
UT-Austin Computer Architecture Seminar November 24,2003

Network ProcessingNetwork Processing

A Multi-Threaded Multi-Processor 
Application

A Multi-Threaded Multi-Processor 
Application

Mike O’Connor

oconnor@alumni.rice.edu

Mike O’Connor

oconnor@alumni.rice.edu



UT-Austin Computer Architecture Seminar November 24,2003

What is Network Processing?What is Network Processing?

Many people have different definitions…
Look at the applications…

Many people have different definitions…
Look at the applications…

I shall not today attempt further to define the kinds of material I
understand to be embraced within that shorthand description; 
and perhaps I could never succeed in intelligibly doing so. 
But I know it when I see it... 

- Potter Stewart, Associate Justice, US Supreme Court
JACOBELLIS v. OHIO, 378 U.S. 184 (1964)
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Network Processing 
Applications
Network Processing 
Applications

WAN/LAN Switching and Routing,
Multi-service/Multi-layer Switches/Routers
Web/server Load balancing
QoS solutions
VoIP Gateways
2.5G and 3G wireless infrastructure Equipment
Security - Firewall, VPN, Encryption, Access control
Storage Area Networks

Characteristic these applications share:

Processing of packet-based digital                
networking data
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Typical Router Per-Packet ProcessingTypical Router Per-Packet Processing

Layer 2 Processing
– Ethernet, Validation, Control Packet Extraction

RFC 1812 Validation Checks
– TTL, Version, Length (Header, Min, Max), Valid Src/Dst IP

VPN Identification
– Interface / Sub-interface, Ethernet VLAN, MPLS

Source & Destination IP Lookups
Multi-Field Classification
– ACL, Filters, Billing, DiffServ BA

Policing & Statistics
– Interfaces Group of MIB II, DiffServ per color flows, MPLS 

flows
Load Balancing - ECMP
Full Packet Editing & Header Insertion
– Fragment, Replicate, Mirror
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“Plain” RISC with Hardware Assists“Plain” RISC with Hardware Assists
~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O 
Bandwidth

Millions of MIPS 
Instructions per Second 
Required

Wire-Rate Processing
(Full Duplex)

~30000 MIPS

~3000 MIPS

~300 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps
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Significant Parallelism NeededSignificant Parallelism Needed

As packet rates increase, the packet arrival time diminishes 
to the point where multiple packets have to be processed 
by the NPU concurrently, in order to achieve wire-rate 
performance
Multiple packet contexts are required to hide packet 
processing latency at progressively higher data rates

As packet rates increase, the packet arrival time diminishes 
to the point where multiple packets have to be processed 
by the NPU concurrently, in order to achieve wire-rate 
performance
Multiple packet contexts are required to hide packet 
processing latency at progressively higher data rates

33 ns

333 ns

3333 ns

Packet Inter-
arrival Time

Parallel Contexts 
Required

Wire-Rate 
Processing (FDX)

100

10

1

10GbE / 30Mpps

1GbE / 3Mpps

100MbE / 300Kpps

Assumes constant 3.3usec latency to process a given packet
– In practice, with more threads, latency per packet increases due

queuing delays resulting from contention between threads 

Assumes constant 3.3usec latency to process a given packet
– In practice, with more threads, latency per packet increases due

queuing delays resulting from contention between threads 
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Silicon Access Networks
iFlow Packet Processor
Silicon Access Networks
iFlow Packet Processor

True 20Gbps network processor
– 20Gbps in + 20Gbps out 

• (not “Cisco Math” where 10 in + 10 out = 20)
Targeted at core routers supporting wide range of 
protocols and functions
– Cisco GSR12000 or Juniper T640-class boxes

Multi-threaded/multi-processor architecture 
Custom, optimized network specific instruction set
Handles 30-50M packets per second
– Full Duplex 10GE or OC-192
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Goals for iFlow 
Architecture
Goals for iFlow 
Architecture

Simple to program
Scale architecture easily from 2.5Gbps to 
40+Gbps without requiring software 
rewrite
Serve a wide variety of application points

Simple to program
Scale architecture easily from 2.5Gbps to 
40+Gbps without requiring software 
rewrite
Serve a wide variety of application points
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How to Organize the 
Chip?
How to Organize the 
Chip?

