
Week 3
Matrix-Vector Operations

3.1 Opening Remarks

3.1.1 Timmy Two Space

* View at edX

Homework 3.1.1.1 Click on the below link to open a browser window with the “Timmy Two Space” exercise.
This exercise was suggested to us by our colleague Prof. Alan Cline. It was first implemented using an IPython
Notebook by Ben Holder. During the Spring 2014 offering of LAFF on the edX platform, one of the partici-
pants, Ed McCardell, rewrote the activity as * Timmy! on the web. (If this link does not work, open
LAFF-2.0xM/Timmy/index.html).
If you get really frustrated, here is a hint:

* View at edX

81

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spring2015/Timmy/index.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/f1f84295521145e6849d116fe5ce6b75/1

Week 3. Matrix-Vector Operations 82

3.1.2 Outline Week 3

3.1. Opening Remarks . 81
3.1.1. Timmy Two Space . 81
3.1.2. Outline Week 3 . 82
3.1.3. What You Will Learn . 83

3.2. Special Matrices . 84
3.2.1. The Zero Matrix . 84
3.2.2. The Identity Matrix . 85
3.2.3. Diagonal Matrices . 88
3.2.4. Triangular Matrices . 91
3.2.5. Transpose Matrix . 94
3.2.6. Symmetric Matrices . 97

3.3. Operations with Matrices . 99
3.3.1. Scaling a Matrix . 99
3.3.2. Adding Matrices . 102

3.4. Matrix-Vector Multiplication Algorithms . 105
3.4.1. Via Dot Products . 105
3.4.2. Via AXPY Operations . 108
3.4.3. Compare and Contrast . 110
3.4.4. Cost of Matrix-Vector Multiplication . 111

3.5. Wrap Up . 112
3.5.1. Homework . 112
3.5.2. Summary . 112

3.1. Opening Remarks 83

3.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Recognize matrix-vector multiplication as a linear combination of the columns of the matrix.

• Given a linear transformation, determine the matrix that represents it.

• Given a matrix, determine the linear transformation that it represents.

• Connect special linear transformations to special matrices.

• Identify special matrices such as the zero matrix, the identity matrix, diagonal matrices, triangular matrices, and sym-
metric matrices.

• Transpose a matrix.

• Scale and add matrices.

• Exploit properties of special matrices.

• Extrapolate from concrete computation to algorithms for matrix-vector multiplication.

• Partition (slice and dice) matrices with and without special properties.

• Use partitioned matrices and vectors to represent algorithms for matrix-vector multiplication.

• Use partitioned matrices and vectors to represent algorithms in code.

Week 3. Matrix-Vector Operations 84

3.2 Special Matrices

3.2.1 The Zero Matrix

* View at edX

Homework 3.2.1.1 Let L0 : Rn→ Rm be the function defined for every x ∈ Rn as L0(x) = 0, where 0 denotes the
zero vector “of appropriate size”. L0 is a linear transformation.

True/False

We will denote the matrix that represents L0 by 0, where we typically know what its row and column sizes are from context
(in this case, 0 ∈ Rm×n). If it is not obvious, we may use a subscript (0m×n) to indicate its size, that is, m rows and n columns.

By the definition of a matrix, the jth column of matrix 0 is given by L0(e j) = 0 (a vector with m zero components). Thus,
the matrix that represents L0, which we will call the zero matrix, is given by the m×n matrix

0 =

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

 .

It is easy to check that for any x ∈ Rn, 0m×nxn = 0m.

Definition 3.1 A matrix A ∈ Rm×n equals the m×n zero matrix if all of its elements equal zero.

Througout this course, we will use the number 0 to indicate a scalar, vector, or matrix of “appropriate size”.

In Figure 3.1, we give an algorithm that, given an m× n matrix A, sets it to zero. Notice that it exposes columns one at a
time, setting the exposed column to zero.

MATLAB provides the function “zeros” that returns a zero matrix of indicated size. Your are going to write your own, to
helps you understand the material.

Make sure that the path to the laff subdirectory is added in MATLAB, so that the various routines form the laff library that
we are about to use will be found by MATLAB. How to do this was discussed in Unit 1.6.3.

Homework 3.2.1.2 With the FLAME API for MATLAB (FLAME@lab) implement the algorithm in Figure 3.1.
You will use the function laff zerov(x), which returns a zero vector of the same size and shape (column or
row) as input vector x. Since you are still getting used to programming with M-script and FLAME@lab, you may
want to follow the instructions in this video:

* View at edX
Some links that will come in handy:

• * Spark
(alternatively, open the file * LAFF-2.0xM/Spark/index.html)

• * PictureFLAME
(alternatively, open the file * LAFF-2.0xM/PictureFLAME/PictureFLAME.html)

You will need these in many future exercises. Bookmark them!

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/1
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/PictureFLAME/PictureFLAME.html

3.2. Special Matrices 85

Algorithm: [A] := SET TO ZERO(A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := 0 (Set the current column to zero)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

Figure 3.1: Algorithm for setting matrix A to the zero matrix.

Homework 3.2.1.3 In the MATLAB Command Window, type

A = zeros(5,4)

What is the result?

Homework 3.2.1.4 Apply the zero matrix to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy disappears into the origin.

3. Timmy becomes a line on the x-axis.

4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

3.2.2 The Identity Matrix

* View at edX

Homework 3.2.2.1 Let LI : Rn→Rn be the function defined for every x ∈Rn as LI(x) = x. LI is a linear transfor-
mation.

True/False

We will denote the matrix that represents LI by the letter I (capital “I”) and call it the identity matrix. Usually, the size of
the identity matrix is obvious from context. If not, we may use a subscript, In, to indicate the size, that is: a matrix that has n
rows and n columns (and is hence a “square matrix”).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2

Week 3. Matrix-Vector Operations 86

Again, by the definition of a matrix, the jth column of I is given by LI(e j) = e j. Thus, the identity matrix is given by

I =
(

e0 e1 · · · en−1

)
=

1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Here, and frequently in the future, we use vertical lines to indicate a partitioning of a matrix into its columns. (Slicing and
dicing again!) It is easy to check that Ix = x.

