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Abstract

On today’s commodity internet, senders have no control over the path
that their packets take beyond the first hop. This aspect of today’s in-
ternet prevents many potential network policies from being implemented.
Source routing has been proposed as a mechanism to solve this prob-
lem, in which the sender chooses the path the traffic will take. How-
ever, previous approaches have either not enforced policies specified by
the sender, or have been prohibitively expensive in terms of computing
power. ICING-PVM addresses these concerns by efficiently implementing
source-based routing in a manner which allows path preferences to be
enforced. PoComON builds on top of ICING-PVM, and provides a transi-
tional overlay network to deploy ICING-PVM on today’s internet supporting
legacy applications.

1 Intro
1.1 — ICING-PVM

The current Internet provides a simple delivery mechanism: we put destination
addresses in packets and launch them into the network. We leave the network
to decide the path that our packets take and the intermediate providers that
the path passes through. Even network operators have little control over the
paths that packets take toward them, or after leaving them. There are times,
however, when senders, receivers, and operators would prefer to control packets’
paths—and be sure that their preferences are enforced.

For instance, if the fact of a communication (not just its content) between
sender and receiver is sensitive, they might want to select network providers
that they trust to be discreet. Or an enterprise might want a guarantee that
the packets that it receives have passed through several services, such as an
accounting service and a packet-cleaning service. Or a company might want

*Some of this document is borrowed (nearly) verbatim from the ICING-PvM USENIX Secu-
rity submission [25]. Sections/paragraphs that are borrowed are denoted with a — .
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Figure 1: ICING-PVM’s components and forwarding steps. @ In the general case,
the sender gets PoCs from the consent servers of all nodes on the path (in prac-
tice, a consent server can delegate PoC-issuing, making this step lightweight).
® The sender creates and sends the packet to the first ICING-PVM node, having
used the PoCs to construct tokens that ® each forwarder verifies and transforms
for its successors until @ it arrives at the receiver.

fine-grained control over which providers carry which traffic between its branch
offices, yet the network paths must respect the providers’ pairwise business
relationships.

The functionality above does not exist in the Internet today, though there
are proposals in the literature that address various aspects of the problem.

However, there is no general-purpose mechanism that enforces these policies
(short of allocating dedicated connections, which is extremely expensive).

ICING-PVM tries to fill that void. We describe a new networking primitive
that we call a PVM (Path Verification Mechanism). A PVM ensures that
the paths that packets actually take through the network respect the policies of
those handling the packets.

A PVM provides two properties:

1. Path Consent: Before a communication, every entity on the path of the
communication (including the sender and receiver) or a delegate of that
entity consents to the use of the whole path, based on the entity’s or the
delegate’s particular policy.

2. Path Compliance: On receiving a packet, every entity can ascertain (1)
that it or its delegate had approved the packet’s purported path, and (2)
that the packet has followed that path so far.

To validate our design, Jad Naous implemented ICING-PVM in hardware, on
the NetFPGA platform [I]. This implementation achieves a minimum through-
put of 3.3 Gbits/s at an equivalent gate cost of 54% more than a simple IP
forwarder running at 4 Gbits/s; thus, per unit of throughput, our 1ICING-PVM
implementation costs 86% more than IP. Our evaluation further suggests that,
if implemented on a custom ASIC (as in a modern router), ICING-PVM would
scale to backbone speeds at acceptable cost. The hardware component to ICING-
PVM is not a critical part of this paper, but it is mentioned to give a basis for
comparison with the software implementation.



1.2 Contributions

This thesis makes two primary contributions: implementing PoComON, and
revitalizing the source code base to a working state. These contributions are
detailed below.

1.2.1 Revitalization

A large component of the work I did on the project was revitalization of the
ICING-PVM source code to a working state, and getting a working experiment
setup. When I encountered the project for the first time, the code base was
undocumented, and there was no presently working experimental setup. I
had to figure out what each application in the repository did, and how all
the applications fit together. As part of my work on ICING-PVM, I figured
out how to get a working experiment, and documented the process. =~ When
I first started to work on ICING-PVM, there was an overlay forwarder imple-
mented, and basic send/receive programs implemented which did no encapsu-
lation/deencapsulation, and did not support bidirectional communication.

In later sections, I discuss some of the issues I encountered while getting
ICING-PVM’s overlay functionality working, and getting a working experiment
setup.