Several options for 
getting the necessary 
number of packets 
being processed in 
parallel
Represent 
“ideological” points-
of-view
– Real chips tend to 

blend these

Several options for 
getting the necessary 
number of packets 
being processed in 
parallel
Represent 
“ideological” points-
of-view
– Real chips tend to 

blend these
Optimized 

for 
performance

/flexibility

naAd-Hoc

Optimized 
for HW 
costs

Like 
But trying 
to make 

SW a little 
easier

Pipelined

naSimple to 
program

Parallel

O
rganization

SpecializedIdentical

Processor Type
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Parallel/Identical OrganizationParallel/Identical Organization

Each processor/thread context pair “owns” a packet for 
it entire processing lifetime
Programming model is as if writing for a single thread
– Known as a “Run-to-Completion” programming model

Pros:
– Straightforward to analyze and debug
– Scales across different implementations with minimal code 

changes
– Graceful performance degradation with additional functionality
– Performance not dependant on programmer skill to identify 

parallel activities
– Reduces need for high-bandwidth inter-processor communication

Cons:
– All processors must be able to execute all code, reducing some 

implementation optimization opportunities
– Without lots of high-bandwidth inter-processor communication, 

some things are hard
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Pipelined/Specialized Org.Pipelined/Specialized Org.

Each processor/thread context pair “owns” a packet for a slice of 
its lifetime, before handing it to the next PE
– Different processors can be adapted to tasks common in certain phased 

of packet processing – e.g. classification, editing, etc.
Pros:
– Processors can be optimized for given tasks, without “carrying extra 

baggage” – basically how most NP ASICs are architected
– high-bandwidth inter-processor communication limited to neighbors in 

pipeline
– More effective code space since processors are specialized to specific 

parts of the packet processing workload – all processors do not need to 
see all the code

Cons:
– Performance dependant on programmer skill to “load-balance” 

pipestages – throughput is limited by slowest stage 
– Different processors for each class of task require programmer to master 

several different target processor types
– Ratio of different types of specialized processors may not reflect 

application workload
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Cons:
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pipestages – throughput is limited by slowest stage 
– Different processors for each class of task require programmer to master 

several different target processor types
– Ratio of different types of specialized processors may not reflect 

application workload
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Pipelined/Identical OrganizationPipelined/Identical Organization
Each processor/thread context pair “owns” a packet for 
a slice of its lifetime, before handing it to the next PE
Like Pipelined/Specialized but without the problems of 
guessing right ratio of each processor type and forcing 
programmers to learn multiple target architectures
Pros:
– high-bandwidth inter-processor communication limited to 

neighbors in pipeline
– More effective code space since processors are dedicated to 

specific parts of the packet processing workload – all processors 
do not need to see all the code

Cons:
– All processors must be able to execute all code, reducing some 

implementation optimization opportunities
– Performance dependant on programmer skill to “load-balance” 

pipestages – throughput is limited by slowest stage
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Ad-Hoc/Specialized Org.Ad-Hoc/Specialized Org.
Not as simple as the previous examples
Each processor/thread context pair “owns” a packet for a variable 
amount of its lifetime, handing it to the other PE’s as need arises
– Different processing elements can be adapted to tasks common in 

certain phases of packet processing – e.g. classification, editing, etc.
Pros:
– Maximum performance and flexibility
– More effective code space since processors are dedicated to specific 

parts of the packet processing workload – all processors do not need to 
see all the code

Cons:
– High-bandwidth inter-processor communication required as any 

processor may pass handling a packet to any other processor
– Performance dependant on programmer skill to “load-balance” and 

schedule different resources – a complex task 
– Different processors for each class of task require programmer to master 

several different target processor types
– Ratio of different types of specialized processors may not reflect 

application workload
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iFlow Packet Processor 
Approach
iFlow Packet Processor 
Approach

Programmable elements take a 
Parallel/Identical organization 
Hardwired Coprocessors for different 
specialized processing elements for 
common tasks in certain phases of packet 
processing – e.g. classification, editing, 
etc.
Interconnection between Coprocessors is 
“Ad-Hoc” though a large switch
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iFlow Architectural
Partitioning
iFlow Architectural
Partitioning

Significant Editing
– Routing
– Protocol Translations
– Encapsulation Changes

Complex Parsing
– Layer 3 followed by 4, 5 

etc.