Definition 3.2 A matrix I ∈ Rn×n equals the n×n identity matrix if all its elements equal zero, except for the elements on the
diagonal, which all equal one.

The diagonal of a matrix A consists of the entries α0,0, α1,1, etc. In other words, all elements αi,i.

Througout this course, we will use the capital letter I to indicate an identity matrix “of appropriate size”.

We now motivate an algorithm that, given an n×n matrix A, sets it to the identity matrix.
We’ll start by trying to closely mirror the Set to zero algorithm from the previous unit:

Algorithm: [A] := SET TO IDENTITY(A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := e j (Set the current column to the correct unit basis vector)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

The problem is that our notation doesn’t keep track of the column index, j. Another problem is that we don’t have a routine to
set a vector to the jth unit basis vector.

To overcome this, we recognize that the jth column of A, which in our algorithm above appears as a1, and the jth unit basis
vector can each be partitioned into three parts:

a1 = a j =

a01

α11

a21

 and e j =

0

1

0

 ,

where the 0’s refer to vectors of zeroes of appropriate size. To then set a1 (= a j) to the unit basis vector, we can make the
assignments

a01 := 0

3.2. Special Matrices 87

α11 := 1
a21 := 0

The algorithm in Figure 3.2 very naturally exposes exactly these parts of the current column.

Algorithm: [A] := SET TO IDENTITY(A)

Partition A→

 AT L AT R

ABL ABR

whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

whereα11 is 1×1

set current column to appropriate unit basis vector

a01 := 0 set a01’s components to zero

α11 := 1

a21 := 0 set a21’s components to zero

Continue with AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

endwhile

Figure 3.2: Algorithm for setting matrix A to the identity matrix.

Why is it guaranteed that α11 refers to the diagonal element of the current column?

Answer: AT L starts as a 0×0 matrix, and is expanded by a row and a column in every iteration. Hence, it is always square.
This guarantees that α11 is on the diagonal.

MATLAB provides the routine “eye” that returns an identity matrix of indicated size. But we will write our own.

Week 3. Matrix-Vector Operations 88

Homework 3.2.2.2 With the FLAME API for MATLAB (FLAME@lab) implement the algorithm in Figure 3.2.
You will use the functions laff zerov(x) and laff onev(x), which return a zero vector and vector of all
ones of the same size and shape (column or row) as input vector x, respectively. Try it yourself! (Hint: in Spark,
you will want to pick Direction TL->BR.) Feel free to look at the below video if you get stuck.
Some links that will come in handy:

• * Spark
(alternatively, open the file * LAFF-2.0xM/Spark/index.html)

• * PictureFLAME
(alternatively, open the file * LAFF-2.0xM/PictureFLAME/PictureFLAME.html)

You will need these in many future exercises. Bookmark them!

* View at edX

Homework 3.2.2.3 In the MATLAB Command Window, type

A = eye(4,4)

What is the result?

Homework 3.2.2.4 Apply the identity matrix to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy disappears into the origin.

3. Timmy becomes a line on the x-axis.

4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

Homework 3.2.2.5 The trace of a matrix equals the sum of the diagonal elements. What is the trace of the identity
I ∈ Rn×n?

3.2.3 Diagonal Matrices

* View at edX
Let LD : Rn→ Rn be the function defined for every x ∈ Rn as

L(

χ0

χ1
...

χn−1

) =

δ0χ0

δ1χ1
...

δn−1χn−1

),

where δ0, . . . ,δn−1 are constants.
Here, we will denote the matrix that represents LD by the letter D. Once again, by the definition of a matrix, the jth column

http://edx-org-utaustinx.s3.amazonaws.com/UT501x/Spark/index.html
http://edx-org-utaustinx.s3.amazonaws.com/UT501x/PictureFLAME/PictureFLAME.html
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/3

3.2. Special Matrices 89

of D is given by

LD(e j) = LD(

0
...

0

1

0
...

0

) =

δ0×0
...

δ j−1×0

δ j×1

δ j+1×0
...

δn−1×0

=

0
...

0

δ j×1

0
...

0

= δ j

0
...

0

1

0
...

0

= δ je j.

This means that

D =
(

δ0e0 δ1e1 · · · δn−1en−1

)
=

δ0 0 · · · 0

0 δ1 · · · 0
...

...
. . .

...

0 0 · · · δn−1

 .

Definition 3.3 A matrix A ∈ Rn×n is said to be diagonal if αi, j = 0 for all i 6= j so that

A =

α0,0 0 · · · 0

0 α1,1 · · · 0
...

...
. . .

...

0 0 · · · αn−1,n−1

 .

Homework 3.2.3.1 Let A =

3 0 0

0 −1 0

0 0 2

 and x =

2

1

−2

. Evaluate Ax.

Homework 3.2.3.2 Let D =

2 0 0

0 −3 0

0 0 −1

. What linear transformation, L, does this matrix represent? In

particular, answer the following questions:

• L : Rn→ Rm. What are m and n?

• A linear transformation can be described by how it transforms the unit basis vectors:

L(e0) =

 ;L(e1) =

 ;L(e2) =

• L(

χ0

χ1

χ2

) =

An algorithm that sets a given square matrix A to a diagonal matrix that has as its ith diagonal entry the ith entry of vector
x ig given in Figure 3.3.

Week 3. Matrix-Vector Operations 90

Algorithm: [A] := SET TO DIAGONAL MATRIX(A,x)

Partition A→

 AT L AT R

ABL ABR

 , x→

 xT

xB

whereAT L is 0×0, xT has 0 elements

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→

x0

χ1

x2

whereα11 is 1×1, χ1 is a scalar

a01 := 0

α11 := χ1

a21 := 0

Continue with AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←

x0

χ1

x2

endwhile

Figure 3.3: Algorithm that sets A to a diagonal matrix with the entries of x on its diagonal.