1.2.2 PoComON

One potential issue with ICING-PVM’s deployment is that it requires custom
hardware, and would not be usable on today’s internet without significant ar-
chitectural changes. To overcome this challenge, we implemented PoComON,
an overlay network that runs on top of UDP, allowing ICING-PVM traffic to pass
over the commodity internet. PoComON is compatible with existing legacy
applications.

PoComON is built on top of the overlay functionality present in ICING-
pvM. We adapted the overlay network to support receiving traffic from legacy
applications and delivering traffic to legacy applications. We also implemented
a path selection policy to demonstrate ICING-PVM’s functionality.

We demonstrate an unmodified ssh communicating with a remote host over
PoComON. We anticipate that PoComON will ease the deployment of ICING-
PVvM, allowing for a gradual transition.

1.3 Outline

Section 2 describes the ICING-PVM data plane, drawing from our previous USENIX
security submission. In Section 3, we give a brief overview of the ICING-PVM
control plane, the mechanism by which ICING-PVM determines paths. Section
4 gives an overview of PoComON, an overlay network developed to ease the
deployment of ICING-PVM. Section 5 provides an overview of the work needed
to revitalize ICING-PVM into a known good codebase with a working system.



2 — Overview of ICING-PVM

We now describe ICING-PVM at a high level, including its threat model.

2.1 Architecture and components

ICING-PVM can be the forwarding mechanism of a new network layer (analogous
to IP) or an overlay network ([5l [29] 19} 28], 30, (15 [10]). In both cases, a ICING-
PVM network comprises ICING-PVM nodes, which enforce Path Compliance.
In the network layer case, ICING-PVM nodes would be deployed by network
providers at the ingress boundaries of their networks; internally, forwarders
need not implement ICING-PVM. This scenario is default-off, which necessitates
careful bootstrapping; the details are beyond this thesis’s scope, but similar
problems have been treated elsewhere [6], [31] [23]. In the overlay case, the ICING-
PVM nodes are waypoints interconnected by the underlying network (IP) and
deployed by providers. This section is agnostic about the deployment scenario;
the ICING-PVM nodes are the machines that participate in ICING-PVM, possibly
including end-hosts.

To communicate with a receiver, the sender assembles a path of nodes.
ICING-PVM is concerned with forwarding and is orthogonal to path retrieval
(routing). How senders retrieve paths depends on the scenario; the options
include querying DNS to get a path (instead of an IP address), purchasing
access to a remote ISP via its Web site, static configuration , using a gateway
that participates in a routing protocol, etc.

This thesis mostly assumes that the sender has candidate paths in hand.
Figure [1| summarizes ICING-PVM’s forwarding. For each node on the path, the
sender requests from the node’s provider a Proof of Consent (PoC). The
PoC certifies the provider’s consent to carry packets taking that path. The
sender uses the PoCs to construct packet headers.

PoC creation is implemented by a consent server owned by the provider,
or acting on its behalf. Consent servers are implemented on general-purpose
servers; this allows policies to be flexible, fine-grained, and evolvable [13 [8], [,
T4l 28]. At present, the consent server is merged with the path server. In our
current implementation, the path server is hardcoded with each node’s private
credentials, and thus is is able to mint PoCs on behalf of any host on our
sample network. This limitation could be fixed by implementing key delegation,
something we intend to do in the future.

The ICING-PVM nodes downstream of the sender ensure that packets follow
approved paths. This job decomposes into three tasks: (1) the node checks that
a path is approved; (2) it checks that the path is being followed; and (3) it proves
to downstream ICING-PVM nodes that it has seen the packet. Later, we describe
in (sometimes annoying) detail how ICING-PVM nodes perform these functions.
The high-level construction is depicted in Figure It relies on PoCs and on
Proofs of Provenance, or PoPs. PoPs allow upstream nodes to prove to
downstream nodes that they carried the packet. These proofs require pairwise
PoP keys, but these keys do not require significant configuration state, as



Pl No | M| N | N No | Mi | Vo | N

Vi| AiePoPo;1 Ai1e PoPo,1

Vo | Aze PoPog Az @ PoPg sPoP1 2

Vs | Ase PoPos Az e PoPg sPoP1 sPoPs 3
Payload Payload

e i

2] 4]

Figure 2: Simplified 1ICING-PVM packet at steps @ and @ from Figure [1I Two
crucial header fields are the path (P) and the verifiers (V;’s). The sender (Ny)
initializes the verifiers with path authenticators (A;’s) derived from the PoCs
and the packet content. Each node N; checks its verifier (V;) and updates those
for downstream nodes (V; for j > ¢) to prove that it passed the packet. PoP; ;
is a proof to N; that N; has carried the packet.

nodes derive the keys from their IDs.