Complex Conditionals
Multi-Pass Packet Ops
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– Routing
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– Encapsulation Changes

Complex Parsing
– Layer 3 followed by 4, 5 

etc.

Complex Conditionals
Multi-Pass Packet Ops

PROCESSOR COPROCESSOR

Bounded Lookups
36-, 48-, 288-bits etc.

Accounting/Policing
Simple arithmetic ops 
based on a lookup result

Simple request/response 
interaction with NPU

Bounded Lookups
36-, 48-, 288-bits etc.

Accounting/Policing
Simple arithmetic ops 
based on a lookup result

Simple request/response 
interaction with NPU

iFlow Coprocessor Functions:
Address Lookup
Flow Lookup
Accounting
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Optional QDR SRAMOptional QDR SRAM

Basic Data Flow ExampleBasic Data Flow Example

ON-CHIP PACKET
BUFFER

PACKET EDIT /
DISPATCH

iAtom
PROCESSOR

ARRAY

256K
ADDRESS

TABLE

Assoc
Memory

Lookup Engine

Ternary
CAM

36K x 144-bit keys
24K x 216-bit keys
12K x 432-bit keys

Assoc
Memory

Stats Engine with
Policing

Stats/Policing SRAM
1.1M 21-bit counters
512K 42-bit counters

ARBITER ON-CHIP
RESOURCES

iAP Address Proc iCLClassifier iAC Accountant

SPI 4.2 SPI 4.2

High-Speed Coprocessor 
Channel (HCC)

Range Match

Optional QDR SRAMOptional QDR SRAM
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iAtom Processors
(4)

333MHz
iAtom Processors

(4)
333MHz

iAtom Processors
(4)

333MHz

Inside the iPP ChipInside the iPP Chip

Packet 
Buffer
(2 Mb)

RX Packet 
Dispatcher

High Speed Coprocessor Control (HCC)
LVDS 8bits at 400MHz DDR (6.4 Gbps)6.4 Gbps)

Packet
Extract

Packet
Insert

MPBX
Accelerator

Packet 
Arbiter

Packet 
Updates

Order 
Enforcer TCAM

1Kx72/
512x144

SRAM
(2 Mb)

Arbiter

TX

Instruction 
Store 
SRAM

PCI 32 bits @ 
33/66MHz

Data Path RX 
Interface  
2 x SPI4.2

25Gbps RX

Data Path TX 
Interface
2 x SPI4.2
25Gbps TX

Optional Optional 
QDR QDR 

SRAMSRAM

SRAM
(2 Mb)

Hash 
Unit

4 iAtom 
8-Way

Processors
333 MHz
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On-Chip ResourcesOn-Chip Resources
Packet Buffer
– 240K Bytes
– Performs Re-assembly for up-to 21 logical connections
– No off-chip packet buffering needed

2 general purpose SRAM arrays
– 256K bytes each
– 128-bit internal bus width each
– Instruction store is separate (within iAtom)

General purpose Ternary CAM
– 72K (ternary) bits with 32K bits of associated data
– Keys up to 144 bits supported

Hash Unit
– Hashes 128-bit input to 2 32-bit keys using 2 different CRC polynomials
– Also includes a Modulo Engine for computing remainder of 8-bit divide

Resource Arbiter
– Full output-buffered switch maximizes useful bandwidth to on-chip and 

external resources

Packet Buffer
– 240K Bytes
– Performs Re-assembly for up-to 21 logical connections
– No off-chip packet buffering needed

