(2)
ASCII A.1(38), I.5(2)

package physically nested within the decla-
ration of Standard A.1(38)

assert_annotation 3.12(7)
used 5.1(4), N(2)

assign
See assignment operation 5.2(3)

assigning back of parameters 6.4.1(17)
assignment

user-defined 7.6(1)
assignment operation 5.2(3), 5.2(12), 7.6(13)

during elaboration of an object_declaration
3.3.1(20)

during evaluation of a parameter_
association 6.4.1(11)

during evaluation of an aggregate 4.3(5)
during evaluation of concatenation

4.5.3(10)
during execution of a for loop 5.5(10)
during execution of an assignment_

statement 5.2(12)
during parameter copy back 6.4.1(17)

assignment_statement 5.2(2)
used 5.1(4), N(2)

associated components
of a record_component_association

4.3.1(11)
assumptions

storage error 11.1(6)
asterisk 2.1(16)
attribute 4.1.4(1), J(1)
attributes

Base 3.5(15), J(1)
First 3.5(12), 3.6.2(2), J(5), J(7)
First(N) 3.6.2(3), J(3)
Image 3.5(34), J(9)
Last 3.5(13), 3.6.2(4), J(15), J(17)

Last(N) 3.6.2(5), J(13)
Length 3.6.2(8), J(21)
Length(N) 3.6.2(9), J(19)
Pos 3.5.5(1), J(23)
Pred 3.5(24), J(27)
Range 3.6.2(6), J(33)
Range(N) 3.6.2(7), J(31)
Succ 3.5(21), J(35)
Val 3.5.5(4), J(39)
Value 3.5(51), J(43)

attribute_designator 4.1.4(3)
used 4.1.4(2), N(2)

attribute_reference 4.1.4(2)
used 4.1(2), N(2)

AVA Implementation Requirement 3.5(10),
3.11(11), 4.1.1(8), 4.3(5), 4.3.1(19),
4.3.3(22), 4.5(14), 4.5.2(27), 6.2(2),
6.4.1(17), 10.1.4(6), 10.2(13)

ava_compound_statement 5.1(6)
AVA_IO A.6(1)
avoid overspecifying environmental issues

10(3)
axiom_decl 3.12(11)

used 3.1(3), N(2)

Backus-Naur Form (BNF)
complete listing N(1)
cross reference N(2)
notation 1.1.4(3)
under Syntax heading 1.1.2(26)

base 2.4.2(3), 2.4.2(6)
base 16 literal 2.4.2(1)

used 2.4.2(2), N(2)
base 2 literal 2.4.2(1)
base 8 literal 2.4.2(1)
Base attribute 3.5(15), J(1)
base range

of a scalar type 3.5(7)
of an enumeration type 3.5(7)

base subtype
of a type 3.5(15)

based_literal 2.4.2(2)
used 2.4(2), N(2)

based_numeral 2.4.2(4)
used 2.4.2(2), N(2)

basic_declaration 3.1(3)
used 3.11(4), N(2)

basic_declarative_item 3.11(4)
used 3.11(3), 7.1(3), N(2)

belong
to a range 3.5(4)
to a subtype 3.2(8)

bibliography 1.2(1)
binary

literal 2.4.2(1)
binary adding operator 4.5.3(1)
binary literal 2.4.2(1)
binary operator 4.5(10)
binary_adding_operator 4.5(4)

used 4.4(4), N(2)
bit string

See logical operators on boolean arrays
4.5.1(2)

Bit_Vector 3.6(26)
block_statement 5.6(2)

used 5.1(5), N(2)

BNF (Backus-Naur Form) / Changes by comment number AAVARM;5.0

Index 5 October 1995 Draft 230

BMP 3.5.2(2)
BNF (Backus-Naur Form)

complete listing N(1)
cross reference N(2)
notation 1.1.4(3)
under Syntax heading 1.1.2(26)

body 3.11(5)
used 3.11(3), N(2)

Boolean 3.5.3(1), A.1(5)
type in Standard A.1(5)

boolean type 3.5.3(1)
bounded (run-time) errors 1.1.2(31), 6.2(3)
bounded error 1.1.2(31), 1.1.5(8)
bounds

of a discrete_range 3.6.1(6)
of an array 3.6(13)
of the index range of an array_aggregate

4.3.3(24)
box

compound delimiter 3.6(15)
BS I.5(4)
Buffer_Size 3.5.4(33)
by copy parameter passing 6.2(2)
by reference parameter passing 6.2(2)

call 6(2)
callable construct 6(2)
callable entity 6(2)
calling convention 6.3.1(2)

Ada 6.3.1(3)
Intrinsic 6.3.1(4)

CAN I.5(4)
case insensitive 2.3(6)
case_statement 5.4(2)

used 5.1(5), N(2)
case_statement_alternative 5.4(3)

used 5.4(2), N(2)
cast

See type conversion 4.6(1)
catch (an exception)

See handle 11(1)
catenation operator

See concatenation operator 4.4(1),
4.5.3(3)

Changes by comment number
[93-3064.f] 6.4.1(17)
[93-3084.a] N(1)
[93-3085.a] 11.3(5)
[93-3086.a] 3.5.2(4)
[93-3086.b] 1.1.2(25)
[93-3086.c] 1.1.5(4)
[93-3088.a] 10.2(7)
[93-3104.a] 3.3.1(8)
[93-3111.a] A.1(37)
[93-3114.b] 7.6(1)
[93-3115.a] 10.1(3)
[93-3116.b] 7.6(1)
[93-3117.a] 1.1.2(25)
[93-3125.a] 2.3(4)
[93-3128.a] 2.3(4)
[93-3131.a] 2.3(4)
[93-3133.a] 2.3(4)
[93-3137.a] 2.3(4)
[93-3138.a] 2.3(4)
[93-3139.a] 2.3(4)
[93-3148.a] 2.3(4)
[93-3155.a] 2.3(4)
[93-3158.a] 2.3(4)
[93-3159.a] 2.3(4)

[93-3164.a] 7.6(1)
[93-3167.a] 2.3(4)
[93-3169.a] 2.3(4)
[93-3184.a] 2.3(4)
[93-3201.a] A.1(52)
[93-3207.a] A.1(52)
[93-3208.a] I.5(9)
[93-3211.a] 3.2.3(7)
[93-3217.a] 3.2.3(7)
[93-3222.a] 3.2.3(7)
[93-3232.a] 3.2.3(7)
[93-3246.a] 7.6(1)
[93-3248.a] 3.5.4(13), A.1(14), A.1(56)
[93-3274.a] 1.1.2(25)
[93-3275.a] 1.1.2(25)
[93-3340.a] 4.6(27), 5.4(7), 5.4(19)
[93-3348.b] 3.3(13)
[93-3348.c] 3.3(14)
[93-3348.f] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[93-3348.g] 3.5.1(11)
[93-3348.h] 3.5.1(11), 3.6(21), 3.8(16)
[93-3348.l] 3.6.2(17)
[93-3348.r] 5.4(5)
[93-3348.x] 3.5(9)
[93-3348.z] 3.11(15)
[93-3349.a] 3.5.1(7), 3.11(15), 3.11.1(10),

13.14(18)
[93-3351.a] 3.6.3(6)
[93-3354.a] 7.3(15)
[93-3361.a] 1.1.5(11)
[93-3362.a] 3.2(4), 6.4.1(11)
[93-3363.a] 3.4.1(2)
[93-3363.b] 3.5(4)
[93-3366.a] 3.8(6), 3.8(17), 3.8(31)
[93-3367.e] 4.6(61)
[93-3368.a] 4.3(5)
[93-3369.a] 4.3.1(10)
[93-3370.a] 7.6.1(1), 8.6(1), 8.6(20)
[93-3373.a] 3.6.3(4)
[93-3405.a] 7.6(1)
[93-3405.b] 7.6(1)
[93-3417.m] A.1(48)
[93-3417.p] A.1(38), I.5(0)
[93-3425.a] A.1(14)
[93-3439.a] 1.1.5(11)
[93-3447.a] 7.4(14)
[93-3448.a] 3.5(12), 3.5.5(1)
[93-3453.a] 7.6(1)
[93-3457.a] 5.2(1), 7.6(1)
[93-3459.a] 7.6(15)
[93-3460.a] 5.2(3), 7.6(15)
[93-3461.a] 7.6(1)
[93-3473.a] 7.6(1)
[93-3474.a] A(1)
[93-3475.a] A.1(37)
[93-3480.a] 7.6(1)
[93-3481.a] 7.6(1)
[93-3482.a] 7.6(1)
[93-3495.a] 1.1.3(4)
[93-3505.b] 7.6(1)
[93-3507.a] 7.6(1)
[93-3510.a] 8.3(3), 8.3(4)
[93-3511.a] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[93-3517.a] 3.5(7)
[93-3522.a] 7.6(1)
[93-3527.c] 7.6(1)
[93-3527.d] 7.6(1)

[93-3527.e] 5.2(12)
[93-3528.a] 7.6(15)
[93-3542.a] 3.2.1(17)
[93-3545.a] 2.6(3), 2.7(2)
[93-3546.d] 2.2(15)
[93-3546.t] 4.5.2(39)
[93-3546.x] 6.3.1(11)
[93-3546.zb] 7.6(1)
[93-3557.a] 2.3(4)
[93-3568.a] 7.2(1)
[93-3569.a] 13.14(3)
[93-3574.a] 4.6(58), 6.4.1(17)
[93-3614.a] 5.2(3)
[93-3722.b] 1.1.2(25)
[94-2.a] 7.6(11)
[94-3509.a] 3.2.3(7)
[94-3586.a] 10(2), 10.1.4(9)
[94-3589.a] 2.1(15), 2.2(1)
[94-3592.d] 1(1)
[94-3592.e] 1.3(1)
[94-3592.h] 1.3(1)
[94-3592.l] A.1(37)
[94-3592.m] 2.3(4)
[94-3592.p] 2.4.1(9)
[94-3592.q] 2.4.2(10)
[94-3592.u] 3.5.2(2)
[94-3613.a] 3.5.4(8)
[94-3619.a] 6.2(13)
[94-3626.a] 13.14(2)
[94-3638.a] 4.9(47)
[94-3643.a] 13.14(2)
[94-3645.a] 5.5(12)
[94-3650.a] 2.3(4)
[94-3650.f] A.1(37)
[94-3650.g] A.6(0)
[94-3657.a] 6.3.1(15)
[94-3661.e] 7.6(1)
[94-3661.f] 7.6(1)
[94-3662.a] 7.6(1)
[94-3665.a] 7.6(15)
[94-3667.a] 1.1.2(25), 1.1.2(38),