2.2 Goals and non-goals

ICING-PVM seeks to provide a PVM’s two properties, Path Consent and Path
Compliance. We refine these properties into the following requirements for
ICING-PVM:

e Delegation: A consent server must be able to delegate its path approval
function.

e Path Consent: When a node receives a packet with path P, it must be able
to verify that its consent server, or a delegate, approved P.

e Path Compliance: When a node N; with index ¢ in path P receives a
packet with path P, the node must be able to verify that the packet was sent
by the purported sender (index 0) and has been forwarded by each of the
nodes at indices 1,2,...,4—1, in that order.

ICING-PVM is designed to meet the above requirements while being amenable
to an affordable high-speed hardware implementation and while not requiring
a central authority, PKI, or significant configuration state. Our threat model,
which is strongly adversarial, gives us further constraints. We describe this
model in the next subsection and now list some functions that ICING-PVM is not
designed for.

The statement of Path Compliance does not guarantee a packet’s future.
After a packet departs a node, any downstream node can send it anywhere. It
seems extremely hard to prevent such misbehavior in our environment; what
ICING-PVM can do is detect it. Indeed, honest nodes do not accept a packet
that has not followed its approved path. Thus, an upstream node can compare
counts of accepted packets (for a given path) at itself and at a downstream node
that it trusts.



If the first count is larger than the second, there is a problem between the two
nodes. This can be caused by a number of different issues. For example, either
node(or an intermediary node) could have violated the ICING-PVM protocol.
However, it is also possible that each node was obeying the protocol, and a
packet was dropped. Thus, a difference in counts does not necessarily imply
that deviant behavior has occurred.

Similarly, an ICING-PVM node can copy packets elsewhere, or pass packets
through a hidden node. These, too, seem very hard to prevent in a federated en-
vironment. However, unlike in the status quo, ICING-PVM senders and receivers
can choose their path—and can include only nodes that they trust not to leak
their packets. This choice and encryption are complementary: encryption pro-
tects the content of the communication, and (as noted earlier) ICING-PVM gives
endpoints the ability to keep discreet the fact of the communication.

ICING-PVM does not attempt to provide authenticated information about
the location of silent errors or failures on the path. It also does not provide
information about whether a packet received any contracted-for services at a
node.

In its current form, ICING-PVM makes a binary decision about whether a path
is acceptable; it does not regulate the amount of traffic sent along a path, or
associated to a PoC. Other work [31] has shown how to perform such accounting
with minimal forwarder state, and ICING-PVM could be extended to incorporate
this technique.

2.3 Threat model

Machines that obey the protocol we term honest. We assume that some providers,
nodes (including end-hosts), and consent servers are not honest and specifically
that they are controlled by attackers. These machines can engage in Byzantine
[22] behavior that deviates arbitrarily from ICING-PVM’s specified packet han-
dling. For instance, the attacker can send arbitrary packets or try to flood links
to which it connects. The attacker can also observe legitimate data packets
that pass through it. We make no assumptions about how malicious nodes are
implemented: they may connect to one another and be controlled by a single
attacker, or they may collude, potentially bracketing honest nodes on paths.
Furthermore, even honest machines may give service to malicious parties; for
instance, a consent server can grant PoCs to an attacker.

The attacker tries to make ICING-PVM fail some of its goals (Section[2.2)), for
instance trying to abuse the delegation mechanism, or trying to make an honest
node N; accept a packet whose path was not approved by (a delegate of) N;’s
consent server or whose actual path skipped some of the honest nodes upstream
of N; in the approved path.

We make security assumptions about several cryptographic primitives used
by our implementation: that AES-128 [27] is a secure keyed pseudorandom
function with full 128-bit security, that PMAC [7] is a fully secure deterministic
MAC that is also a secure keyed pseudorandom function, and that CHI [16] is
a secure hash function even if the hash is truncated to 248 bits.



2.4 Naming

Each 1CING-PVM node assigns itself an identifier, called a node ID, that is a
unique public key. The node retains the corresponding private key. With such
self-certifying names [24, [4], an entity does not need permission to create a
name for itself, so a central naming authority or PKI is not needed. This fits
the Internet’s federated structure.