2 general purpose SRAM arrays
– 256K bytes each
– 128-bit internal bus width each
– Instruction store is separate (within iAtom)

General purpose Ternary CAM
– 72K (ternary) bits with 32K bits of associated data
– Keys up to 144 bits supported

Hash Unit
– Hashes 128-bit input to 2 32-bit keys using 2 different CRC polynomials
– Also includes a Modulo Engine for computing remainder of 8-bit divide

Resource Arbiter
– Full output-buffered switch maximizes useful bandwidth to on-chip and 

external resources
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iAtom 
Network Instruction Set Core
iAtom 
Network Instruction Set Core

32 processors per iPP 
organized as
– 4 iAtom cores

• 8 processors per iAtom

8 threads per processor
– Total of 256 threads per iPP
– Can operate on 256 packets 

simultaneously

Highly optimized network 
instruction set

32 processors per iPP 
organized as
– 4 iAtom cores

• 8 processors per iAtom

8 threads per processor
– Total of 256 threads per iPP
– Can operate on 256 packets 

simultaneously

Highly optimized network 
instruction set

iAtom
Core
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iAtom ArchitectureiAtom Architecture
Each iAtom core contains:
– 8 network processor units
– 8 register files

• 8 thread contexts each
– Instruction store
– Arbiters for accessing off-iAtom 

resources
– MPBX: Massively Parallel 

Branch Accelerator

All processor elements are 
identical
Network processor units are 
simple, 6-stage pipelined, 
single issue processors

Each iAtom core contains:
– 8 network processor units
– 8 register files

• 8 thread contexts each
– Instruction store
– Arbiters for accessing off-iAtom 

resources
– MPBX: Massively Parallel 

Branch Accelerator

All processor elements are 
identical
Network processor units are 
simple, 6-stage pipelined, 
single issue processors
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Register FileRegister File

Packet Window General Purpose Registers

80 bytes (PWCAP = 10) 80 bytes

Packet Window General Purpose Registers

96 bytes (PWCAP = 12) 64 bytes

Register file is 160 bytes in size (per context)
– Not including various special registers (e.g. Condition Codes)

Registers are byte addressable
– Can be 1, 2, or 4 bytes
– No alignment restrictions

Register file holds window of packet data
– This window is configurable to be between 64 and 128 bytes
– Remainder is used as general-purpose registers

Register file is 160 bytes in size (per context)
– Not including various special registers (e.g. Condition Codes)

Registers are byte addressable
– Can be 1, 2, or 4 bytes
– No alignment restrictions

Register file holds window of packet data
– This window is configurable to be between 64 and 128 bytes
– Remainder is used as general-purpose registers
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Packet WindowPacket Window

Packet window logically appears as a sliding 
window over the packet data
– Physically organized as a circular buffer 
– Indexed indirectly via two offsets: P & Q

Multiple offsets into packet window enables 
same code to be used in multiple situations 
– Example: TCP processing can be identical code 

regardless of length of IP header

Packet window logically appears as a sliding 
window over the packet data
– Physically organized as a circular buffer 
– Indexed indirectly via two offsets: P & Q

Multiple offsets into packet window enables 
same code to be used in multiple situations 
– Example: TCP processing can be identical code 

regardless of length of IP header

PWCS        P                                    P+Q
(Packet Window 

Current Size)

q12b … q23b / p36b … p47b     Remainder of                      p0b … p23b registers                q0b … q11b / p24b … p35b    
(e.g. TCP header (cont) )               Packet         Invalid Locations                       ( e.g. IP header )              (e.g. TCP header start)                  
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Instruction Set OverviewInstruction Set Overview
47 instructions
– Most common RISC operations supported
– Several networking-specific operations
– Many unique to iAtom

Each instruction can handle any register width
– ‘add r6w = p11b, r4h’

Adds an 8-bit value to a 16-bit value and stores the result in a 32-bit 
value

Most instructions can also specify one  immediate
– ‘sub r2b = p8b, 1’ 