Homework 3.2.3.3 Implement a function

[A out] = DiagonalMatrix unb(A, x)

based on Figure 3.3.

Homework 3.2.3.4 In the MATLAB Command Window, type

x = [-1; 2; -3]
A = diag(x)

What is the result?

In linear algebra an element-wise vector-vector product is not a meaningful operation: when x,y ∈ Rn the product xy has
no meaning. However, MATLAB has an “element-wise multiplication” operator “.*’’. Try

x = [-1; 2; -3]
y = [1; -1; 2]
x .* y
diag(x) * y

Conclude that element-wise multiplication by a vector is the same as multiplication by a diagonal matrix with diagonal
elements equal to the elements of that vector.

3.2. Special Matrices 91

Homework 3.2.3.5 Apply the diagonal matrix

 −1 0

0 2

 to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy is rotated.

3. Timmy doesn’t change at all.

4. Timmy is flipped with respect to the vertical axis.

5. Timmy is stretched by a factor two in the vertical direction.

Homework 3.2.3.6 Compute the trace of

 −1 0

0 2

.

3.2.4 Triangular Matrices

* View at edX

Homework 3.2.4.1 Let LU : R3 → R3 be defined as LU (

χ0

χ1

χ2

) =

2χ0−χ1 +χ2

3χ1−χ2

−2χ2

. We have proven for

similar functions that they are linear transformations, so we will skip that part. What matrix, U , represents this
linear transformation?

A matrix like U in the above practice is called a triangular matrix. In particular, it is an upper triangular matrix.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/4

Week 3. Matrix-Vector Operations 92

The following defines a number of different special cases of triangular matrices:

Definition 3.4 (Triangular matrix)
A matrix A ∈ Rn×n is said to be

lower
triangular αi, j = 0 if i < j

α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

strictly
lower
triangular αi, j = 0 if i≤ j

0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0

unit
lower
triangular αi, j =

 0 if i < j

1 if i = j

1 0 · · · 0 0

α1,0 1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 1 0

αn−1,0 αn−1,1 · · · αn−1,n−2 1

upper
triangular αi, j = 0 if i > j

α0,0 α0,1 · · · α0,n−2 α0,n−1

0 α1,1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · αn−2,n−2 αn−2,n−1

0 0 · · · 0 αn−1,n−1

strictly
upper
triangular αi, j = 0 if i≥ j

0 α0,1 · · · α0,n−2 α0,n−1

0 0 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 0 αn−2,n−1

0 0 · · · 0 0

unit
upper
triangular αi, j =

 0 if i > j

1 if i = j

1 α0,1 · · · α0,n−2 α0,n−1

0 1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 1 αn−2,n−1

0 0 · · · 0 1

If a matrix is either lower or upper triangular, it is said to be triangular.

Homework 3.2.4.2 A matrix that is both lower and upper triangular is, in fact, a diagonal matrix.
Always/Sometimes/Never

Homework 3.2.4.3 A matrix that is both strictly lower and strictly upper triangular is, in fact, a zero matrix.
Always/Sometimes/Never

The algorithm in Figure 3.4 sets a given matrix A ∈ Rn×n to its lower triangular part (zeroing the elements above the
diagonal).

Homework 3.2.4.4 In the above algorithm you could have replaced a01 := 0 with aT
12 := 0.

Always/Sometimes/Never

3.2. Special Matrices 93

Algorithm: [A] := SET TO LOWER TRIANGULAR MATRIX(A)

Partition A→

 AT L AT R

ABL ABR

whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

whereα11 is 1×1

set the elements of the current column above the diagonal to zero

a01 := 0 set a01’s components to zero

Continue with AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

endwhile

Figure 3.4: Algorithm for making a matrix A a lower triangular matrix by setting the entries above the diagonal to zero.

Homework 3.2.4.5 Consider the following algorithm.

Algorithm: [A] := SET TO ??? TRIANGULAR MATRIX(A)

Partition A→

 AT L AT R

ABL ABR

whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

whereα11 is 1×1

?????

Continue with

 AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

endwhile

Change the ????? in the above algorithm so that it sets A to its

• Upper triangular part. (Set to upper triangular matrix unb)

• Strictly upper triangular part. (Set to strictly upper triangular matrix unb)

• Unit upper triangular part. (Set to unit upper triangular matrix unb)

• Strictly lower triangular part. (Set to strictly lower triangular matrix unb)

• Unit lower triangular part. (Set to unit lower triangular matrix unb)

Week 3. Matrix-Vector Operations 94

The MATLAB functions tril and triu, when given an n× n matrix A, return the lower and upper triangular parts of A,
respectively. The strictly lower and strictly upper triangular parts of A can be extracted by the calls tril(A, -1) and triu(
A, 1), respectively. We now write our own routines that sets the appropriate entries in a matrix to zero.

Homework 3.2.4.6 Implement functions for each of the algorithms from the last homework. In other words,
implement functions that, given a matrix A, return a matrix equal to

• the upper triangular part. (Set to upper triangular matrix)

• the strictly upper triangular part. (Set to strictly upper triangular matrix)

• the unit upper triangular part. (Set to unit upper triangular matrix)

• strictly lower triangular part. (Set to strictly lower triangular matrix)

• unit lower triangular part. (Set to unit lower triangular matrix)

(Implement as many as you enjoy implementing. Then move on.)

Homework 3.2.4.7 In MATLAB try this:

A = [1,2,3;4,5,6;7,8,9]
tril(A)
tril(A, -1)
tril(A, -1) + eye(size(A))
triu(A)
triu(A, 1)
triu(A, 1) + eye(size(A))

Homework 3.2.4.8 Apply

 1 1

0 1

 to Timmy Two Space. What happens to Timmy?