A path is a list of node IDs, each associated with a path-specific tag. A tag
is an identifier that has local meaning to the node and its provider; it describes
specific handling or a service to apply to the packet. For example, a tag can
describe a priority level for queuing, identify a customer to bill, select an output
link, request virus-scanning services, or specify a combination of these. It can be
thought of as a generalized MPLS label [I1] (and shares some functionality with
the vnode mechanism in [I2]). The provider conveys the particular meaning of
a tag on a node to the users of that tag through some out-of-band means, such
as an agreement with the user or a Web page.

2.5 Proofs of consent (PoCs)

When presented with a path, a node’s consent server checks that the path com-
plies with the provider’s policy, perhaps by incorporating external information
(billing, authentication, etc.). If so, the consent server creates a PoC and returns
it to the sender. A PoC permits the sender to transit the node only using the
given tag. It includes a cryptographic token, specific to the path and computed
under a tag key that is unique to the given node ID and tag. This key is also
known to the node. Consent serving is flexible. A provider with multiple ICING-
PVM nodes can deploy a single consent server. Or a provider can delegate the
ability to create PoCs for a particular node and tag by divulging that tag’s key.
The recipient of the key can then mint PoCs that give a sender permission to
send traffic through the given node and tag. Or a provider can disintermediate
itself altogether by disclosing all of its tag keys.

2.6 Packet creation and proofs of provenance (PoPs)

As mentioned above, the sender obtains PoCs for the ICING-PVM nodes on its
chosen path. It uses these PoCs to construct the packet header. The construc-
tion is such that a node N, given a packet, can tell whether the sender held a
PoC issued by N’s consent server. The sender also computes PoPs for each of
these nodes; a PoP proves to a node that the sender created the packet. A PoP
includes a MAC of the packet under the shared symmetric PoP key.

These shared PoP keys do mot require the network to be configured with
pairwise keys. Instead, a ICING-PVM node (such as the sender) derives the PoP
key that it shares with any other node from its own private key and from the
other node’s ID (which is a public key). The derivation uses a non-interactive
Diffie-Hellman key exchange, and a node caches the results.



2.7 Packet processing: Verification and forwarding

Each node that receives the packet:

1. computes the PoC from the packet header and the tag key that the node
shares with its consent server;

2. derives the PoP keys that it shares with the upstream nodes (which it can
do from their IDs in the header);

3. computes the MACs of the packet (PoPs) under those PoP keys; and

4. checks that the PoC and PoPs are correct.

The PoPs computed in step 3 prove to the node that the packet has passed
through all the upstream nodes (including the sender). If the PoC is correct
and the PoPs are all correct, then the packet has been following an approved
path. Otherwise, the node drops the packet. If the checks pass, the node has
to prove to downstream nodes that it has seen the packet. To do so, the node:

5. derives the PoP keys that it shares with the downstream nodes (again from

IDs in the header);

6. computes additional PoPs under those PoP keys;
7. inserts the PoPs into the header; and
8. forwards the packet to the next node.

As so far described, packet header size appears quadratic in the length of
the path. However, the header size is in fact linear in path length: owing to the
packet handling algorithm, when the node receives a packet, the PoC and the
PoPs that it inspects in steps above are XORed together in an aggregate
MAC; this approach reduces space while protecting the security of each of the
components [I§].

3 Overview of control plane

3.1 Overview

The data plane, described in the previous section, details how traffic passes
through forwarders. At each forwarder, the data plane’s role is to verify that
traffic is following its prescribed path. By contrast, the control plane’s role is
enumerating and deciding between paths. The control plane consists of three
pieces:

1. The client, which requests possible paths to a host, and determine which
path to send data over, based on whatever policies it implements.

2. The path server, which returns a list of possible paths to clients.

3. The sIRP routers, which propagate routing information about paths to
path servers. sIRP is not currently implemented, and is described in the
future work section.



3.2 Client

The sender of traffic is responsible for choosing between paths returned by the
path server. It can do so based on whatever policies it wants. For example, the
client might decide that it doesn’t want paths to pass through a non-friendly
government (for example, the US DoD may decide that it does not want traffic
to pass through a disliked nation).