1.1.2(39), 1.1.4(4), 1.1.5(8), 2.4.1(3),
3.5.2(2)

[94-3672.a] 2.1(15), 2.1(16)
[94-3677.a] 4.5.1(2), 4.5.2(1), 4.5.2(6),

4.5.2(8), 4.5.3(1), 4.5.4(1), 4.5.6(1),
4.5.6(3), 4.5.6(7)

[94-3678.c] 11.3(5)
[94-3683.a] 3.1(1), 3.1(6), 3.2.2(13),

3.3(1), 3.5.4(11), 3.5.5(16), 5.3(6),
8.2(1), 8.6(15)

[94-3685.a] 2.1(15)
[94-3687.a] 3.2.3(7)
[94-3691.a] 3.2.3(7)
[94-3693.a] 4.5.2(1)
[94-3695.a] 4.5.2(1)
[94-3696.a] 4.5.2(1)
[94-3711.a] 8.3(14)
[94-3713.a] 7.6(1)
[94-3718.a] 1.1.2(25)
[94-3722.a] (0)
[94-3722.c] 3.5.2(4)
[94-3722.d] 2.3(4)
[94-3722.i] 7.6(1)
[94-3722.j] 4.6(28)
[94-3722.r] 11.3(5)
[94-3722.t] 3.2.3(7)
[94-3722.v] 3.2.3(7)
[94-3722.zp] 1.1.5(4)

AAVARM;5.0 Changes by paragraph number / Changes by paragraph number

231 Draft 5 October 1995 Index

[94-3722.zq] 2.2(2), 2.2(15)
[94-3722.zr] 3.3.1(8), 8.6(15), 13.14(1)
[94-3722.zt] 3.6.3(7)
[94-3722.zzj] 3.3(13)
[94-3722.zzl] 3.5.3(1), 3.5.4(13), 3.6.3(2)
[94-3722.zzzg] A.1(52)
[94-3722.zzzz] A.1(37), I.5(9)
[94-3747.a] 2.3(4)
[94-3754.a] 2.3(4)
[94-3757.a] 7.6(1)
[94-3761.a] 3.3(3)
[94-3763.a] 3.2.3(1), 3.2.3(2)
[94-3764.a] 3.2(4)
[94-3766.a] 7.6(1)
[94-3767.a] 2.3(4)
[94-3770.a] 7.6(1)
[94-3771.a] 2.3(4)
[94-3772.a] 2.3(4)
[94-3789.a] I(1)
[94-3792.a] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-3803.a] 1.1.2(25), 3.3.1(32), 3.6.3(7)
[94-3810.a] 4.6(28)
[94-3810.d] 7.6(1)
[94-3813.a] 8.3(22)
[94-3816.a] 2.3(4)
[94-3819.a] 1.1.2(25), 1.1.2(38),

1.1.2(39), 1.1.3(1), N(1)
[94-3819.e] 2.3(4)
[94-3819.f] 4.6(28)
[94-3820.a] 2.3(4)
[94-3856.c] 4.5.5(35)
[94-3901.a] 3.5.1(11)
[94-3901.d] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-3909.a] 13.14(3), 13.14(4)
[94-3916.a] 13.14(3), 13.14(4)
[94-3926.f] 3.5.2(2)
[94-3967.a] 7.6(1)
[94-4018.a] 8.3(3), 8.3(4), 8.3(10),

8.3(17), 8.3(19), 8.3(20)
[94-4020.a] 10.2(1)
[94-4034.b] 2.3(4), 2.3(8), 2.4.1(3),

2.4.1(9), 2.4.2(4)
[94-4034.c] 7.6(1), 7.6(4)
[94-4034.d] A.10.3(0)
[94-4034.f] 13.14(15)
[94-4034.h] 1.1.2(25), 1.3(1), 13.13(0),

A(4)
[94-4034.p] A.1(38), I.5(0)
[94-4034.v] 2.1(15), 2.2(1)
[94-4034.zb] 1.1.2(25)
[94-4034.zd] 1.1.3(17), 1.1.3(20)
[94-4041.a] 4.1.4(15)
[94-4045.a] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-4054.a] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-4082.b] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-4088.a] 5.2(1)
[94-4089.a] 8.2(2)
[94-4090.a] 3.4.1(6), 8.6(21)
[94-4093.e] 4.9(29)
[94-4093.f] 7.1(11), 7.3(4), 7.4(3), 7.4(4)
[94-4093.g] 8.6(16)
[94-4093.h] 8.6(28), 8.6(30)
[94-4093.k] 8.3(23), 8.4(6), 10.1.1(8),

10.1.2(5)

[94-4093.l] 10.1.1(15)
[94-4093.n] 10.1.1(8), 10.1.4(4)
[94-4093.o] 10.1.1(14)
[94-4099.c] 7.2(4)
[94-4102.a] 8.6(6)
[94-4103.a] 8.5.3(4)
[94-4108.a] A.2(4)
[94-4114.a] 4.9.1(1)
[94-4127.a] 3.3(24), 3.5(56), 3.5.1(11),

4.4(11)
[94-4129.a] 7.3(15), 7.3.1(10)
[94-4142.a] 8.5.4(6)
[94-4146.a] 6.1(23), 8.6(26)
[94-4147.a] 6.1(23), 8.6(26)
[94-4149.a] 6.1(23), 8.6(26)
[94-4161.a] 4.2(3), 4.9(15)
[94-4164.a] 8.2(12)
[94-4170.a] 3.8(6), 3.8(17), 3.8(31)
[94-4173.a] 3.5(6)
[94-4174.a] 3.5(6)
[94-4177.a] 8.3(22)
[94-4185.a] 1(2)
[94-4196.a] 1.1.2(25)
[94-4197.a] 1.1.3(17)
[94-4198.a] 7.3.1(1)
[94-4214.g] 3.2.1(11)
[94-4231.a] 10.2(1)
[94-4234.c] 1.3(1)
[94-4234.n] 10.1.1(1)
[94-4235.a] 7.2(4)
[94-4239.a] 3.2(1)
[94-4239.b] 3.2(2)
[94-4242.a] 3.2.3(1)
[94-4243.a] 3.1(12)
[94-4244.a] 4.3.3(32), 4.3.3(36)
[94-4253.a] 3.3(14)
[94-4254.b] 3.3(23)
[94-4254.d] 3.3(24)
[94-4263.a] 3.3.1(8)
[94-4281.c] 4.2(12)
[94-4281.e] 4.6(1)
[94-4282.a] 1.1.2(31), 1.1.2(32)
[94-4284.a] 3.2.2(9), 3.2.2(14)
[94-4284.b] 3.3(14), 3.3(26)
[94-4284.c] 3.3(23)
[94-4289.c] 4.3.1(11), 4.5.2(3), 6.4.1(3)
[94-4289.d] 6.3.1(11)
[94-4302.a] 4.9(19), 4.9(46)
[94-4304.a] 4.3.1(16)
[94-4305.a] 2.3(7), 2.4.1(8), 2.4.2(9),

2.5(5), 2.6(9), 2.7(5), 3.6.3(5), 4.2(13),
4.5.2(35), 4.5.3(12), 4.5.5(31), 4.7(7),
4.9(41), 5.3(7), 5.4(15), 5.6(6), 5.7(7)

[94-4314.b] 6.2(11)
[94-4314.c] 6.4.1(5)
[94-4314.d] 6.5(23)
[94-4322.a] 7.6(1)
[94-4322.b] 7.6.1(2), 7.6.1(3)
[94-4322.c] 7.6.1(12)
[94-4324.b] 8.6(2), 8.6(14)
[94-4324.c] 8.6(20)
[94-4336.a] 4.6(5)
[94-4336.b] 4.9(5), 4.9(24)
[94-4339.a] 4.3(5)
[94-4340.a] 4.3.1(1)
[94-4340.b] 4.3.1(1)
[94-4340.c] 4.3.1(12)
[94-4386.a] 10.1.1(1), 10.1.1(12),

10.1.2(1), 10.1.2(6), 10.1.2(9),
10.1.4(7), 10.1.6(2), 10.1.6(3)

[94-4392.a] 11.4.2(1)
[94-4404.a] 8.3(22)
[94-4419.a] 1.1.3(12), 1.1.4(3)
[AI-00114] 4.9(26)
[LSN-1067] 2.3(4), 2.3(8), 2.4.1(9),

2.4.2(4)
[LSN-1068] 7.6(1), 7.6(4)
[LSN-1071] 13.14(15)
[LSN-1073] 1.3(1), A(4)
[LSN-1076] 3.5.4(8), 3.5.4(15), 4.2(10),

4.6(28), 4.6(30)
[LSN-1084] 4.3.1(10)

Changes by paragraph number
(0) [94-3722.a]
1(1) [94-3592.d]
1(2) [94-4185.a]
1.1.2(25) [93-3117.a], [93-3722.b],

[94-3819.a], [94-3803.a], [93-3086.b],
[93-3274.a], [93-3275.a], [94-3718.a],
[94-4034.zb], [94-4034.h], [94-3667.a],
[94-4196.a]

1.1.2(31) [94-4282.a]
1.1.2(32) [94-4282.a]
1.1.2(38) [94-3667.a], [94-3819.a]
1.1.2(39) [94-3667.a], [94-3819.a]
1.1.3(1) [94-3819.a]
1.1.3(12) [94-4419.a]
1.1.3(17) [94-4034.zd], [94-4197.a]
1.1.3(20) [94-4034.zd]
1.1.3(4) [93-3495.a]
1.1.4(3) [94-4419.a]
1.1.4(4) [94-3667.a]
1.1.5(11) [93-3361.a], [93-3439.a]
1.1.5(4) [93-3086.c], [94-3722.zp]
1.1.5(8) [94-3667.a]
1.3(1) [94-4034.h], [LSN-1073],

[94-3592.h], [94-3592.e], [94-4234.c]
10(2) [94-3586.a]
10.1(3) [93-3115.a]
10.1.1(1) [94-4386.a], [94-4234.n]
10.1.1(12) [94-4386.a]
10.1.1(14) [94-4093.o]
10.1.1(15) [94-4093.l]
10.1.1(8) [94-4093.k], [94-4093.n]
10.1.2(1) [94-4386.a]
10.1.2(5) [94-4093.k]
10.1.2(6) [94-4386.a]
10.1.2(9) [94-4386.a]
10.1.4(4) [94-4093.n]
10.1.4(7) [94-4386.a]
10.1.4(9) [94-3586.a]
10.1.6(2) [94-4386.a]
10.1.6(3) [94-4386.a]
10.2(1) [94-4231.a], [94-4020.a]
10.2(7) [93-3088.a]
11.3(5) [94-3722.r], [94-3678.c],