1. Timmy shifts off the grid.

2. Timmy becomes a line on the x-axis.

3. Timmy becomes a line on the y-axis.

4. Timmy is skewed to the right.

5. Timmy doesn’t change at all.

3.2.5 Transpose Matrix

* View at edX

Definition 3.5 Let A ∈Rm×n and B ∈Rn×m. Then B is said to be the transpose of A if, for 0≤ i < m and 0≤ j < n, β j,i = αi, j.
The transpose of a matrix A is denoted by AT so that B = AT .

We have already used T to indicate a row vector, which is consistent with the above definition: it is a column vector that
has been transposed.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/5

3.2. Special Matrices 95

Homework 3.2.5.1 Let A =

−1 0 2 1

2 −1 1 2

3 1 −1 3

 and x =

−1

2

4

. What are AT and xT ?

Clearly, (AT)T = A.

Notice that the columns of matrix A become the rows of matrix AT . Similarly, the rows of matrix A become the columns of
matrix AT .

The following algorithm sets a given matrix B ∈ Rn×m to the transpose of a given matrix A ∈ Rm×n:

Algorithm: [B] := TRANSPOSE(A,B)

Partition A→
(

AL AR

)
, B→

 BT

BB

whereAL has 0 columns, BT has 0 rows

while n(AL)< n(A) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 BT

BB

→

B0

bT
1

B2

wherea1 has 1 column, b1 has 1 row

bT
1 := aT

1 (Set the current row of B to the current col-
umn of A)

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 BT

BB

←

B0

bT
1

B2

endwhile

The T in bT
1 is part of indicating that bT

1 is a row. The T in aT
1 in the assignment changes the column vector a1 into a row

vector so that it can be assigned to bT
1 .

Week 3. Matrix-Vector Operations 96

Homework 3.2.5.2 Consider the following algorithm.

Algorithm: [B] := TRANSPOSE ALTERNATIVE(A,B)

Partition A→

 AT

AB

 , B→
(

BL BR

)
whereAT has 0 rows, BL has 0 columns

while m(AT)< m(A) do

Repartition

 AT

AB

→

A0

aT
1

A2

 ,
(

BL BR

)
→
(

B0 b1 B2

)
wherea1 has 1 row, b1 has 1 column

Continue with

 AT

AB

←

A0

aT
1

A2

 ,
(

BL BR

)
←
(

B0 b1 B2

)
endwhile

Modify the above algorithm so that it copies rows of A into columns of B.

Homework 3.2.5.3 Implement functions

• Transpose unb(A, B)

• Transpose alternative unb(A, B)

Homework 3.2.5.4 The transpose of a lower triangular matrix is an upper triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.5 The transpose of a strictly upper triangular matrix is a strictly lower triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.6 The transpose of the identity is the identity.
Always/Sometimes/Never

Homework 3.2.5.7 Evaluate

•

 0 1

1 0

T

=

•

 0 1

−1 0

T

=

3.2. Special Matrices 97

Homework 3.2.5.8 If A = AT then A = I (the identity).
True/False

3.2.6 Symmetric Matrices

* View at edX
A matrix A ∈ Rn×n is said to be symmetric if A = AT .

In other words, if A ∈ Rn×n is symmetric, then αi, j = α j,i for all 0≤ i, j < n. Another way of expressing this is that

A =

α0,0 α0,1 · · · α0,n−2 α0,n−1

α0,1 α1,1 · · · α1,n−2 α1,n−1
...

...
. . .

...
...

α0,n−2 α1,n−2 · · · αn−2,n−2 αn−2,n−1

α0,n−1 α1,n−1 · · · αn−2,n−1 αn−1,n−1

and

A =

α0,0 α1,0 · · · αn−2,0 αn−1,0

α1,0 α1,1 · · · αn−2,1 αn−1,1
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−1,n−2

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

.

Homework 3.2.6.1 Assume the below matrices are symmetric. Fill in the remaining elements.
2 � −1

−2 1 −3

� � −1

 ;

2 � �

−2 1 �

−1 3 −1

 ;

2 1 −1

� 1 −3

� � −1

 .

Homework 3.2.6.2 A triangular matrix that is also symmetric is, in fact, a diagonal matrix. Always/Some-
times/Never

The nice thing about symmetric matrices is that only approximately half of the entries need to be stored. Often, only the
lower triangular or only the upper triangular part of a symmetric matrix is stored. Indeed: Let A be symmetric, let L be the
lower triangular matrix stored in the lower triangular part of A, and let L̃ is the strictly lower triangular matrix stored in the
strictly lower triangular part of A. Then A = L+ L̃T :

A =

α0,0 α1,0 · · · αn−2,0 αn−1,0

α1,0 α1,1 · · · αn−2,1 αn−1,1

...
...

. . .
...

...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−1,n−2

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

=

α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

+

0 α1,0 · · · αn−2,0 αn−1,0

0 0 · · · αn−2,1 αn−1,1

...
...

. . .
...

...

0 0 · · · 0 αn−1,n−2

0 0 · · · 0 0

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/6
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/8ae8cc0cabc746e3903a9537de97d6ef/6

Week 3. Matrix-Vector Operations 98

=

α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

+

0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0

T

.

Let A be symmetric and assume that A = L+ L̃T as discussed above. Assume that only L is stored in A and that we would
like to also set the upper triangular parts of A to their correct values (in other words, set the strictly upper triangular part of A to
L̃). The following algorithm performs this operation, which we will call “symmetrizing” A:

Algorithm: [A] := SYMMETRIZE FROM LOWER TRIANGLE(A)

Partition A→

 AT L AT R

ABL ABR

whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

whereα11 is 1×1

(set a01’s components to their symmetric parts below the diagonal)

a01 := (aT
10)

T

Continue with AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

endwhile

Homework 3.2.6.3 In the above algorithm one can replace a01 := aT
10 by aT

12 = a21.
Always/Sometimes/Never

3.3. Operations with Matrices 99

Homework 3.2.6.4 Consider the following algorithm.