3.3 Path server

The path server is responsible for returning possible paths to a given host. A
client requests paths by sending an RPC to the path server containing two
arguments. First, it provides the name of the host it wants to reach. Second, it
provides list of partial paths which the client has consent to use. Upon receiving
the RPC, the path server performs a ‘join,” concatenating paths that have an
intersecting suffix and prefix, using the partial paths provided by the client and
the paths contained in the path server’s path database. For example, client A
can specify that it can connect to node B, and may ask for a path to node C.
The path server knows of a path from B to C, and joins the partial path supplied
by the client with a second partial path supplied by the path server, completing
the path. The path server then returns this list of concatenated paths to the
client. Communication between the client and the path server happens over
vanilla UDP, out of band from ICING-PVM.

The path server’s path database is currently hardcoded, because of the fact
that sIRP is presently unimplemented.

The path server implements two RPC calls:

e find_pathto_ps(host, partialpaths), used for bootstrapping a path to the
path server. This is unused in our current implementation of ICING-PVM.

e find_pathto_host(host, partialpaths), which a client invokes to get an
ICING-PVM path to a host. The partialpaths argument specifies the paths
which the client is aware of. The path server performs a ‘join’ between
the partialpaths and the pathserver’s path database (as described above),
resulting in a list of paths to the host. The path server then returns the
list of paths to the client. In our current implementation, PoCs are also
minted by the path server on behalf of nodes. In addition to returning a
path, this call also mints PoCs for the path.

3.4 Consent server

A consent server is responsible for minting PoCs and distributing them to
clients. The criteria for deciding whether to mint PoCs for a client is undefined
in the ICING-PVM protocol; the maintainer of the consent server can choose
to implement whatever policies are desired. In the simplest implementation,
each node could have a consent server, but this is not practical in a production
environment; it would mean that for each communication path, the client would



Legacy Legacy

app(e.x. ssh) app(e.x. ssh)

Encapsulator Forwarder 1 Forwarder n Deer

Path server

Figure 3: A high level overview of how the components of PoComON fit to-
gether. The legacy application sends traffic to the encapsulator, which hands
traffic to a forwarder, using the path server to find an appropriate path. The
forwarders keep handing off traffic to each other using the prescribed path until
the packet reaches the destination, at which point the deencapsulator sends the
encapsulated IP traffic to the local host.

have to ask each node along the path for PoCs. To mitigate this issue, the 1CING-
PVM protocol supports tag prefix delegation. The details of tag prefix delegation
are beyond the scope of the paper, but can be found in [25].

Currently, the consent server is unimplemented. The path server fills its
void, minting PoCs on behalf of all nodes in the network.

4 PoComON

4.1 Overview

One of the limitations to deployment for ICING-PVM is that it requires support
from every node along the path. Each node must be able to issue PoCs and
verify their presence. This need for network support limits the ability of ICING-
PVM to be deployed on today’s internet.

As mentioned in Section PoComON solves this roadblock to deployment
by implementing an overlay network [I7], on top of which ICING-PVM runs. The
overlay network runs at the Application Layer, on top of UDP(as opposed to
ICING-PVM, which runs at the Internet Layer, on top of Ethernet). PoComON
could conceivably run at the Transport Layer on top of IP, but we chose to run
it over UDP for convenience.

A high-level picture of the architecture of PoComON can be seen in Fig-
ure 3] Bidirectional communication follows a similar flow, except in the reverse
direction.

10



4.2 Design

As shown in Figure [3] PoComON consists of three pieces: the Encapsulator,
the Forwarder, and the Deencapsulator. The Encapsulator is responsible
for packaging up legacy IP traffic into an ICING-PVM packet, and sending it
over a UDP socket to a Forwarder. The Forwarder is responsible for passing
traffic to the next ICING-PVM node in the path, either over UDP or through
custom hardware. The Deencapsulator is responsible for routing the traffic to
its final destination, either over the commodity internet, or by delivering it to
the machine the Deencapsulator is running on. PoComON is designed on top
of Click [21], making use of prebuilt Click element to ease development.

4.3 Encapsulator

The Encapsulator is built as a combination of a new Click element, several
pre existing click elements, and a Click configuration file. Its operation can be
summarized with the following steps:

1. Receive IP packet over tun interface running on local host.
2. Determine hostname of destination ICING-PVM overlay node.