[93-3085.a]
11.4.2(1) [94-4392.a]
13.13(0) [94-4034.h]
13.14(1) [94-3722.zr]
13.14(15) [94-4034.f], [LSN-1071]
13.14(18) [93-3349.a]
13.14(2) [94-3626.a], [94-3643.a]
13.14(3) [93-3569.a], [94-3909.a],

[94-3916.a]
13.14(4) [94-3909.a], [94-3916.a]
2.1(15) [94-3589.a], [94-3672.a],

[94-3685.a], [94-4034.v]
2.1(16) [94-3672.a]

Changes by paragraph number / Changes by paragraph number AAVARM;5.0

Index 5 October 1995 Draft 232

2.2(1) [94-3589.a], [94-4034.v]
2.2(15) [94-3722.zq], [93-3546.d]
2.2(2) [94-3722.zq]
2.3(4) [94-4034.b], [LSN-1067],

[94-3722.d], [94-3747.a], [94-3754.a],
[94-3767.a], [94-3771.a], [94-3772.a],
[94-3816.a], [94-3820.a], [94-3650.a],
[93-3557.a], [93-3137.a], [93-3169.a],
[93-3125.a], [93-3128.a], [93-3131.a],
[93-3133.a], [93-3139.a], [93-3148.a],
[93-3155.a], [93-3158.a], [93-3167.a],
[93-3184.a], [93-3159.a], [94-3819.e],
[93-3138.a], [94-3592.m]

2.3(7) [94-4305.a]
2.3(8) [94-4034.b], [LSN-1067]
2.4.1(3) [94-4034.b], [94-3667.a]
2.4.1(8) [94-4305.a]
2.4.1(9) [94-3592.p], [94-4034.b],

[LSN-1067]
2.4.2(10) [94-3592.q]
2.4.2(4) [94-4034.b], [LSN-1067]
2.4.2(9) [94-4305.a]
2.5(5) [94-4305.a]
2.6(3) [93-3545.a]
2.6(9) [94-4305.a]
2.7(2) [93-3545.a]
2.7(5) [94-4305.a]
3.1(1) [94-3683.a]
3.1(12) [94-4243.a]
3.1(6) [94-3683.a]
3.11(15) [93-3348.z], [93-3349.a]
3.11.1(10) [93-3349.a]
3.2(1) [94-4239.a]
3.2(2) [94-4239.b]
3.2(4) [94-3764.a], [93-3362.a]
3.2.1(11) [94-4214.g]
3.2.1(17) [93-3542.a]
3.2.2(13) [94-3683.a]
3.2.2(14) [94-4284.a]
3.2.2(9) [94-4284.a]
3.2.3(1) [94-4242.a], [94-3763.a]
3.2.3(2) [94-3763.a]
3.2.3(7) [93-3211.a], [93-3217.a],

[94-3722.v], [94-3722.t], [94-3509.a],
[93-3222.a], [93-3232.a], [94-3687.a],
[94-3691.a]

3.3(1) [94-3683.a]
3.3(13) [93-3348.b], [94-3722.zzj]
3.3(14) [93-3348.c], [94-4253.a],

[94-4284.b]
3.3(23) [94-4284.c], [94-4254.b]
3.3(24) [94-4045.a], [94-3792.a],

[94-4054.a], [93-3511.a], [94-3901.d],
[93-3348.f], [94-4127.a], [94-4082.b],
[94-4254.d]

3.3(26) [94-4284.b]
3.3(3) [94-3761.a]
3.3.1(32) [94-3803.a]
3.3.1(8) [94-4263.a], [93-3104.a],

[94-3722.zr]
3.4.1(2) [93-3363.a]
3.4.1(6) [94-4090.a]
3.5(12) [93-3448.a]
3.5(4) [93-3363.b]
3.5(56) [94-4045.a], [94-3792.a],

[94-4054.a], [93-3511.a], [94-3901.d],
[93-3348.f], [94-4127.a], [94-4082.b]

3.5(6) [94-4173.a], [94-4174.a]
3.5(7) [93-3517.a]

3.5(9) [93-3348.x]
3.5.1(11) [93-3348.g], [93-3348.h],

[94-3901.a], [94-4045.a], [94-3792.a],
[94-4054.a], [93-3511.a], [94-3901.d],
[93-3348.f], [94-4127.a], [94-4082.b]

3.5.1(7) [93-3349.a]
3.5.2(2) [94-3592.u], [94-3926.f],

[94-3667.a]
3.5.2(4) [93-3086.a], [94-3722.c]
3.5.3(1) [94-3722.zzl]
3.5.4(11) [94-3683.a]
3.5.4(13) [94-3722.zzl], [93-3248.a]
3.5.4(15) [LSN-1076]
3.5.4(8) [LSN-1076], [94-3613.a]
3.5.5(1) [93-3448.a]
3.5.5(16) [94-3683.a]
3.6(21) [93-3348.h]
3.6.2(17) [93-3348.l]
3.6.3(2) [94-3722.zzl]
3.6.3(4) [93-3373.a]
3.6.3(5) [94-4305.a]
3.6.3(6) [93-3351.a]
3.6.3(7) [94-3803.a], [94-3722.zt]
3.8(16) [93-3348.h]
3.8(17) [93-3366.a], [94-4170.a]
3.8(31) [93-3366.a], [94-4170.a]
3.8(6) [93-3366.a], [94-4170.a]
4.1.4(15) [94-4041.a]
4.2(10) [LSN-1076]
4.2(12) [94-4281.c]
4.2(13) [94-4305.a]
4.2(3) [94-4161.a]
4.3(5) [93-3368.a], [94-4339.a]
4.3.1(1) [94-4340.a], [94-4340.b]
4.3.1(10) [93-3369.a], [LSN-1084]
4.3.1(11) [94-4289.c]
4.3.1(12) [94-4340.c]
4.3.1(16) [94-4304.a]
4.3.3(32) [94-4244.a]
4.3.3(36) [94-4244.a]
4.4(11) [94-4045.a], [94-3792.a],

[94-4054.a], [93-3511.a], [94-3901.d],
[93-3348.f], [94-4127.a], [94-4082.b]

4.5.1(2) [94-3677.a]
4.5.2(1) [94-3693.a], [94-3695.a],

[94-3696.a], [94-3677.a]
4.5.2(3) [94-4289.c]
4.5.2(35) [94-4305.a]
4.5.2(39) [93-3546.t]
4.5.2(6) [94-3677.a]
4.5.2(8) [94-3677.a]
4.5.3(1) [94-3677.a]
4.5.3(12) [94-4305.a]
4.5.4(1) [94-3677.a]
4.5.5(31) [94-4305.a]
4.5.5(35) [94-3856.c]
4.5.6(1) [94-3677.a]
4.5.6(3) [94-3677.a]
4.5.6(7) [94-3677.a]
4.6(1) [94-4281.e]
4.6(27) [93-3340.a]
4.6(28) [LSN-1076], [94-3722.j],

[94-3810.a], [94-3819.f]
4.6(30) [LSN-1076]
4.6(5) [94-4336.a]
4.6(58) [93-3574.a]
4.6(61) [93-3367.e]
4.7(7) [94-4305.a]
4.9(15) [94-4161.a]

4.9(19) [94-4302.a]
4.9(24) [94-4336.b]
4.9(26) [AI-00114]
4.9(29) [94-4093.e]
4.9(41) [94-4305.a]
4.9(46) [94-4302.a]
4.9(47) [94-3638.a]
4.9(5) [94-4336.b]
4.9.1(1) [94-4114.a]
5.2(1) [93-3457.a], [94-4088.a]
5.2(12) [93-3527.e]
5.2(3) [93-3460.a], [93-3614.a]
5.3(6) [94-3683.a]
5.3(7) [94-4305.a]
5.4(15) [94-4305.a]
5.4(19) [93-3340.a]
5.4(5) [93-3348.r]
5.4(7) [93-3340.a]
5.5(12) [94-3645.a]
5.6(6) [94-4305.a]
5.7(7) [94-4305.a]
6.1(23) [94-4146.a], [94-4147.a],

[94-4149.a]
6.2(11) [94-4314.b]
6.2(13) [94-3619.a]
6.3.1(11) [94-4289.d], [93-3546.x]
6.3.1(15) [94-3657.a]
6.4.1(11) [93-3362.a]
6.4.1(17) [93-3574.a], [93-3064.f]
6.4.1(3) [94-4289.c]
6.4.1(5) [94-4314.c]
6.5(23) [94-4314.d]
7.1(11) [94-4093.f]
7.2(1) [93-3568.a]
7.2(4) [94-4099.c], [94-4235.a]
7.3(15) [93-3354.a], [94-4129.a]
7.3(4) [94-4093.f]
7.3.1(1) [94-4198.a]
7.3.1(10) [94-4129.a]
7.4(14) [93-3447.a]
7.4(3) [94-4093.f]
7.4(4) [94-4093.f]
7.6(1) [94-4322.a], [93-3546.zb],

[93-3246.a], [94-4034.c], [LSN-1068],
[94-3967.a], [94-3757.a], [94-3770.a],
[93-3461.a], [93-3457.a], [93-3114.b],
[93-3116.b], [93-3482.a], [93-3505.b],
[93-3507.a], [94-3766.a], [94-3661.f],
[94-3662.a], [94-3713.a], [94-3661.e],
[94-3722.i], [93-3453.a], [93-3473.a],
[93-3480.a], [93-3481.a], [93-3522.a],
[93-3527.d], [93-3164.a], [93-3405.b],
[93-3405.a], [94-3810.d], [93-3527.c]

7.6(11) [94-2.a]
7.6(15) [93-3459.a], [93-3460.a],

[93-3528.a], [94-3665.a]
7.6(4) [94-4034.c], [LSN-1068]
7.6.1(1) [93-3370.a]
7.6.1(12) [94-4322.c]
7.6.1(2) [94-4322.b]
7.6.1(3) [94-4322.b]
8.2(1) [94-3683.a]
8.2(12) [94-4164.a]
8.2(2) [94-4089.a]
8.3(10) [94-4018.a]
8.3(14) [94-3711.a]
8.3(17) [94-4018.a]
8.3(19) [94-4018.a]
8.3(20) [94-4018.a]

AAVARM;5.0 character / defining name

233 Draft 5 October 1995 Index

8.3(22) [94-3813.a], [94-4177.a],
[94-4404.a]