Subtracts 1 from the 8-bit value in the packet and stores the result in 
a general-purpose register

Move instructions can be conditionally executed

47 instructions
– Most common RISC operations supported
– Several networking-specific operations
– Many unique to iAtom

Each instruction can handle any register width
– ‘add r6w = p11b, r4h’

Adds an 8-bit value to a 16-bit value and stores the result in a 32-bit 
value

Most instructions can also specify one  immediate
– ‘sub r2b = p8b, 1’ 

Subtracts 1 from the 8-bit value in the packet and stores the result in 
a general-purpose register

Move instructions can be conditionally executed
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Networking Optimized 
Instructions
Networking Optimized 
Instructions

Some examples of instructions particularly useful in networking:
– Addchk – Checksum Addition

• One’s complement addition
• Used in checksum generation

– Subchk - Checksum Subtraction
• One’s complement subtraction
• Allows checksum delta’s to be computed for incremental edits

– Sllmrg – Logical Shift Left and Merge with Bit Mask
• Shift value from one register left,  selects a range of bits, and merges these 

with another register value
• For example, allows bits 11:3 of A to overwrite bits 28:20 of B.

– Kgen – Generate Key
• Generates a “key” to by used by subsequent lookup or MPBX operations
• Extracts 2 nibble-aligned ranges from input and appends them to key buffer
• Can be done repeatedly to build large keys

Some examples of instructions particularly useful in networking:
– Addchk – Checksum Addition

• One’s complement addition
• Used in checksum generation

– Subchk - Checksum Subtraction
• One’s complement subtraction
• Allows checksum delta’s to be computed for incremental edits

– Sllmrg – Logical Shift Left and Merge with Bit Mask
• Shift value from one register left,  selects a range of bits, and merges these 

with another register value
• For example, allows bits 11:3 of A to overwrite bits 28:20 of B.

– Kgen – Generate Key
• Generates a “key” to by used by subsequent lookup or MPBX operations
• Extracts 2 nibble-aligned ranges from input and appends them to key buffer
• Can be done repeatedly to build large keys
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iAtomC ExampleiAtomC Example

lookup  {rFlowId, rPolicingContext, rStatsId} =
{reqdesc, ip.da, ip.sa, ip.protocol, tcp.sp, tcp.dp, ip.tos}, HCC_1;

kgen r8h, p16w;
kgen p12w, p9b;
kgen q0h, q2h;
kgen p1b, null;
lookup %rd[2] = /*key buffer,*/ 0x48;

Compiles to 5 instructions
5 iAtom clock cycles to execute
Thread suspends waiting for coprocessor results
Results parsed in background according to result 
descriptor 2 and assigned to rFlowId, 
rPolicingContext, and rStatsId variables

Compiles to 5 instructions
5 iAtom clock cycles to execute
Thread suspends waiting for coprocessor results
Results parsed in background according to result 
descriptor 2 and assigned to rFlowId, 
rPolicingContext, and rStatsId variables

iAtomC implementation of a packet “5-tuple” lookup:iAtomC implementation of a packet “5-tuple” lookup:
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MPBX “if-then-else” AcceleratorMPBX “if-then-else” Accelerator

Massively parallel branch accelerator
– Up to 128, 88-bit wide compare and 

branch instructions simultaneously
– Think “giant parallel if-then-else”

Massively parallel branch accelerator
– Up to 128, 88-bit wide compare and 

branch instructions simultaneously
– Think “giant parallel if-then-else”

Significantly accelerates the 
execution of complex, bit-oriented 
conditional branching statements 
Implemented with local TCAM 
tightly coupled with processor