Algorithm: [A] := SYMMETRIZE FROM UPPER TRIANGLE(A)

Partition A→

 AT L AT R

ABL ABR

whereAT L is 0×0

while m(AT L)< m(A) do

Repartition

 AT L AT R

ABL ABR

→

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

whereα11 is 1×1

?????

Continue with

 AT L AT R

ABL ABR

←

A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

endwhile

What commands need to be introduced between the lines in order to “symmetrize” A assuming that only its upper
triangular part is stored initially.

Homework 3.2.6.5 Implement functions

• Symmetrize from lower triangle unb(A, B)

• Symmetrize from upper triangle unb(A, B)

3.3 Operations with Matrices

3.3.1 Scaling a Matrix

* View at edX

Theorem 3.6 Let LA : Rn→ Rm be a linear transformation and, for all x ∈ Rn, define the function LB : Rn→ Rm by LB(x) =
βLA(x), where β is a scalar. Then LB(x) is a linear transformation.

Homework 3.3.1.1 Prove the above theorem.

Let A be the matrix that represents LA. Then, for all x ∈ Rn, β(Ax) = βLA(x) = LB(x). Since LB is a linear transformation,
there should be a matrix B such that, for all x ∈ Rn, Bx = LB(x) = β(Ax). Recall that b j = Be j, the jth column of B. Thus,
b j = Be j = β(Ae j) = βa j, where a j equals the jth column of A. We conclude that B is computed from A by scaling each column
by β. But that simply means that each element of B is scaled by β.

The above motivates the following definition.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/9f3a56a18bcc4f43b6eb162eb0777fa9/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/9f3a56a18bcc4f43b6eb162eb0777fa9/1

Week 3. Matrix-Vector Operations 100

If A ∈ Rm×n and β ∈ R, then

β

α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

=

βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1

 .

An alternative motivation for this definition is to consider

β(Ax) = β

α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

=

β(α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1)

β(α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1)
...

...
...

...

β(αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1)

=

βα0,0χ0+ βα0,1χ1+ · · ·+ βα0,n−1χn−1

βα1,0χ0+ βα1,1χ1+ · · ·+ βα1,n−1χn−1
...

...
...

...

βαm−1,0χ0+ βαm−1,1χ1+ · · ·+ βαm−1,n−1χn−1

=

βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
. . .

...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1

χ0

χ1
...

χn−1

= (βA)x.

Since, by design, β(Ax) = (βA)x we can drop the parentheses and write βAx (which also equals A(βx) since L(x) = Ax is a
linear transformation).

Given matrices β ∈ R and A ∈ Rm×n, the following algorithm scales A by β.

3.3. Operations with Matrices 101

Algorithm: [A] := SCALE MATRIX(β,A)

Partition A→
(

AL AR

)
whereAL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
wherea1 has 1 column

a1 := βa1 (Scale the current column of A)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
endwhile

Homework 3.3.1.2 Consider the following algorithm.

Algorithm: [A] := SCALE MATRIX ALTERNATIVE(β,A)

Partition A→

 AT

AB

whereAT has 0 rows

while m(AT)< m(A) do

Repartition

 AT

AB

→

A0

aT
1

A2

wherea1 has 1 row

?????

Continue with

 AT

AB

←

A0

aT
1

A2

endwhile

What update will scale A one row at a time?

With MATLAB, when beta is a scalar and A is a matrix, the simple command beta * A will scale A by alpha.

Homework 3.3.1.3 Implement function Scale matrix unb(beta, A).

Week 3. Matrix-Vector Operations 102

Homework 3.3.1.4

* View at edX
Let A ∈ Rn×n be a symmetric matrix and β ∈ R a scalar, βA is symmetric.

Always/Sometimes/Never

Homework 3.3.1.5

* View at edX
Let A ∈ Rn×n be a lower triangular matrix and β ∈ R a scalar, βA is a lower triangular matrix.

Always/Sometimes/Never

Homework 3.3.1.6 Let A ∈ Rn×n be a diagonal matrix and β ∈ R a scalar, βA is a diagonal matrix.
Always/Sometimes/Never

Homework 3.3.1.7 Let A ∈ Rm×n be a matrix and β ∈ R a scalar, (βA)T = βAT .
Always/Sometimes/Never

3.3.2 Adding Matrices

* View at edX

Homework 3.3.2.1 The sum of two linear transformations is a linear transformation. More formally: Let LA :
Rn→Rm and LB :Rn→Rm be two linear transformations. Let LC :Rn→Rm be defined by LC(x) = LA(x)+LB(x).
LC is a linear transformation.

Always/Sometimes/Never

Now, let A, B, and C be the matrices that represent LA, LB, and LC in the above theorem, respectively. Then, for all x ∈ Rn,
Cx = LC(x) = LA(x)+LB(x). What does c j, the jth column of C, equal?

c j =Ce j = LC(e j) = LA(e j)+LB(e j) = Ae j +Be j = a j +b j,

where a j, b j, and c j equal the jth columns of A, B, and C, respectively. Thus, the jth column of C equals the sum of the
corresponding columns of A and B. That simply means that each element of C equals the sum of the corresponding elements of
A and B.

If A,B ∈ Rm×n, then

A+B =

α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

+

β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

βm−1,0 βm−1,1 · · · βm−1,n−1

=

α0,0 +β0,0 α0,1 +β0,1 · · · α0,n−1 +β0,n−1

α1,0 +β1,0 α1,1 +β1,1 · · · α1,n−1 +β1,n−1
...

...
...

αm−1,0 +βm−1,0 αm−1,1 +βm−1,1 · · · αm−1,n−1 +βm−1,n−1

 .