8.3(23) [94-4093.k]
8.3(3) [93-3510.a], [94-4018.a]
8.3(4) [93-3510.a], [94-4018.a]
8.4(6) [94-4093.k]
8.5.3(4) [94-4103.a]
8.5.4(6) [94-4142.a]
8.6(1) [93-3370.a]
8.6(14) [94-4324.b]
8.6(15) [94-3722.zr], [94-3683.a]
8.6(16) [94-4093.g]
8.6(2) [94-4324.b]
8.6(20) [93-3370.a], [94-4324.c]
8.6(21) [94-4090.a]
8.6(26) [94-4146.a], [94-4147.a],

[94-4149.a]
8.6(28) [94-4093.h]
8.6(30) [94-4093.h]
8.6(6) [94-4102.a]
A(1) [93-3474.a]
A(4) [94-4034.h], [LSN-1073]
A.1(14) [93-3248.a], [93-3425.a]
A.1(37) [94-3722.zzzz], [93-3475.a],

[93-3111.a], [94-3650.f], [94-3592.l]
A.1(38) [93-3417.p], [94-4034.p]
A.1(48) [93-3417.m]
A.1(52) [94-3722.zzzg], [93-3207.a],

[93-3201.a]
A.1(56) [93-3248.a]
A.10.3(0) [94-4034.d]
A.2(4) [94-4108.a]
A.6(0) [94-3650.g]
I(1) [94-3789.a]
I.5(0) [93-3417.p], [94-4034.p]
I.5(9) [94-3722.zzzz], [93-3208.a]
N(1) [93-3084.a], [94-3819.a]

character 2.1(2), 3.5.2(2), A.1(37)
type in Standard A.1(37)
used 2.7(2), 2.10(6), N(2)

character set 2.1(1)
character type 3.5.2(1), M(6)
characteristics 7.3(15)
characters

used 2.7(3)
character_literal 2.5(2)

used 3.5.1(4), 4.1(2), N(2)
check, language-defined

Discriminant_Check 4.6(51), 4.7(5)
Division_Check 3.5.4(20), 4.5.5(22)
Elaboration_Check 3.11(10)
Index_Check 4.1.1(8), 4.3.3(30), 4.5.3(8),

4.6(51), 4.7(5)
Length_Check 4.5.1(8), 4.6(37)
Overflow_Check 3.5.4(19), 4.4(12),

5.4(13)
Range_Check 3.2.2(12), 3.5(24), 3.5(27),

3.5(55), 3.5.5(7), 4.2(10), 4.3.3(28),
4.5.1(8), 4.5.6(6), 4.5.6(13), 4.6(28),
4.6(38), 4.6(51), 4.7(5), J(31), J(39)

Storage_Check 11.1(6)
child

of a library unit 10.1.1(1)
choice

of an exception_handler 11.2(5)
class

See also package 7(1)
of types 3.2(2)

cleanup

See finalization 7.6.1(1)
colon 2.1(16), I.5(6)
Color 3.2.1(16), 3.5.1(15)
Column_Ptr 3.5.4(33)
comma 2.1(16)
comment 2.7(2)
comments, instructions for submission (1)
comparison operator

See relational operator 4.5.2(1)
compatibility

constraint with a subtype 3.2.2(13)
index constraint with a subtype 3.6.1(7)
range with a scalar subtype 3.5(9)
range_constraint with a scalar subtype

3.5(9)
compilation 10.1.1(2)

separate 10.1(1)
Compilation unit 10.1(2), 10.1.1(9), M(7)
compilation units needed

by a compilation unit 10.2(2)
compilation_unit 10.1.1(3)

used 10.1.1(2), N(2)
compile-time error 1.1.2(27), 1.1.5(4)
compile-time semantics 1.1.2(28)
complete context 8.6(4)
completely defined 3.11.1(8)
completion

abnormal 7.6.1(2)
compile-time concept 3.11.1(1)
normal 7.6.1(2)
run-time concept 7.6.1(2)

completion and leaving (completed and left)
7.6.1(2)

component 3.2(2)
component subtype 3.6(10)
components

of a record type 3.8(9)
component_choice_list 4.3.1(5)

used 4.3.1(4), N(2)
component_declaration 3.8(6)

used 3.8(5), N(2)
component_definition 3.6(8)

used 3.6(3), 3.6(5), 3.8(6), N(2)
component_item 3.8(5)

used 3.8(4), N(2)
component_list 3.8(4)

used 3.8(3), N(2)
composite type 3.2(2), M(8)
composite_constraint 3.2.2(7)

used 3.2.2(5), N(2)
compound delimiter 2.2(10)
compound_statement 5.1(5)

used 5.1(6), N(2)
concatenation operator 4.4(1), 4.5.3(3)
condition 5.3(3)

See also exception 11(1)
used 5.3(2), 5.5(3), N(2)

consistency
among compilation units 10.1.4(5)

constant
See also literal 4.2(1)
See also static 4.9(1)
result of a function_call 6.4(14)

constant object 3.3(13)
constant view 3.3(13)
constituent

of a construct 1.1.4(17)
constrained 3.5(8)

object 3.3.1(10)

subtype 3.2(9), 3.5.1(11), 3.6(15), 3.6(16)
constrained by its initial value 3.3.1(10)
constrained_array_definition 3.6(5)

used 3.6(2), N(2)
constraint 3.2.2(5)

used 3.2.2(3), N(2)
of a first array subtype 3.6(16)
of an object 3.3.1(10)
[partial] 3.2(7)

Construct 1.1.4(16), M(9)
constructor

See initialization 3.3.1(20), 7.6(1)
See initialization expression 3.3.1(5)
See Initialize 7.6(1)

context free grammar
complete listing N(1)
cross reference N(2)
notation 1.1.4(3)
under Syntax heading 1.1.2(26)

context_clause 10.1.2(2)
used 10.1.1(3), N(2)

context_item 10.1.2(3)
used 10.1.2(2), N(2)

control character
See also format_effector 2.1(14)
See also other_control_function 2.1(15)

convention 6.3.1(2)
conversion 4.6(1), 4.6(28)

array 4.6(10), 4.6(36)
enumeration 4.6(34)
numeric 4.6(9), 4.6(29)
value 4.6(5)
view 4.6(5)

convertible 4.6(4)
required 4.6(12)

copy back of parameters 6.4.1(17)
copy parameter passing 6.2(2)
core language 1.1.2(2)
corresponding value

of the target type of a conversion 4.6(28)
cover

a type 3.4.1(9)
of a choice and an exception 11.2(6)

cover a value
by a discrete_choice_list 5.4(4)
by a discrete_choice 5.4(4)

CPU_Identifier 7.4(14)
create 3.1(12)
creation

of an object 3.3(1)
current mode

of an open file A.7(7)

Date 3.8(27)
Day 3.5.1(15)
DC2 I.5(4)
DC4 I.5(4)
decimal_literal 2.4.1(2)

used 2.4(2), N(2)
Declaration 3.1(5), 3.1(6), M(10)
declarative region

of a construct 8.1(1)
declarative_item 3.11(3)

used 3.11(2), N(2)
declarative_part 3.11(2)

used 7.2(2), N(2)
declare 3.1(8), 3.1(12)
deferred constant 7.4(2)
deferred constant declaration 3.3.1(7), 7.4(2)

defining_character_literal / exit_statement AAVARM;5.0

Index 5 October 1995 Draft 234

defining name 3.1(10)
defining_character_literal 3.5.1(4)

used 3.5.1(3), N(2)
defining_designator 6.1(6)

used 6.1(4), N(2)
defining_identifier 3.1(4)

used 3.2.1(3), 3.2.2(2), 3.3.1(3), 3.5.1(3),
5.5(4), 6.1(7), 7.3(2), 8.5.1(2), N(2)

defining_identifier_list 3.3.1(3)
used 3.3.1(2), 3.3.2(2), 3.8(6), 6.1(15),

N(2)
defining_program_unit_name 6.1(7)

used 6.1(4), 6.1(6), 7.1(3), 7.2(2),
8.5.3(2), N(2)

definite subtype 3.3(23)
Definition 3.1(7), M(11)
defun_decl 3.12(13)

used 3.1(3), N(2)
DEL I.5(4)
delimiter 2.2(8)
denote 8.6(16)

informal definition 3.1(8)
dependence

elaboration 10.2(10)
semantic 10.1.1(22)

descendant 10.1.1(11)
of a type 3.4.1(10)
relationship with scope 8.2(4)

designator 6.1(5)
used 6.3(2), N(2)

destructor
See finalization 7.6(1), 7.6.1(1)

determines
a type by a subtype_mark 3.2.2(9)

digit 2.1(10)
used 2.1(3), 2.3(3), 2.4.1(3), 2.4.2(5),

N(2)
dimensionality

of an array 3.6(12)
direct file A.8(1)
directly visible 8.3(2), 8.3(17)

within a use_clause in a context_clause
10.1.6(3)

within a with_clause 10.1.6(2)
within the parent_unit_name of a library

unit 10.1.6(2)
direct_name 4.1(3)

used 4.1(2), N(2)
discrete array type 4.5.2(1)
discrete type 3.2(3), 3.5(1), M(12)
discrete_choice 5.4(3)

used 5.4(3), N(2)
discrete_choice_list 5.4(3)

used 5.4(3), N(2)
discrete_range 3.6.1(3)

used 3.6.1(2), 5.4(3), N(2)
discrete_subtype_definition 3.6(6)

used 5.5(4), N(2)
Discriminant_Check

[partial] 4.6(51), 4.7(5)
distinct access paths 6.2(11)
divide 2.1(16)
divide operator 4.4(1), 4.5.5(1)
Division_Check

[partial] 3.5.4(20), 4.5.5(22)
DLE I.5(4)
documentation (required of an implemen-

tation) L(1)
documentation requirements 1.1.2(34),

A.13(12)
dot 2.1(16)
dot selection

See selected_component 4.1.3(1)
Dot_Product 6.3(11)
dynamic semantics 1.1.2(30)
dynamically enclosing

of one execution by another 11.4(2)

effect
external 1.1.3(8)

elaborable 3.1(11)
elaborated 3.11(9)
elaboration 3.1(11), M(16)

integer_subtype_definition 3.6(22)
♦ package_body 7.2(6)
array_type_definition 3.6(21)
component_declaration 3.8(17)
component_definition 3.6(22), 3.8(18)
component_list 3.8(17)
declarative_part 3.11(8)
deferred constant declaration 7.4(10)
enumeration_type_definition 3.5.1(11)
full type definition 3.2.1(12)
full_type_declaration 3.2.1(12)
index_constraint 3.6.1(8)
inner_declarative_part 3.11(8)
loop_parameter_specification 5.5(10)
number_declaration 3.3.2(8)
object_declaration 3.3.1(16)
package_body of Standard A.1(49)
package_declaration 7.1(9)
private_type_declaration 7.3(17)
range_constraint 3.5(10)
record_definition 3.8(16)
record_type_definition 3.8(16)
renaming_declaration 8.5(4)
subprogram_body 6.3(6)
subprogram_declaration 6.1(32)
subtype_declaration 3.2.2(10)
subtype_indication 3.2.2(10)
use_clause 8.4(12)

elaboration dependence
library_item on another 10.2(10)