Significantly accelerates the 
execution of complex, bit-oriented 
conditional branching statements 
Implemented with local TCAM 
tightly coupled with processor

switch  {               
// IEEE 802.3ac tagged Ethertype        
case  dix.ethertype==ETH_TYPE_TAGGED && vlanEnabled.z: ReceiveError(IF_ERR_ETH_VLAN_DISABLED);
case  dix.ethertype==ETH_TYPE_TAGGED && maxVlan.gt:    ReceiveError(IF_ERR_ETH_INVALID_VLAN);
case  dix.ethertype==ETH_TYPE_TAGGED:                  EthernetTaggedType;
// Ethertype
case  dix.ethertype==ETH_TYPE_IP: EthernetRemoveEnetHdr(14,ETH_IP);
case  dix.ethertype==ETH_TYPE_IPV6: EthernetRemoveEnetHdr(14,ETH_IPV6);
case  dix.ethertype==ETH_TYPE_MPLS: EthernetRemoveEnetHdr(14,ETH_MPLS);
case  dix.ethertype==ETH_TYPE_ARP: ToCp(TOCP_ETH_ARP);
// IEEE 802.1 LLC/SNAP  (Ethertype < 0x800 indicating length)        
case  dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_IP &&

ieee.xaaaa==0xAAAA && x30.eq:                    EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_IP);        
case  dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_IPV6 &&

ieee.xaaaa==0xAAAA && x30.eq: EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_IPV6);
case  dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_ARP &&

ieee.xaaaa==0xAAAA && x30.eq: ToCp(TOCP_ETH_ARP);
case  dix.ethertype==ETH_TYPE_IEEE && ieee.ethertype==ETH_TYPE_MPLS &&

ieee.xaaaa==0xAAAA && x30.eq: EthernetRemoveIeeeHdr(14,ETH_IEEE | ETH_MPLS);       
default: ReceiveError(IF_ERR_ETH_UNKNOWN_PROT);

}

iAtomC implementation of Ethernet header parsing: 2 clocksiAtomC implementation of Ethernet header parsing: 2 clocks
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Coprocessor OperationsCoprocessor Operations
iAtom has extensive support for utilizing coprocessors
‘lookup’ instruction issues requests to coprocessors
– Keys built using ‘kgen’ instructions
– Specifies one of 64 result descriptors which specify where 

different fields reside in result data
– Coprocessor can be either on-chip or external
– Coprocessor operations which do not produce results like 

statistics increments are issued with ‘store’ instructions

Results are parsed in the background according to the 
specified result descriptors
– Each extracted field is placed in a specific register in the 

thread’s context
– No code or NPU cycles are wasted extracting result fields from 

coprocessor requests

iAtom has extensive support for utilizing coprocessors
‘lookup’ instruction issues requests to coprocessors
– Keys built using ‘kgen’ instructions
– Specifies one of 64 result descriptors which specify where 

different fields reside in result data
– Coprocessor can be either on-chip or external
– Coprocessor operations which do not produce results like 

statistics increments are issued with ‘store’ instructions

Results are parsed in the background according to the 
specified result descriptors
– Each extracted field is placed in a specific register in the 

thread’s context
– No code or NPU cycles are wasted extracting result fields from 

coprocessor requests
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Thread SwitchingThread Switching
Zero-cycle context switch
– No penalty to change threads

Network processing units context switch on:
– Loads/Stores/Lookups

• Hides latency to access off-chip resources
– Branches/Jumps/MPBX Switch

• NPUs do not have branch-prediction hardware
• Hides latency to access instruction store

– Awpp/Pullreset/Pullnew
• Hides latency to access packet buffer

– Halt/Endtask/Sleep
• Thread control operations

When lookup result, instruction data, or packet data has been 
received the thread becomes eligible to continue execution
– From point of view of the programmer, all of the instructions above 

appear to execute in a single cycle

Zero-cycle context switch
– No penalty to change threads

Network processing units context switch on:
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– Branches/Jumps/MPBX Switch
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• Thread control operations

When lookup result, instruction data, or packet data has been 
received the thread becomes eligible to continue execution
– From point of view of the programmer, all of the instructions above 

appear to execute in a single cycle
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Order EnforcerOrder Enforcer
Maintains a number of “ordered flows”
Every packet is bound to a given Flow Identifier
– Can be simple (like ingress interface)
– Can be result of complex CAM lookup