Given matrices A,B ∈ Rm×n, the following algorithm adds B to A.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/950f5a31439e43648b2acae94d84471e/2

3.3. Operations with Matrices 103

Algorithm: [A] := ADD MATRICES(A,B)

Partition A→
(

AL AR

)
, B→

(
BL BR

)
whereAL has 0 columns, BL has 0 columns

while n(AL)< n(A) do

Repartition(
AL AR

)
→
(

A0 a1 A2

)
,
(

BL BR

)
→
(

B0 b1 B2

)
wherea1 has 1 column, b1 has 1 column

a1 := a1 +b1 (Add the current column of B to the current column of A)

Continue with(
AL AR

)
←
(

A0 a1 A2

)
,
(

BL BR

)
←
(

B0 b1 B2

)
endwhile

Homework 3.3.2.2 Consider the following algorithm.

Algorithm: [A] := ADD MATRICES ALTERNATIVE(A,B)

Partition A→

 AT

AB

 , B→

 BT

BB

whereAT has 0 rows, BT has 0 rows

while m(AT)< m(A) do

Repartition

 AT

AB

→

A0

aT
1

A2

 ,

 BT

BB

→

B0

bT
1

B2

wherea1 has 1 row, b1 has 1 row

Continue with

 AT

AB

←

A0

aT
1

A2

 ,

 BT

BB

←

B0

bT
1

B2

endwhile

What update will add B to A one row at a time, overwriting A with the result?

When A and B are created as matrices of the same size, MATLAB adds two matrices with the simple command A + B .
We’ll just use that when we need it!

Week 3. Matrix-Vector Operations 104

Try this! In MATLAB execute

A = [1,2;3,4;5,6]
B = [-1,2;3,-4;5,6]
C = A + B

Homework 3.3.2.3 Let A,B ∈ Rm×n. A+B = B+A.
Always/Sometimes/Never

Homework 3.3.2.4 Let A,B,C ∈ Rm×n. (A+B)+C = A+(B+C).
Always/Sometimes/Never

Homework 3.3.2.5 Let A,B ∈ Rm×n and γ ∈ R. γ(A+B) = γA+ γB.
Always/Sometimes/Never

Homework 3.3.2.6 Let A ∈ Rm×n and β,γ ∈ R. (β+ γ)A = βA+ γA.
Always/Sometimes/Never

Homework 3.3.2.7 Let A,B ∈ Rn×n. (A+B)T = AT +BT .
Always/Sometimes/Never

Homework 3.3.2.8 Let A,B ∈ Rn×n be symmetric matrices. A+B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.9 Let A,B ∈ Rn×n be symmetric matrices. A−B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.10 Let A,B ∈ Rn×n be symmetric matrices and α,β ∈ R. αA+βB is symmetric.
Always/Sometimes/Never

Homework 3.3.2.11 Let A,B ∈ Rn×n.

If A and B are lower triangular matrices then A+B is lower triangular.
True/False

If A and B are strictly lower triangular matrices then A+B is strictly lower triangular.
True/False

If A and B are unit lower triangular matrices then A+B is unit lower triangular.
True/False

If A and B are upper triangular matrices then A+B is upper triangular.
True/False

If A and B are strictly upper triangular matrices then A+B is strictly upper triangular.
True/False

If A and B are unit upper triangular matrices then A+B is unit upper triangular.
True/False

3.4. Matrix-Vector Multiplication Algorithms 105

Homework 3.3.2.12 Let A,B ∈ Rn×n.

If A and B are lower triangular matrices then A−B is lower triangular.
True/False

If A and B are strictly lower triangular matrices then A−B is strictly lower triangular. True/False

If A and B are unit lower triangular matrices then A−B is strictly lower triangular. True/False

If A and B are upper triangular matrices then A−B is upper triangular. True/False

If A and B are strictly upper triangular matrices then A−B is strictly upper triangular. True/False

If A and B are unit upper triangular matrices then A−B is unit upper triangular. True/False

3.4 Matrix-Vector Multiplication Algorithms

3.4.1 Via Dot Products

* View at edX

Motivation

Recall that if y = Ax, where A ∈ Rm×n, x ∈ Rn, and y ∈ Rm, then

y =

ψ0

ψ1
...

ψm−1

=

α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

 .

If one looks at a typical row,

αi,0χ0+ αi,1χ1+ · · ·+ αi,n−1χn−1

one notices that this is just the dot product of vectors

ãi =

αi,0

αi,1
...

αi,n−1

 and x =

χ0

χ1
...

χn−1

 .

In other words, the dot product of the ith row of A, viewed as a column vector, with the vector x, which one can visualize as

ψ0
...

ψi
...

ψm−1

=

α0,0 α0,1 · · · α0,n−1
...

...
...

αi,0 αi,1 · · · αi,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

χ0

χ1
...

χn−1

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/1

Week 3. Matrix-Vector Operations 106

The above argument starts to expain why we write the dot product of vectors x and y as xT y.

Example 3.7 Let A =

−1 0 2

2 −1 1

3 1 −1

 and x =

−1

2

1

. Then

Ax =

−1 0 2

2 −1 1

3 1 −1

−1

2

1

=

(
−1 0 2

)
−1

2

1

(

2 −1 1
)

−1

2

1

(

3 1 −1
)

−1

2

1

=

−1

0

2

T

−1

2

1

2

−1

1

T

−1

2

1

3

1

−1

T

−1

2

1

=

(−1)(−1)+(0)(2)+(2)(1)

(2)(−1)+(−1)(2)+(1)(1)

(3)(−1)+(1)(2)+(−1)(1)

=

3

−3

−2

Algorithm (traditional notation)

An algorithm for computing y := Ax+ y (notice that we add the result of Ax to y) via dot products is given by

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

endfor

If initially y = 0, then it computes y := Ax.