Elaboration_Check
[partial] 3.11(10)

elementary type 3.2(2), M(13)
encapsulation

See package 7(1)
enclosing

immediately 8.1(13)
end of a line 2.2(2)
entity 3.1(12)

[partial] 3.1(1)
enumeration literal 3.5.1(7)
enumeration type 3.2(3), 3.5.1(1), M(14)
enumeration_literal_specification 3.5.1(3)

used 3.5.1(2), N(2)
enumeration_type_definition 3.5.1(2)

used 3.2.1(4), N(2)
environment 10.1.4(1)
environment declarative_part 10.1.4(1)
environment task 10.2(8)
env_expression 4.10(4)

used 4.10(3), N(2)
EOL A.10(7)
EOT I.5(4)
equal operator 4.4(1), 4.5.2(1)
equality operator 4.5.2(1)

equals sign 2.1(16)
equivalence of use_clauses and selected_

components 8.4(1)
erroneous execution 1.1.2(32)
error

bounded 1.1.2(31), 1.1.5(8)
compile-time 1.1.2(27), 1.1.5(4)
erroneous execution 1.1.2(32)
formal run-time 1.1.2(31)
link-time 1.1.2(29), 1.1.5(4)
run-time 1.1.2(30), 1.1.5(6)

evaluable 3.1(11)
evaluation 3.1(11), M(16)

aggregate 4.3(5)
array_aggregate 4.3.3(21)
attribute_reference 4.1.4(13)
concatenation 4.5.3(5)
discrete_range 3.6.1(8)
indexed_component 4.1.1(8)
membership test 4.5.2(27)
name 4.1(11)
name that has a prefix 4.1(12)
parameter_association 6.4.1(7)
prefix 4.1(12)
primary that is a name 4.4(11)
qualified_expression 4.7(5)
range 3.5(10)
range_attribute_reference 4.1.4(13)
record_aggregate 4.3.1(18)
selected_component 4.1.3(15)
short-circuit control form 4.5.1(7)
string_literal 4.2(9)
Val 3.5.5(7)
Value 3.5(54)
value conversion 4.6(28)

Exception 11(1), M(15)
exception occurrence 11(1)
exception_choice 11.2(5)

used 11.2(3), N(2)
exception_handler 11.2(3)

used 11.2(2), N(2)
Exclam I.5(6)
executable 3.1(11)
execution 3.1(11), M(16)

assignment_statement 5.2(8), 7.6(11)
block_statement 5.6(5)
case_statement 5.4(11)
dynamically enclosing 11.4(2)
exit_statement 5.7(5)
handled_sequence_of_statements

11.2(10)
handler 11.4(7)
if_statement 5.3(6)
included by another execution 11.4(2)
loop_statement 5.5(8)
loop_statement with a for iteration_scheme

5.5(10)
loop_statement with a while iteration_

scheme 5.5(9)
null_statement 5.1(13)
of a program 10.2(9)
partition 10.2(25)
program 10.2(25)
raise_statement 11.3(5)
return_statement 6.5(7)
sequence_of_statements 5.1(15)
subprogram call 6.4(11)
subprogram_body 6.3(7)

exit_statement 5.7(2)

AAVARM;5.0 expanded name / illegal

235 Draft 5 October 1995 Index

used 5.1(4), N(2)
expanded name 4.1.3(5)
expected profile 8.6(26)

character_literal 4.2(3)
subprogram_renaming_declaration

8.5.4(3)
expected type 8.6(20)

discrete_subtype_definition range 3.6(8)
actual parameter 6.4.1(3)
aggregate 4.3(3)
array_aggregate 4.3.3(7)
array_aggregate component expression

4.3.3(7)
assignment_statement expression 5.2(5)
assignment_statement variable_name

5.2(5)
attribute_designator expression 4.1.4(9)
case expression 5.4(4)
case_statement_alternative discrete_choice

5.4(4)
character_literal 4.2(3)
condition 5.3(4)
indexed_component expression 4.1.1(5)
index_constraint discrete_range 3.6.1(4)
membership test simple_expression

4.5.2(3)
number_declaration expression 3.3.2(3)
object_declaration initialization expression

3.3.1(5)
object_renaming_declaration object_name

8.5.1(3)
range simple_expressions 3.5(6)
range_attribute_designator expression

4.1.4(9)
range_constraint range 3.5(6)
record_aggregate 4.3.1(9)
record_component_association expression

4.3.1(11)
return expression 6.5(4)
short-circuit control form relation 4.5.1(1)
string_literal 4.2(4)
type_conversion operand 4.6(7)

explicit declaration 3.1(5), M(10)
explicit initial value 3.3.1(1)
explicitly assign 10.2(2)
explicit_actual_parameter 6.4(6)

used 6.4(5), N(2)
exponent 2.4.1(4), 4.5.6(11)

used 2.4.1(2), 2.4.2(2), N(2)
exponentiation operator 4.4(1), 4.5.6(7)
expression 4.4(1), 4.4(2)

used 3.3.1(2), 3.3.2(2), 4.1.1(2), 4.1.4(3),
4.1.4(5), 4.3.1(4), 4.3.3(3), 4.3.3(4),
4.4(7), 4.6(2), 4.7(2), 4.10(1), 4.10(3),
4.10(4), 5.2(2), 5.3(3), 5.4(2), 5.4(3),
6.4(6), 6.5(2), N(2)

extended_digit 2.4.2(5)
used 2.4.2(4), N(2)

extensions to Ada 83 3.2.3(8), 3.3(26),
3.3.1(34), 3.5(63), 3.5.2(9), 3.6(30),
3.6.1(18), 3.8(31), 3.11(15), 4.1(17),
4.1.3(20), 4.1.4(18), 4.2(14), 4.3.1(29),
4.3.3(43), 4.4(16), 4.5.3(15), 4.6(71),
4.9(41), 5.4(18), 6.3(11), 6.3.1(18),
6.4.1(17), 7.4(14), 8.2(12), 8.3(25),
8.6(34), 10.1.1(36), 10.1.2(9), 10.2(30),
A.1(56), A.2(4)

external effect
of the execution of an AVA program

1.1.3(8)
external file A.7(1)
external interaction 1.1.3(8)

F 5.4(19)
factor 4.4(6)

used 4.4(5), N(2)
False 3.5.3(1)
FF I.5(4)
file

as file object A.7(2)
file terminator A.10(7)
File_Mode A.7(8)
finalization

of a master 7.6.1(7)
of an object 7.6.1(8)

First attribute 3.5(12), 3.6.2(2), J(5), J(7)
first subtype 3.2.1(7)
First(N) attribute 3.6.2(3), J(3)
Float A.1(22)

type in Standard A.1(22)
form

of an external file A.7(1)
formal abstract syntax 1.1.2(29)
formal compile-time semantics 1.1.2(30)
formal dynamic semantics 1.1.2(31)
formal name resolution rules 1.1.2(28)
formal overloading rules 1.1.2(28)
formal parameter

of a subprogram 6.1(18)
formal resolution rules 1.1.2(28)
formal run-time error 1.1.2(31)
formal run-time semantics 1.1.2(31)
formal static semantics 1.1.2(30)
formal_part 6.1(14)

used 6.1(12), 6.1(13), N(2)
format_effector 2.1(13)

used 2.1(2), N(2)
freezing

by a constituent of a construct 13.14(4)
by an expression 13.14(8)
class-wide type caused by the freezing of

the specific type 13.14(15)
constituents of a full type definition

13.14(15)
entity 13.14(2)
entity caused by a body 13.14(3)
entity caused by a construct 13.14(4)
entity caused by a name 13.14(11)
entity caused by the end of an enclosing

construct 13.14(3)
first subtype caused by the freezing of the

type 13.14(15)
nominal subtype caused by a name

13.14(11)
object_declaration 13.14(6)
specific type caused by the freezing of the

class-wide type 13.14(15)
subtypes of the profile of a callable entity

13.14(14)
type caused by a range 13.14(12)
type caused by an expression 13.14(10)
type caused by the freezing of a subtype

13.14(15)
freezing points

entity 13.14(2)
FS I.5(4)
full conformance

for profiles 6.3.1(18)

full constant declaration 3.3.1(7)
full declaration 7.4(2)
full stop 2.1(16)
full type 3.2.1(9)
full type definition 3.2.1(9)
full view

of a type 7.3(4)
full_type_declaration 3.2.1(3)

used 3.2.1(2), N(2)
function 6(1)
function_call 6.4(3)

used 4.1(2), N(2)

Gender 3.5.1(15)
Get_Key 7.3.1(15), 7.3.1(16)
global to 8.1(15)
Glossary M(1)
grammar

ambiguous 1.1.4(14)
complete listing N(1)
cross reference N(2)
notation 1.1.4(3)
resolution of ambiguity 1.1.4(14), 8.6(3)
under Syntax heading 1.1.2(26)

graphic_character 2.1(3)
used 2.1(2), 2.5(2), 2.6(3), N(2)

greater than operator 4.4(1), 4.5.2(1)
greater than or equal operator 4.4(1), 4.5.2(1)
greater-than sign 2.1(16)

handle
an exception 11(1), M(15)
an exception occurrence 11(1), 11.4(1),

11.4(7)
handled_sequence_of_statements 11.2(2)

used 5.6(2), 6.3(2), 7.2(2), N(2)
handler 11.2(5)
Hello 3.3.1(32)
Hexa 3.5.1(16)
hexadecimal

literal 2.4.2(1)
hexadecimal literal 2.4.2(1)
hidden from all visibility 8.3(5), 8.3(10)

by lack of a with_clause 8.3(16)
for a declaration completed by a sub-

sequent declaration 8.3(15)
within the declaration itself 8.3(12)

hidden from direct visibility 8.3(5), 8.3(17)
by an inner homograph 8.3(18)
where hidden from all visibility 8.3(19)

hiding 8.3(5)
highest precedence operator 4.5.6(1)
highest_precedence_operator 4.5(7)
high_index 5.2(25)
homograph 8.3(8)
hyphen-minus 2.1(16)

identifier 2.3(2)
used 3.1(4), 3.12(10), 3.12(11), 3.12(12),

3.12(13), 3.12(14), 4.1(3), 4.1.3(3),
4.1.4(3), 4.10(3), 4.10(4), 6.1(5), 7.1(3),
7.2(2), N(2)

identifier_letter 2.1(6)
used 2.1(3), 2.3(2), 2.3(3), N(2)

iff operator 4.10(2)
if_statement 5.3(2)

used 5.1(5), N(2)
if_then_else operator 4.10(2)
illegal

Image attribute / master AAVARM;5.0

Index 5 October 1995 Draft 236

construct 1.1.2(27)
partition 1.1.2(29)