3. Find path to destination ICING-PVM overlay node, in terms of ICING-PVM
nodes.

4. Get PoCs for nodes along the path.

5. Encapsulate IP packet in ICING-PVM packet with PoCs generated in pre-
vious step.

6. Send ICING-PVM packet over UDP socket to next hop in path.

There are a number of subtleties to the above steps. In step (1), the OS kernel
must route the packets to the tun interface setup by Click. To accomplish this,
we added in entries to Linux’s routing table to force traffic destined for specific
IP addresses through the tun interface. Specifically, we ran: sudo route add
-host REMOTE-IP gu 1.0.0.1 tun0. REMOTE-IP is the destination
IP address, on the commodity Internet, of the host to which we want to send
ICING-PVM traffic. 1.0.0.1 is used as the gateway, since it is the address of the
tunO interface. Routing packets through this IP sends them to Click.

To accomplish step (2), the sender does a destination IP prefix — ICING-
PVM hostname mapping. In ICING-PVM, the hostname maps to a node 1D,
similar to how, on DNS and IP, a hostname maps to an IP address. In our
implementation of PoComON, the mapping is hardcoded, but it could easily
be made dynamic by using a dynamic lookup table(for example, a hash table),
instead of hardcoding the mappings.

In step (3), the sender issues an RPC to the path server, which returns a list
of possible paths to the destination host. The RPC is done using sfslite’s [2] RPC
facilities over a TCP connection with the path server. The connection happens
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completely out of band, separate from ICING-PVM. The encapsulator then makes
a decision about which path to take, based on whatever policies it decides to
implement. In our PoComON implementation, we tested two policies for path
selection: minimum length path, and maximum length path, and verified that
traffic passed through the appropriate nodes.

In step (4), the sending machine mints PoCs; it is hardcoded with all of
the information necessary to mint PoCs for any hosts it might encounter on
any path. This is something we wish to fix in the future by creating a consent
server, but we do not anticipate it affecting performance significantly.

In step (6), the next hop is determined by hardcoded values in the Click
configuration file. We believe this represents a realistic deployment scenario: a
customer likely always sends a packet directly to its ISP as the first hop. It
would not be hard to have the encapsulator send packets to one of multiple
forwarders, based on a path.

4.4 Forwarder

The Forwarder’s job is to route the ICING-PVM packet to its next hop in the
overlay path, either over the commodity Internet using a UDP socket, or over
custom ICING-PVM hardware directly connecting the two nodes. The forwarder
is implemented as a combination of a Click configuration file and several Click
elements.

The Forwarder’s actions can be summarized in the following steps:

1. Receive ICING-PVM packet, either over a UDP socket, or over custom
ICING-PVM hardware.

2. Verify past nodes’ PoPs are correct.
3. Verify that the current node’s PoC in the packet is correct.

4. Attach a PoP to the packet, to show future nodes that the packet has
passed through the forwarder.

5. Advance the hop ID in the packet.

6. Send the packet to the next forwarder or deencapsulator, either over a
UDP socket, or over custom ICING-PVM hardware.

If a packet fails any of the verification steps, either for PoPs of past nodes,
or the PoC of the present node, the packet is dropped. In the future, we hope to
be able to notify the sender that its packet was dropped, but we do not support
this at present.

The forwarder currently does not support ICING-PVM hardware, since there
are still several bugs relating to hardware-software interaction.

12



4.5 Deencapsulator

The Deencapsulator, as with the Encapsulator and Forwarder, consists of sev-
eral Click [20] elements and a Click configuration file. Its operation can be
summarized in the following steps:

1. Receive packet from UDP socket or ICING-PVM hardware.
2. Verify the PoPs of past realms.
Verify the PoC of current realm.

Deencapsulate the TP packet contained inside the ICING-PVM packet

oo W

Rewrite the destination IP address to 1.0.0.1(which is the tun0O interface’s
address)

6. Send the packet over the tun interface.

As with the forwarder, ICING-PVM hardware is not currently supported, for
the aforementioned reasons.

The current implementation of the Deencapsulator (as described by the steps
above) sends the packet to the local machine. We have implemented a version of
a Deencapsulator which sends the packet over the eth0 interface, but found that
it was difficult to deploy due to the fact that the gateway on the local network
inspects the source IP to see that the packet came from a local computer. We
tried modifying the source IP, but with this modification, the destination host
had no way to reply to the packet, since it didn’t know who sent it. This
limitation could be lifted if we had control over the router, but we did not, due
to the fact that we were running our evaluation experiments on Amazon’s EC2
service.

5 Experimental Evaluation of ICING-PVM

5.1 Experimental setup

We ran our experiments on Amazon’s EC2 cloud computing service [3]. We
chose to do this because it was easy to get up and running, and because if
needed, we could scale up to many nodes quickly and inexpensively.