Now, let us revisit the fact that the matrix-vector multiply can be computed as dot products of the rows of A with the vector

3.4. Matrix-Vector Multiplication Algorithms 107

x. Think of the matrix A as individual rows:

A =

ãT

0

ãT
1
...

ãT
m−1

 ,

where ãi is the (column) vector which, when transposed, becomes the ith row of the matrix. Then

Ax =

ãT

0

ãT
1
...

ãT
m−1

x =

ãT

0 x

ãT
1 x
...

ãT
m−1x

 ,

which is exactly what we reasoned before. To emphasize this, the algorithm can then be annotated as follows:

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

ψi := ψi + ãT
i x

endfor

Algorithm (FLAME notation)

We now present the algorithm that casts matrix-vector multiplication in terms of dot products using the FLAME notation with
which you became familiar earlier this week:

Algorithm: y := MVMULT N UNB VAR1(A,x,y)

Partition A→

 AT

AB

 , y→

 yT

yB

whereAT is 0×n and yT is 0×1

while m(AT)< m(A) do

Repartition

 AT

AB

→

A0

aT
1

A2

 ,

 yT

yB

→

y0

ψ1

y2

wherea1 is a row

ψ1 := aT
1 x+ψ1

Continue with
 AT

AB

←

A0

aT
1

A2

 ,

 yT

yB

←

y0

ψ1

y2

endwhile

Week 3. Matrix-Vector Operations 108

Homework 3.4.1.1 Implement function Mvmult n unb var1(A, x, y).

3.4.2 Via AXPY Operations

* View at edX

Motivation

Note that, by definition,

Ax =

α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

=

χ0

α0,0

α1,0
...

αm−1,0

+χ1

α0,1

α1,1
...

αm−1,1

+ · · ·+χn−1

α0,n−1

α1,n−1
...

αm−1,n−1

 .

Example 3.8 Let A =

−1 0 2

2 −1 1

3 1 −1

 and x =

−1

2

1

. Then

Ax =

−1 0 2

2 −1 1

3 1 −1

−1

2

1

= (−1)

−1

2

3

+(2)

0

−1

1

+(1)

2

1

−1

=

(−1)(−1)

(−1)(2)

(−1)(3)

+

(2)(0)

(2)(−1)

(2)(1)

+

(1)(2)

(1)(1)

(1)(−1)

=

(−1)(−1)+(0)(2)+(2)(1)

(2)(−1)+(−1)(2)+(1)(1)

(3)(−1)+(1)(2)+(−1)(1)

=

3

−3

−2

Algorithm (traditional notation)

The above suggests the alternative algorithm for computing y := Ax+ y given by

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/2

3.4. Matrix-Vector Multiplication Algorithms 109

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

endfor

If we let a j denote the vector that equals the jth column of A, then

A =
(

a0 a1 · · · an−1

)

and

Ax = χ0

α0,0

α1,0
...

αm−1,0

︸ ︷︷ ︸

a0

+χ1

α0,1

α1,1
...

αm−1,1

︸ ︷︷ ︸

a1

+ · · ·+χn−1

α0,n−1

α1,n−1
...

αm−1,n−1

︸ ︷︷ ︸

an−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1.

This is emphasized by annotating the algorithm as follows:

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

y := χ ja j + y

endfor

Algorithm (FLAME notation)

Here is the algorithm that casts matrix-vector multiplication in terms of AXPYs using the FLAME notation:

Week 3. Matrix-Vector Operations 110

Algorithm: y := MVMULT N UNB VAR2(A,x,y)

Partition A→
(

AL AR

)
, x→

 xT

xB

whereAL is m×0 and xT is 0×1

while m(xT)< m(x) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→

x0

χ1

x2

wherea1 is a column

y := χ1a1 + y

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←

x0

χ1

x2

endwhile

Homework 3.4.2.1 Implement function Mvmult n unb var2(A, x, y).
(Hint: use the function laff dots(x, y, alpha) that updates α := xT y+α.)

3.4.3 Compare and Contrast

* View at edX

Motivation

It is always useful to compare and contrast different algorithms for the same operation.

Algorithms (traditional notation)

Let us put the two algorithms that compute y := Ax+ y via “double nested loops” next to each other:

for j = 0, . . . ,n−1

for i = 0, . . . ,m−1

ψi := ψi +αi, jχ j

endfor

endfor

for i = 0, . . . ,m−1

for j = 0, . . . ,n−1

ψi := ψi +αi, jχ j

endfor

endfor

On the left is the algorithm based on the AXPY operation and on the right the one based on the dot product. Notice that these
loops differ only in that the order of the two loops are interchanged. This is known as “interchanging loops” and is sometimes
used by compilers to optimize nested loops. In the enrichment section of this week we will discuss why you may prefer one
ordering of the loops over another.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/3

3.4. Matrix-Vector Multiplication Algorithms 111

The above explains, in part, why we chose to look at y := Ax+ y rather than y := Ax. For y := Ax+ y, the two algorithms
differ only in the order in which the loops appear. To compute y := Ax, one would have to initialize each component of
y to zero, ψi := 0. Depending on where in the algorithm that happens, transforming an algorithm that computes y := Ax
elements of y at a time (the inner loop implements a dot product) into an algorithm that computes with columns of A (the
inner loop implements an AXPY operation) gets trickier.

Algorithms (FLAME notation)

Now let us place the two algorithms presented using the FLAME notation next to each other:

Algorithm: y := MVMULT N UNB VAR1(A,x,y)

Partition A→

 AT

AB

 , y→

 yT

yB

where AT is 0×n and yT is 0×1

while m(AT)< m(A) do
Repartition

 AT

AB

→

A0

aT
1

A2

 ,

 yT

yB

→

y0

ψ1

y2

ψ1 := aT

1 x+ψ1

Continue with

 AT

AB

←

A0

aT
1

A2

 ,

 yT

yB

←

y0

ψ1

y2

endwhile

Algorithm: y := MVMULT N UNB VAR2(A,x,y)

Partition A→
(

AL AR

)
, x→

 xT

xB

where AL is m×0 and xT is 0×1

while m(xT)< m(x) do
Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 xT

xB

→

x0

χ1

x2

y := χ1a1 + y

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 xT

xB

←

x0

χ1

x2

endwhile

The algorithm on the left clearly accesses the matrix by rows while the algorithm on the right accesses it by columns. Again,
this is important to note, and will be discussed in enrichment for this week.