Image attribute 3.5(34), J(9)
immediate scope

of (a view of) an entity 8.2(11)
of a declaration 8.2(2)

immediately enclosing 8.1(13)
immediately visible 8.3(4), 8.3(17)
immediately within 8.1(13)
implementation 1.1.3(1)
implementation defined

summary of characteristics L(1)
implementation inconsistencies 2.1(16),

2.4.1(9), 3.6(22), 3.11(15)
implementation requirements 1.1.2(33)
implicit declaration 3.1(5), M(10)
implicit subtype conversion 4.6(59), 4.6(60)

array bounds 4.6(38)
array index 4.1.1(8)
assignment_statement 5.2(11)
bounds of a range 3.5(10), 3.6(18)
expressions of aggregate 4.3.3(22)
function return 6.5(7)
initialization expression 3.3.1(18)
named number value 3.3.2(7)
operand of concatenation 4.5.3(9)
parameter passing 6.4.1(11), 6.4.1(17)
qualified_expression 4.7(5)

implies operator 4.10(2)
in (membership test) 4.4(1), 4.5.2(2)
in operator 4.10(2)
included

one execution by another 11.4(2)
one range in another 3.5(4)

incompatibilities with Ada 83 2.9(3),
3.2.2(16), 3.2.3(8), 3.5(63), 3.5.2(9),
4.2(14), 4.6(71), 4.9(47), 7.1(18),
8.6(34)

inconsistencies with Ada 83 3.5.2(9),
4.5.3(14)

inconsistencies with Ada 95 3.5.2(9), 3.6.3(7)
Increment 6.1(38)
indefinite subtype 3.3(23)
index

of an array 3.6(9)
index range 3.6(13)
index subtype 3.6(9)
index type 3.6(9)
indexed_component 4.1.1(2)

used 4.1(2), N(2)
Index_Check

[partial] 4.1.1(8), 4.3.3(30), 4.5.3(8),
4.6(51), 4.7(5)

index_constraint 3.6.1(2)
used 3.2.2(7), N(2)

index_subtype_definition 3.6(4)
used 3.6(3), N(2)

information hiding
See package 7(1)
See private types 7.3(1)

informative 1.1.2(19)
initialization

of an object 3.3.1(20)
initialization expression 3.3.1(1), 3.3.1(5)
innermost dynamically enclosing 11.4(2)
inner_declaration 3.1(5)

used 3.1(3), N(2)
inner_declarative_part 3.11(7)

used 6.3(2), N(2)

inner_part
used 5.6(2), N(2)

input A.6(1)
instructions for comment submission (1)
Int 3.2.2(16)
Integer 3.5.4(11), 3.5.4(21), A.1(12)

type in Standard A.1(12)
integer literal 2.4(1)
integer literals 3.5.4(14), 3.5.4(30)
Integer type M(17)
integer_subtype_definition 3.6(7)
interpretation

of a complete context 8.6(10)
of a constituent of a complete context

8.6(15)
overload resolution 8.6(14)

Intrinsic calling convention 6.3.1(4)
invariant 5.1(15)
invariant_annotation 3.12(8)

used 3.1(5), N(2)
IO_Exceptions

child of Ada A.13(3)
ISO 10646 3.5.2(2)
ISO/IEC 10646-1:1993 1.2(7)
ISO/IEC 6429:1992 1.2(4)
ISO/IEC 646:1991 1.2(1)
ISO/IEC 8859-1:1987 1.2(5)
italics, like this 1(2)
iteration_scheme 5.5(3)

used 5.5(2), N(2)

Key 7.3(22), 7.3.1(15)
Key_Manager 7.3.1(15), 7.3.1(16)

language-defined class
of types 3.2(2)
[partial] 3.2(10)

Language-Defined Library Units A(1)
Ada A.2(2)
Ada.IO_Exceptions A.13(3)
Standard A.1(4)

Language-Defined Types
Boolean, in Standard A.1(5)
Character, in Standard A.1(37)
Float, in Standard A.1(22)
Integer, in Standard A.1(12)
String, in Standard A.1(39)

Last attribute 3.5(13), 3.6.2(4), J(15), J(17)
Last(N) attribute 3.6.2(5), J(13)
Latin-1 3.5.2(2)
LC_A I.5(8)
LC_Z I.5(8)
leaving 7.6.1(3)
left 7.6.1(3)
left curly bracket 2.1(16)
left parenthesis 2.1(16)
left square bracket 2.1(16)
legal

construct 1.1.2(27)
partition 1.1.2(29)

legality determinable via semantic depen-
dences 10(3)

legality rules 1.1.2(27)
length

of a dimension of an array 3.6(13)
of a one-dimensional array 3.6(13)

Length attribute 3.6.2(8), J(21)
Length(N) attribute 3.6.2(9), J(19)
Length_Check

[partial] 4.5.1(8), 4.6(37)
less than operator 4.4(1), 4.5.2(1)
less than or equal operator 4.4(1), 4.5.2(1)
less-than sign 2.1(16)
letter_or_digit 2.3(3)

used 2.3(2), N(2)
Level 3.5.1(15)
lexical element 2.2(1)
lexicographic order 4.5.2(26)
LF I.5(4)
library 10.1.4(9)

informal introduction 10(2)
library unit 10.1(3), 10.1.1(9), M(18)

informal introduction 10(2)
library_item 10.1.1(4)

used 10.1.1(3), N(2)
informal introduction 10(2)

library_unit_body 10.1.1(7)
used 10.1.1(4), N(2)

library_unit_declaration 10.1.1(5)
used 10.1.1(4), N(2)

Light 3.5.1(15)
Limit 3.3.1(34)
line 2.2(2), 3.6(28)
line terminator A.10(7)
link-time error

See post-compilation error 1.1.2(29),
1.1.5(4)

linking
See partition building 10.2(2)

literal 4.2(1)
See also aggregate 4.3(1)
based 2.4.2(1)
decimal 2.4.1(1)
numeric 2.4(1)

local to 8.1(14)
localization 3.5.2(4)
logical expression 4.10(1)
logical operator 4.5.1(2)

@ 4.10(2)
See also not operator 4.5.6(3)
all 4.10(2)
iff 4.10(2)
if_then_else 4.10(2)
implies 4.10(2)
in 4.10(2)
out 4.10(2)

logical_expression 4.10(3)
used 3.12(7), 3.12(8), 3.12(9), 3.12(10),

3.12(11), 3.12(12), 3.12(13), 4.10(3),
N(2)

logical_operator 4.5(2)
loop parameter 5.5(7)
loop_parameter_specification 5.5(4)

used 5.5(3), N(2)
loop_statement 5.5(2)

used 5.1(5), N(2)
low line 2.1(16)
lower bound

of a range 3.5(4)
lower_case_identifier_letter 2.1(8)
Low_Limit 3.3.1(34)
LR(1) 1.1.4(14)
L_Brace I.5(6)
L_Bracket I.5(6)

main subprogram
for a partition 10.2(7)

Major 3.5.1(17)

AAVARM;5.0 matching components / parent unit

237 Draft 5 October 1995 Index

master 7.6.1(3)
matching components 4.5.2(16)
Matrix 3.6(26)
Max 3.3.2(11)
Max_Int 3.5.4(14)
Max_Line_Size 3.3.2(11)
membership test 4.5.2(2)
mentioned in a with_clause 10.1.2(6)
minus 2.1(16)
minus operator 4.4(1), 4.5.3(1), 4.5.4(1)
Min_Int 3.5.4(14)
Mixed 3.5.1(16)
mod operator 4.4(1), 4.5.5(1)
mode 6.1(16), 8.5(8)

used 6.1(15), N(2)
mode conformance 6.3.1(16)
mode of operation

nonstandard 1.1.5(11)
standard 1.1.5(11)

module
See package 7(1)

multi-dimensional array 3.6(12)
multiply 2.1(16)
multiply operator 4.4(1), 4.5.5(1)
multiplying operator 4.5.5(1)
multiplying_operator 4.5(6)

used 4.4(5), N(2)

N 8.6(29)
n-dimensional array_aggregate 4.3.3(6)
name 4.1(2)

used 3.2.2(4), 4.1(4), 4.4(7), 5.2(2),
6.4(2), 6.4(6), 8.4(3), 8.5.1(2), 8.5.3(2),
8.5.4(2), 10.1.1(8), 10.1.2(4), 11.3(2),
N(2)

of (a view of) an entity 3.1(8)
of an external file A.7(1)
[partial] 3.1(1)

name resolution rules 1.1.2(27)
named association 6.4(7)
named component association 4.3.1(6)
named number 3.3(24)
named type 3.2.1(8)
named_array_aggregate 4.3.3(4)

used 4.3.3(2), N(2)
names of special_characters 2.1(16)
Natural 3.5.4(12), 3.5.4(13), A.1(13)
needed

of a compilation unit by another 10.2(2)
needed component

record_aggregate record_component_
association_list 4.3.1(10)

Ninety_Six 3.6.3(7)
nominal subtype 3.3(23), 3.3.1(9)

associated with a type_conversion 4.6(27)
associated with an indexed_component

4.1.1(6)
of a component 3.6(20)
of a formal parameter 6.1(24)
of a record component 3.8(14)
of the result of a function_call 6.4(14)

non-normative
See informative 1.1.2(19)

nongraphic character 3.5(39)
nonstandard mode 1.1.5(11)
normal completion 7.6.1(2)
normative 1.1.2(14)
not equal operator 4.4(1), 4.5.2(1)
not in (membership test) 4.4(1), 4.5.2(2)

not operator 4.4(1), 4.5.6(3)
notes 1.1.2(38)
No_Free_Space 8.5.4(14)
NUL I.5(4)
null array 3.6.1(7)
null constraint 3.2(7)
null range 3.5(4)
null string literal 2.6(7)
Null_Key 7.3.1(15), 7.4(13)
null_statement 5.1(7)

used 5.1(4), N(2)
number sign 2.1(16)
number_declaration 3.3.2(2)

used 3.1(5), N(2)
numeral 2.4.1(3)

used 2.4.1(2), 2.4.1(4), 2.4.2(3), N(2)
numeric type 3.5(1)
numeric_literal 2.4(2)

used 4.4(7), N(2)

object 3.3(2), M(19)
[partial] 3.2(1)

object_declaration 3.3.1(2)
used 3.1(5), N(2)

object_renaming_declaration 8.5.1(2)
used 8.5(2), N(2)

obsolescent feature I(1)
occur immediately within 8.1(13)
occurrence (of an exception) 11(1)
octal

literal 2.4.2(1)
octal literal 2.4.2(1)
one-dimensional array 3.6(12)
one-pass context_clauses 10.1.2(1)
opaque type