We used five medium 32-bit EC2 instances (six in some experiments), medium
being the fastest 32-bit instance type we could use. We chose 32-bit instances
because we have only qualified ICING-PVM to run on 32-bit machines. In the
future, we hope to qualify ICING-PVM against 64-bit instances.

The five instances communicate over a private (to Amazon) gigabit network
in Northern California. In order to provide a more realistic deployment scenario,
we hope to spread our instances geographically in the future.

A diagram of the layout of the instances can be seen in Figure [4]
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Figure 4: Experimental setup for our baseline experiment. The arrow in the
triangular shape represents a direct bididrectional link between aws2 and aws4.

5.2 Performance

Performance was not a primary objective of our first implementation of PoComON,
but we report it anyway, to show how a (relatively) unoptimized implementa-
tion performs. We did several experiments to evaluate performance, which are
detailed below. All of our performance data has been gathered in 50-packet
intervals. We discard the first throughput measurement, and use the next 1000
for data. The rest of the data is discarded.

5.2.1 Baseline

Our “baseline” setup was 5 Amazon medium EC2 instances. The instances
communicated in a linear fashion: aws1 talked with aws2(bidirectionally); aws2
talked with aws3 (bidirectionally), etc.

We also constructed a path directly from aws2 to aws4. This created a
secondary path for traffic from the sender to receiver, and enabled us to test
path selection.

We ran the path server on the first instance(named aws1), the forwarder
ran on aws{2-4}, and the deencapsulator on aws5. We also ran a “receive”
program on awsb which counts the packets received and reports throughput.
We executed a “send” program on awsl, which simply sent out 4-byte UDP
packets to the receiving host.

The experimental setup can be seen in Figure [

We received a mean throughput of 2628.62 packets per second(z = 2408.91,
o = 1243.16). The distribution of the data can be seen in Figure
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Figure 5: Data distribution for our baseline experiment.

5.2.2 Dedicated path server

Our next experiment consisted of running our baseline experiment, with the
exception of having the path server be on a dedicated machine, aws6. We
show the experimental setup in Figure [} We expected throughput to go up,
considering that the path server was a bottleneck in the baseline experiment.

Surprisingly, the throughput decreased when we made the path server ded-
icated. Our data had a mean throughput of 1271.08 packets per second(z =
1258.91, o = 223.69). We suspect this is due to the fact that the communica-
tion cost between the two servers was significantly higher than the computation
cost to generate PoCs. The standard deviation in this experiment was much
lower than the baseline. We suspect that Click and the path server competing
for scheduler time caused the large standard deviation. The distribution of the
data can be seen in Figure [7]

5.2.3 Path caching

Our following experiment tested throughput with path caching. In this exper-
iment, we used the same setup as the previous experiment, but modified the
sender to only request path information from the path server once; after the ini-
tial request, the information would be reused. This had the effect of eliminating
the control plane’s performance from the results; effectively, only the data plane
was measured.

Unsurprisingly, our throughput went up enormously with this experiment.
Our mean throughput was 6439.66 packets per second, (z = 5725.09, ¢ =
3056.92). The standard deviation was relatively high, suggesting that the data
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Figure 6: Experimental setup for our dedicated path server experiment. The
arrow in the triangular shape represents a direct bididrectional link between
aws2 and aws4.
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Figure 7: Data distribution for our dedicated path server experiment.
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Figure 8: Data distribution for our path caching experiment.

plane had a high variance in throughput. The distribution of throughput for
this experiment can be seen in Figure

5.3 Path selection

We modified the path server, and forwarders to create a path that bypassed
aws3, to simulate path selection. We then modified the encapsulator to choose
either the path with the minimum length (the path bypassing aws3) or the
maximum length (the path going through aws3). We verified that the correct
path was taken with tcpdump, by running tcpdump on aws3.

5.4 Attacks

One attack which we wanted to consider in our evaluation was a malicious
party sending a packet without valid PoCs. To test this, we configured the path
server to mint bogus PoCs for aws3. We verified with tcpdump that packets
which entered aws3 were not forwarded to the next machine. This showed that
our implementation correctly dropped packets with malformed PoCs.

6 Revitalization
A large part of the project ended up being revitalization. I started the project

with nearly no documentation on how the system worked. Also, there was no
working experiment setup available to me at the time I joined the project. As

17



a result, I had to do a lot of investigation to figure out how the build system
worked, and how the execution environment was setup.