Whenever packets must be serviced in order:
– A thread informs the order enforcer it has reached a given ordering 

point
– The order enforcer prevents this thread from executing until all

packets with an earlier timestamp bound to the same flow have 
passed the ordering point

Very simple programming model
– “Fire and Forget”

“Unordered” semaphores for traditional critical sections are also 
supported

Maintains a number of “ordered flows”
Every packet is bound to a given Flow Identifier
– Can be simple (like ingress interface)
– Can be result of complex CAM lookup

Whenever packets must be serviced in order:
– A thread informs the order enforcer it has reached a given ordering 

point
– The order enforcer prevents this thread from executing until all

packets with an earlier timestamp bound to the same flow have 
passed the ordering point

Very simple programming model
– “Fire and Forget”

“Unordered” semaphores for traditional critical sections are also 
supported
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Packet Editing and DispatchPacket Editing and Dispatch

All packet edit commands written 
into Edit Control Blocks (ECBs)
Each ECB holds 16 edit 
commands, and ECBs can be 
chained together
Commands may be posted to an 
ECB in any order, and empty 
command slots are allowed
– Useful for MPLS label pushing

Each ADD or REPLACE command 
can specify up to 16 bytes of data
An ECB can also specify whether 
to fragment a packet
Packet Dispatcher reads packet 
data and applies edit commands 
prior to transmit

All packet edit commands written 
into Edit Control Blocks (ECBs)
Each ECB holds 16 edit 
commands, and ECBs can be 
chained together
Commands may be posted to an 
ECB in any order, and empty 
command slots are allowed
– Useful for MPLS label pushing

Each ADD or REPLACE command 
can specify up to 16 bytes of data
An ECB can also specify whether 
to fragment a packet
Packet Dispatcher reads packet 
data and applies edit commands 
prior to transmit

1: REMOVE 8 bytes
0: REPLACE 16 bytes

2: empty

3: ADD 4 bytes

14: KEEP 88 bytes
15: REPLACE 2 bytes
Next ECB Pointer    Frag.?

Edit control block

Packet  Dispatcher

Original
Packet Data

Edited
Packet Data
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“Plain” RISC with Hardware Assists“Plain” RISC with Hardware Assists
~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~1000 standard RISC instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O 
Bandwidth

Millions of MIPS 
Instructions per Second 
Required

Wire-Rate Processing
(Full Duplex)

~30000 MIPS

~3000 MIPS

~300 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps
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iAtom with Hardware AssistiAtom with Hardware Assist
~240 iAtom instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

~240 iAtom instructions per packet
– Assuming off-loading to dedicated co-processors for 

address lookups, classifications, policing, statistics, plus 
packet reassembly, ordering, dispatch, and edit functions

– Assuming no overhead for context switching of threads 
during long-latency co-processor operations

~450 bytes of aggregate look-aside memory and co-
processor I/O per packet
~64 bytes of packet memory I/O per packet

Internal Bus I/O 
Bandwidth

Millions of iAtom
Instructions per Second 
Required

Wire-Rate Processing

~7200 MIPS

~720 MIPS

~72 MIPS

~16 GB/s10GbE / 30Mpps

~1.6 GB/s1GbE / 3Mpps

~160 MB/s100MbE / 300Kpps
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Silicon Access iFlow Packet ProcessorSilicon Access iFlow Packet Processor

32 processors
256 Threads

128.1 Gbps Aggregate 
I/O Bandwidth

64 Gbps HCC
51.2 Gbps SPI 4.2
10.8 Gbps QDR
2.1 Gbps PCI

333 MHz
7M Gates
18 Mbits of SRAM
175M transistors
1036 pin BGA
0.13u “G” TSMC
First pass Si success

32 processors
256 Threads

128.1 Gbps Aggregate 
I/O Bandwidth

64 Gbps HCC
51.2 Gbps SPI 4.2
10.8 Gbps QDR
2.1 Gbps PCI

333 MHz
7M Gates
18 Mbits of SRAM
175M transistors
1036 pin BGA
0.13u “G” TSMC
First pass Si success
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