See private types 7.3(1)
operand

of a type_conversion 4.6(3)
of a qualified_expression 4.7(3)

operand type
of a type_conversion 4.6(3)

operates on a type 3.2.3(1)
operation 3.2(10)
operator

& 4.4(1), 4.5.3(3)
* 4.4(1), 4.5.5(1)
** 4.4(1), 4.5.5(1)
+ 4.4(1), 4.5.3(1), 4.5.4(1)
- 4.4(1), 4.5.3(1), 4.5.4(1)
/ 4.4(1), 4.5.5(1)
/= 4.4(1), 4.5.2(1)
< 4.4(1), 4.5.2(1)
<= 4.4(1), 4.5.2(1)
= 4.4(1), 4.5.2(1)
> 4.4(1), 4.5.2(1)
>= 4.4(1), 4.5.2(1)
abs 4.4(1), 4.5.6(1)
ampersand 4.4(1), 4.5.3(3)
and 4.4(1), 4.5.1(2)
binary 4.5(10)
binary adding 4.5.3(1)
concatenation 4.4(1), 4.5.3(3)
divide 4.4(1), 4.5.5(1)
equal 4.4(1), 4.5.2(1)
equality 4.5.2(1)
exponentiation 4.4(1), 4.5.6(7)
greater than 4.4(1), 4.5.2(1)
greater than or equal 4.4(1), 4.5.2(1)
highest precedence 4.5.6(1)

less than 4.4(1), 4.5.2(1)
less than or equal 4.4(1), 4.5.2(1)
logical 4.5.1(2)
minus 4.4(1), 4.5.3(1), 4.5.4(1)
mod 4.4(1), 4.5.5(1)
multiply 4.4(1), 4.5.5(1)
multiplying 4.5.5(1)
not 4.4(1), 4.5.6(3)
not equal 4.4(1), 4.5.2(1)
or 4.4(1), 4.5.1(2)
ordering 4.5.2(1)
plus 4.4(1), 4.5.3(1), 4.5.4(1)
predefined 4.5(10)
relational 4.5.2(1)
rem 4.4(1), 4.5.5(1)
times 4.4(1), 4.5.5(1)
unary 4.5(10)
unary adding 4.5.4(1)
xor 4.4(1), 4.5.1(2)

operator precedence 4.5(1)
or else (short-circuit control form) 4.4(1),

4.5.1(1)
or operator 4.4(1), 4.5.1(2)
ordering operator 4.5.2(1)
other_control_function 2.1(14)

used 2.1(2), N(2)
out operator 4.10(2)
output A.6(1)
overall interpretation

of a complete context 8.6(10)
Overflow_Check

[partial] 3.5.4(19), 4.4(12), 5.4(13)
overload resolution 8.6(1)
overloadable 8.3(7)
overloaded 8.3(6)

enumeration literal 3.5.1(10)
overloading rules 1.1.2(27), 8.6(2)

P 8.2(3), 8.3(25), 10.1.1(9)
P.Q 8.2(3)
Package 7(1), M(20)
package-private type 7.3(14)
package_body 7.2(2)

used 3.11(6), 10.1.1(7), N(2)
package_declaration 7.1(2)

used 3.1(3), 10.1.1(5), N(2)
package_renaming_declaration 8.5.3(2)

used 8.5(2), N(2)
package_specification 7.1(3)

used 7.1(2), N(2)
page terminator A.10(7)
parameter

See also loop parameter 5.5(7)
See formal parameter 6.1(18)

parameter assigning back 6.4.1(17)
parameter copy back 6.4.1(17)
parameter mode 6.1(19)
parameter passing 6.4.1(1)
parameter_and_result_profile 6.1(13)

used 6.1(4), N(2)
parameter_association 6.4(5)

used 6.4(4), N(2)
parameter_profile 6.1(12)

used 6.1(4), N(2)
parameter_specification 6.1(15)

used 6.1(14), N(2)
parent declaration

of a library_item 10.1.1(10)
of a library unit 10.1.1(10)

parent_unit_name / run-time semantics AAVARM;5.0

Index 5 October 1995 Draft 238

parent unit
of a library unit 10.1.1(10)

parent_unit_name 10.1.1(8)
used 6.1(5), 6.1(7), 7.1(3), 7.2(2), N(2)

part
of an object or value 3.2(6)

partial view
of a type 7.3(4)

partition 10.2(2), M(21)
partition building 10.2(2)
pass by copy 6.2(2)
pass by reference 6.2(2)
Percent I.5(6)
plus operator 4.4(1), 4.5.3(1), 4.5.4(1)
plus sign 2.1(16)
point 2.1(16)
Pos attribute 3.5.5(1), J(23)
position number 3.5(1)

of an enumeration value 3.5.1(8)
of an integer value 3.5.4(15)

positional association 6.4(7)
positional component association 4.3.1(6)
positional_array_aggregate 4.3.3(3)

used 4.3.3(2), N(2)
Positive 3.5.4(12), 3.5.4(13), 3.6.3(3),

A.1(13)
POSIX 1.2(9)
possible interpretation 8.6(14)

for direct_names 8.3(20)
for selector_names 8.3(20)

post-compilation error 1.1.2(29)
post-compilation rules 1.1.2(29), 10.2(2)
potentially use-visible 8.4(8)
Power_16 3.3.2(11)
precedence of operators 4.5(1)
Pred attribute 3.5(24), J(27)
predefined environment A(1)
predefined exception 11.1(4)
predefined operation

of a type 3.2.3(1)
predefined operations

of a discrete type 3.5.5(10)
of a record type 3.8(24)
of an array type 3.6.2(15)

predefined operator 4.5(10)
[partial] 3.2.1(10)

predefined type 3.2.1(11)
preference

for root numeric operators and ranges
8.6(29)

prefix 4.1(4)
used 4.1.1(2), 4.1.3(2), 4.1.4(2), 4.1.4(4),

6.4(3), N(2)
primary 4.4(7)

used 4.4(6), N(2)
primary subprogram annotation

[partial] 6(1)
primitive operation

[partial] 3.2(1)
primitive operations M(22)

of a type 3.2.3(1)
primitive operator

of a type 3.2.3(8)
primitive subprograms

of a type 3.2.3(2)
private declaration of a library unit 10.1.1(12)
private descendant

of a library unit 10.1.1(12)
private extension 3.2(4)

private library unit 10.1.1(12)
private operations 7.3.1(1)
private part 8.2(5)

of a package 7.1(7)
private type 3.2(4), M(23)

[partial] 7.3(14)
private types 7.3(1)
private_type_declaration 7.3(2)

used 3.2.1(2), N(2)
procedure 6(1)
procedure_call_statement 6.4(2)

used 5.1(4), N(2)
profile 6.1(23)

fully conformant 6.3.1(18)
mode conformant 6.3.1(16)
subtype conformant 6.3.1(17)
type conformant 6.3.1(15)

profile resolution rule
name with a given expected profile

8.6(26)
program 10.2(1), M(25)
program execution 10.2(1)
program library

See library 10(2), 10.1.4(9)
Program unit 10.1(1), M(24)
Program_Error A.1(45)

raised by failure of run-time check
1.1.5(8)

propagate 11.4(1)
an exception by a construct 11.4(6)
an exception by an execution 11.4(6)
an exception occurrence by an execution,

to a dynamically enclosing execution
11.4(6)

proper_body 3.11(6)
used 3.11(5), N(2)

Protected type M(26)
public declaration of a library unit 10.1.1(12)
public descendant

of a library unit 10.1.1(12)
public library unit 10.1.1(12)
Push 6.3(9)
Put 6.4(26)

Q 6.4(13), 8.2(12)
qualified_expression 4.7(2)

used 4.4(7), N(2)
Query I.5(6)
Question 3.6.3(6)
quotation mark 2.1(16)
quoted string

See string_literal 2.6(1)

R 8.2(3), 8.2(12)
Rainbow 3.2.2(16), 3.5.1(17)
raise

an exception 11(1), 11.3(5), M(15)
an exception occurrence 11.4(3)

raise_statement 11.3(2)
used 5.1(4), N(2)

Random 6.1(39)
range 3.5(3), 3.5(4)

used 3.5(2), 3.6(6), 3.6(7), 3.6.1(3),
4.4(3), N(2)

of a scalar subtype 3.5(8)
Range attribute 3.6.2(6), J(33)
Range(N) attribute 3.6.2(7), J(31)
range_attribute_designator 4.1.4(5)

used 4.1.4(4), N(2)

range_attribute_reference 4.1.4(4)
used 3.5(3), N(2)

Range_Check
[partial] 3.2.2(12), 3.5(24), 3.5(27),

3.5(55), 3.5.5(7), 4.2(10), 4.3.3(28),
4.5.1(8), 4.5.6(6), 4.5.6(13), 4.6(28),
4.6(38), 4.6(51), 4.7(5), J(31), J(39)

range_constraint 3.5(2)
used 3.2.2(6), N(2)