6.1 Execution environment

Figuring out the execution environment was particularly challenging. To start,
there were two path servers in the repository, one of which was working, and one
which was old and incompatible with the latest version of 1CING-PVM (I didn’t
know that to begin with). Second, there was no obvious program to talk with
the path server. I eventually discovered the programs i2tx and i2rx, which
sent and received packets over ICING-PVM respectively.

6.2 Build environment

Perhaps the most challenging aspect of getting up to speed with ICING-PVM
was the build environment. There were several arbitrary things that needed
to be done to get the build working. For example, the environment variable
D0_B163_LIB=1 needed to be set for MIRACL’s build to complete successfully.
This was not obvious, and I had to go searching through the Makefile to find
this out. I also had to figure out, by brute force, that I could only use GCC
4.3 or earlier to build the control plane, due to build errors on later versions of
GCC.

Another example of the build system’s lack of user friendliness is that MIR-
ACL’s headers needed to be patched after make install was run. The build
would not complete if the file was patched beforehand. This is due to a class
name conflict.

6.3 Bugs

Throughout the course of getting a working ICING-PVM setup working, I encoun-
tered a number of bugs in the code. In particular I encountered a heisenbug
which manifested itself when I added the STL to the project. I also encountered
a linker error that only manifested itself at -O0, and was masked by the fact that
builds were done at -O2 by default. These bugs took a nontrivial amount of time
to diagnose and fix, and were part of the revitalization I did with 1CING-PVM.

6.4 Documentation and automation

After dealing with the horrors of an undocumented system, I resolved that no
one would ever again experience the painful process of figuring out how to get
ICING-PVM working.

To do this, I wrote a 42-step, 69-line document explaining how to get the
control plane built. I also wrote up a set of Ruby scripts to automate getting a
working experiment setup. I plan to write a comprehensive document describing
how all of these pieces fit together in the near future.
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7 Future work
7.1 sIRP

One limitation of the current ICING-PVM and PoComON implementation is that
paths are hardcoded into the path server. This does not represent a realistic
deployment scenario, where paths may change as hosts enter and leave the
network. Today’s Internet has solved the problem of path determination with
routing protocols such as BGP.

A similar mechanism has been proposed for ICING-PVM: sIRP (Simple Icing
Routing Protocol). The protocol is relatively simple: in essence, each (back-
bone) node broadcasts nodes it can reach to other neighbors, and the propaga-
tion continues until each node has a view of the topology of the network. Node
departures are handled in a similar way: when a node loses a connection to a
neighbor, it broadcasts this information to neighbors, who in turn broadcast
this information to their neighbors, until the network is aware of the node’s
departure.

sIRP ensures valley free routing by assigning neighbors to one of three cat-
egories: either a node is a provider, a peer, or a customer. Two connected
neighbors must agree upon their relationship before path information will prop-
agate between the neighbors. For example, Node A must agree that it is a
provider for node B in order for node B to claim it is a customer of node A.
As a rule, a customer will not propagate paths to peers, ensuring valley free
routing.

sIRP has been partially implemented. The future work would entail com-
pleting it and testing it.

7.2 DNS hackery

An annoying aspect to working with PoComON is that routes must be pre-
set in Linux’s routing table for each possible destination host. We propose a
mechanism [26] by which users could connect to hosts of the form tag.realm.
pocomon.net, and have the requests automatically routed over PoComON. This
would entail building a DNS server to create fake IP addresses(in the 1.x.x.x
subnet) for each tag/realm pair, and keep track of the mappings. The DNS
server also needs to communicate the mappings to the Encapsulator, so that
the encapsulator knows which node to send incoming traffic to. Adding this
DNS hackery would make using PoComON a much easier experience for users.

8 Conclusion

Today’s routing policies limit the amount of control sends have over the path
that traffic takes. ICING-PVM introduces a new protocol that enables more
flexible routing policies, allowing senders to specify paths. However, ICING-PVM
is relatively hard to implement over an existing network. PoComON makes it
feasible to deploy ICING-PVM on today’s internet, by implementing ICING-PVM
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on top of an overlay network running over UDP. As a whole, for my thesis, I
developed PoComON, got a working setup of ICING-PVM, and documented the
system. PoComON is now in a working state, carrying legacy ssh traffic with
no modifications.
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