Rational 7.1(14)
Rational_Numbers 7.1(13), 7.2(10)
read

the value of an object 3.3(14)
record 3.8(1)
record type 3.8(1), M(27)
record_aggregate 4.3.1(2)

used 4.3(2), N(2)
record_component_association 4.3.1(4)

used 4.3.1(3), N(2)
record_component_association_list 4.3.1(3)

used 4.3.1(2), N(2)
record_definition 3.8(3)

used 3.8(2), N(2)
record_type_definition 3.8(2)

used 3.2.1(4), N(2)
Red_Blue 3.2.2(16)
reference parameter passing 6.2(2)
references 1.2(1)
relation 4.4(3)

used 4.4(2), N(2)
relational operator 4.5.2(1)
relational_operator 4.5(3)

used 4.4(3), N(2)
rem operator 4.4(1), 4.5.5(1)
renamed entity 8.5(4)
renamed view 8.5(4)
renaming-as-declaration 8.5.4(1)
renaming_declaration 8.5(2)

used 3.1(3), N(2)
requires a completion 3.11.1(1), 3.11.1(6)

package_declaration 7.1(5)
subprogram_declaration 6.1(21)
declaration of a partial view 7.3(4)
deferred constant declaration 7.4(2)
library_unit_declaration 10.2(18)

reserved word 2.9(2), 2.9(4)
resolution rules 1.1.2(27)
resolve

overload resolution 8.6(14)
result subtype

of a function 6.5(4)
return expression 6.5(4)
return_statement 6.5(2)

used 5.1(4), N(2)
right curly bracket 2.1(16)
right parenthesis 2.1(16)
right square bracket 2.1(16)
Roman 3.6(26)
Roman_Digit 3.5.2(9)
root library unit 10.1.1(10)
root type

of a class 3.4.1(2)
rooted at a type 3.4.1(2)
root_integer 3.5.4(14)

[partial] 3.4.1(8)
root_real

[partial] 3.4.1(8)
RS I.5(4)
run-time error 1.1.2(30), 1.1.5(6)

AAVARM;5.0 running a program / type profile

239 Draft 5 October 1995 Index

run-time semantics 1.1.2(30)
running a program

See program execution 10.2(1)
R_Brace I.5(6)
R_Bracket I.5(6)

S 5.4(19)
S1 5.2(25)
S2 5.2(25)
safe separate compilation 10(3)
Same_Denominator 7.2(11)
satisfies

a range constraint 3.5(4)
an index constraint 3.6.1(7)

scalar type 3.2(3), 3.5(1), M(28)
scalar_constraint 3.2.2(6)

used 3.2.2(5), N(2)
Schedule 3.6(28)
scope

informal definition 3.1(8)
of (a view of) an entity 8.2(11)
of a use_clause 8.4(6)
of a with_clause 10.1.2(5)
of a declaration 8.2(10)

selected_component 4.1.3(2)
used 4.1(2), N(2)

selector_name 4.1.3(3)
used 4.1.3(2), 4.3.1(5), N(2)

semantic dependence
of one compilation unit upon another

10.1.1(22)
semicolon 2.1(16)
separate compilation 10.1(1)

safe 10(3)
separator 2.2(3)
sequence of characters

of a string_literal 2.6(6)
sequence_of_statements 5.1(2)

used 5.3(2), 5.4(3), 5.5(2), 11.2(2),
11.2(3), N(2)

sequential access A.8(2)
sequential file A.8(1)
Set 6.4(27)
Sharp I.5(6)
short-circuit control form 4.5.1(1)
signal (an exception)

See raise 11(1)
simple_expression 4.4(4)

used 3.5(3), 4.4(3), N(2)
simple_statement 5.1(4)

used 5.1(3), N(2)
single

class expected type 8.6(27)
Small_Int 3.2.2(16), 3.5.4(33)
SO I.5(4)
solidus 2.1(16)
space_character 2.1(11)

used 2.1(3), N(2)
Specialized Needs Annexes 1.1.2(7)
special_character 2.1(12)

used 2.1(3), N(2)
names 2.1(16)

specific type 3.4.1(3)
specified (not!) L(1)
Square 3.2.2(16)
stand-alone constant 3.3.1(24)
stand-alone object 3.3.1(1)
stand-alone variable 3.3.1(24)
Standard A.1(4)

library unit A.1(4)
standard input file A.10(5)
standard mode 1.1.5(11)
standard output file A.10(5)
statement 5.1(3)

used 5.1(2), N(2)
static 3.3.2(1), 4.9(1)

constant 4.9(24)
constraint 4.9(27)
delta constraint 4.9(29)
digits constraint 4.9(29)
discrete_range 4.9(25)
expression 4.9(2)
function 4.9(18)
index constraint 4.9(30)
range 4.9(25)
range constraint 4.9(29)
scalar subtype 4.9(26)
subtype 4.9(26)
value 4.9(13)

static semantics 1.1.2(28)
statically

constrained 4.9(32)
denote 4.9(14)

statically compatible
for a constraint and ♦ a composite subtype

4.9.1(4)
for a constraint and a scalar subtype

4.9.1(4)
for two subtypes 4.9.1(4)

statically matching
for constraints 4.9.1(1)
for ranges 4.9.1(3)
for subtypes 4.9.1(2)
required 4.6(13), 6.3.1(16), 6.3.1(17)

storage error
ignored 11.1(6)

Storage_Check
[partial] 11.1(6)

String 3.6.3(3), A.1(39)
type in Standard A.1(39)

string type 3.6.3(1)
string_element 2.6(3)

used 2.6(2), N(2)
string_literal 2.6(2)

used 4.4(7), N(2)
structure

See record type 3.8(1)
STX I.5(4)
SUB I.5(4)
subaggregate

of an array_aggregate 4.3.3(6)
subcomponent 3.2(6)
subprogram 6(1)
subprogram call 6.4(1)
subprogram_annotation 3.12(10)

used 6.1(2), 6.3(2), N(2)
subprogram_body 6.3(2)

used 3.11(6), 10.1.1(7), N(2)
subprogram_declaration 6.1(2)

used 3.1(3), 10.1.1(5), N(2)
subprogram_renaming_declaration 8.5.4(2)

used 8.5(2), N(2)
subprogram_specification 6.1(4)

used 6.1(2), 6.3(2), 8.5.4(2), N(2)
subsystem 10.1(3), M(18)
subtype (of an object)

See actual subtype of an object 3.3(23),
3.3.1(10)

subtype 3.2(8), M(29)
subtype conformance 6.3.1(17)
subtype conversion

See also implicit subtype conversion
4.6(1)

See type conversion 4.6(1)
subtypes

of a profile 6.1(26)
subtype_

used 3.6(6), 3.6(7), N(2)
subtype_declaration

used 3.1(3), N(2)
subtype_declaration 3.2.2(2)
subtype_indication 3.2.2(3)

used 3.2.2(2), 3.3.1(2), 3.6(8), 3.6.1(3),
N(2)

subtype_mark 3.2.2(4)
used 3.2.2(3), 3.6(4), 4.4(3), 4.6(2),

4.7(2), 6.1(13), 6.1(15), 8.5.1(2), N(2)
Succ attribute 3.5(21), J(35)
Suit 3.5.1(15)
super

See view conversion 4.6(5)
Switch 6.1(38)
SYN I.5(4)
syntactic category 1.1.4(15)
syntax

complete listing N(1)
cross reference N(2)
notation 1.1.4(3)
under Syntax heading 1.1.2(26)

System.Max_Binary_Modulus 3.5.4(23)

Table 3.2.1(16), 3.6(28)
target

of an assignment_statement 5.2(3)
of an assignment operation 5.2(3)

target subtype
of a type_conversion 4.6(3)

term 4.4(5)
used 4.4(4), N(2)

tested type
of a membership test 4.5.2(3)

text of a program 2.2(1)
theorem_decl 3.12(12)

used 3.1(3), N(2)
throw (an exception)

See raise 11(1)
tick 2.1(16)
times operator 4.4(1), 4.5.5(1)
TM 8.5.3(6)
token

See lexical element 2.2(1)
transfer of control 5.1(14)
transition_annotation 3.12(9)
Traverse_Tree 6.1(38)
True 3.5.3(1)
type 3.2(1), M(30)
type conformance 6.3.1(15)
type conversion 4.6(1)

See also qualified_expression 4.7(1)
array 4.6(10), 4.6(36)
enumeration 4.6(34)
numeric 4.6(9), 4.6(29)

type conversion, implicit
See implicit subtype conversion 4.6(1)

type of a range 3.5(4)
type of an discrete_range 3.6.1(4)
type profile

type resolution rules / _subtype_definition AAVARM;5.0

Index 5 October 1995 Draft 240

See profile, type conformant 6.3.1(15)
type resolution rules 8.6(20)

if any type in a specified class of types is
expected 8.6(21)

if expected type is specific 8.6(22)
if expected type is universal or class-wide

8.6(21)
types

of a profile 6.1(30)
type_conversion 4.6(2)

used 4.1(2), N(2)
type_declaration 3.2.1(2)

used 3.1(3), N(2)
type_definition 3.2.1(4)

used 3.2.1(3), N(2)

UI M(31)
ultimate ancestor

of a type 3.4.1(10)
unary adding operator 4.5.4(1)
unary operator 4.5(10)
unary_adding_operator 4.5(5)

used 4.4(4), N(2)
unconstrained

object 3.3.1(10)
subtype 3.2(9), 3.5.1(11), 3.6(15), 3.6(16)

unconstrained_array_definition 3.6(3)
used 3.6(2), N(2)

underline 2.1(16), I.5(6)
used 2.3(2), 2.4.1(3), 2.4.2(4), N(2)

Uniformity Issue M(31)
Uniformity Rapporteur Group M(32)
universal type 3.4.1(5)
universal_integer 3.5.4(30)

[partial] 3.5.4(14)
unspecified L(1)
update

the value of an object 3.3(14)
upper bound

of a range 3.5(4)
upper_case_identifier_letter 2.1(7)
URG M(32)
usage name 3.1(10)
use-visible 8.3(4), 8.4(9)
user-defined assignment 7.6(1)
use_clause 8.4(2)

used 10.1.2(3), N(2)
use_package_clause 8.4(3)

used 8.4(2), N(2)

Val attribute 3.5.5(4), J(39)
value 3.2(10)
Value attribute 3.5(51), J(43)
value conversion 4.6(5)
variable object 3.3(13)
variable view 3.3(13)
vertical line 2.1(16)
view 3.1(7), M(11), M(33)
view conversion 4.6(5)
visibility

direct 8.3(2), 8.3(17)
immediate 8.3(4), 8.3(17)
use clause 8.3(4), 8.4(9)

visibility rules 8.3(1)
visible 8.3(2), 8.3(10)

within a use_clause in a context_clause
10.1.6(3)

within a with_clause 10.1.6(2)
within the parent_unit_name of a library

unit 10.1.6(2)

visible part 8.2(5)
of a package 7.1(7)
of a view of a callable entity 8.2(6)
of a view of a composite type 8.2(7)

Weekday 3.5.1(17)
within

immediately 8.1(13)
with_clause 10.1.2(4)

used 10.1.2(3), N(2)
mentioned in 10.1.2(6)

X 8.2(3), 8.2(12), 8.3(25)
xor operator 4.4(1), 4.5.1(2)

_subtype_definition
used 3.6(5), N(2)