3.4.4 Cost of Matrix-Vector Multiplication

* View at edX
Consider y := Ax+ y, where A ∈ Rm×n:

y =

ψ0

ψ1
...

ψm−1

=

α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1+ ψ0

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1+ ψ2
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1+ ψm−1

 .

Notice that there is a multiply and an add for every element of A. Since A has m×n = mn elements, y := Ax+ y, requires mn
multiplies and mn adds, for a total of 2mn floating point operations (flops). This count is the same regardless of the order of the
loops (i.e., regardless of whether the matrix-vector multiply is organized by computing dot operations with the rows or axpy
operations with the columns).

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/4cbc134c5d9748e18f1828b31b579827/410f4cebf962411c8659b543b535f415/4

Week 3. Matrix-Vector Operations 112

3.5 Wrap Up

3.5.1 Homework

No additional homework this week. You have done enough...

3.5.2 Summary

Special Matrices

Name Represents linear transformation Has entries

Zero matrix, 0m×n ∈ Rm×n L0 : Rn→ Rm

L0(x) = 0 for all x
0 = 0m×n =

0 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

Identity matrix, I ∈ Rn×n LI : Rn→ Rn

LI(x) = x for all x
I = In×n =

1 0 · · · 0

0 1 · · · 0
...

.
...

0 0 · · · 1

Diagonal matrix, D ∈ Rn×n LD : Rn→ Rn

if y = LD(x) then ψi = δiχi
D =

δ0 0 · · · 0

0 δ1 · · · 0
...

.
...

0 0 · · · δn−1

3.5. Wrap Up 113

Triangular matrices

A ∈ Rn×n is said to be... if ...

lower
triangular αi, j = 0 if i < j

α0,0 0 · · · 0 0

α1,0 α1,1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · αn−2,n−2 0

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

strictly
lower
triangular αi, j = 0 if i≤ j

0 0 · · · 0 0

α1,0 0 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 0 0

αn−1,0 αn−1,1 · · · αn−1,n−2 0

unit
lower
triangular αi, j =

 0 if i < j

1 if i = j

1 0 · · · 0 0

α1,0 1 · · · 0 0
...

...
. . .

...
...

αn−2,0 αn−2,1 · · · 1 0

αn−1,0 αn−1,1 · · · αn−1,n−2 1

upper
triangular αi, j = 0 if i > j

α0,0 α0,1 · · · α0,n−2 α0,n−1

0 α1,1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · αn−2,n−2 αn−2,n−1

0 0 · · · 0 αn−1,n−1

strictly
upper
triangular αi, j = 0 if i≥ j

0 α0,1 · · · α0,n−2 α0,n−1

0 0 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 0 αn−2,n−1

0 0 · · · 0 0

unit
upper
triangular αi, j =

 0 if i > j

1 if i = j

1 α0,1 · · · α0,n−2 α0,n−1

0 1 · · · α1,n−2 α1,n−1

...
...

. . .
...

...

0 0 · · · 1 αn−2,n−1

0 0 · · · 0 1

Transpose matrix

α0,0 α0,1 · · · α0,n−2 α0,n−1

α1,0 α1,1 · · · α1,n−2 α1,n−1
...

...
...

...

αm−2,0 αm−2,1 · · · αm−2,n−2 αm−2,n−1

αm−1,0 αm−1,1 · · · αm−1,n−2 αm−1,n−1

T

=

α0,0 α1,0 · · · αm−2,0 αm−1,0

α0,1 α1,1 · · · αm−2,1 αm−1,1
...

...
...

...

α0,n−2 α1,n−2 · · · αm−2,n−2 αm−1,n−2

α0,n−1 α1,n−1 · · · αm−2,n−1 αm−1,n−1

Week 3. Matrix-Vector Operations 114

Symmetric matrix

Matrix A ∈ Rn×n is symmetric if and only if A = AT :

A =

α0,0 α0,1 · · · α0,n−2 α0,n−1

α1,0 α1,1 · · · α1,n−2 α1,n−1
...

...
...

...

αn−2,0 αn−2,1 · · · αn−2,n−2 αn−2,n−1

αn−1,0 αn−1,1 · · · αn−1,n−2 αn−1,n−1

=

α0,0 α1,0 · · · αn−2,0 αn−1,0

α0,1 α1,1 · · · αn−2,1 αn−1,1
...

...
. . .

...
...

α0,n−2 α1,n−2 · · · αn−2,n−2 αn−1,n−2

α0,n−1 α1,n−1 · · · αn−2,n−1 αn−1,n−1

= AT

Scaling a matrix

Let β ∈ R and A ∈ Rm×n. Then

βA = β

(
a0 a1 · · · an−1

)
=
(

βa0 βa1 · · · βan−1

)

= β

α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

=

βα0,0 βα0,1 · · · βα0,n−1

βα1,0 βα1,1 · · · βα1,n−1
...

...
...

βαm−1,0 βαm−1,1 · · · βαm−1,n−1

Adding matrices

Let A,B ∈ Rm×n. Then

A+B =
(

a0 a1 · · · an−1

)
+
(

b0 b1 · · · bn−1

)
=
(

a0 +b0 a1 +b1 · · · an−1 +bn−1

)

=

α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

αm−1,0 αm−1,1 · · · αm−1,n−1

+

β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

βm−1,0 βm−1,1 · · · βm−1,n−1

=

α0,0 +β0,0 α0,1 +β0,1 · · · α0,n−1 +β0,n−1

α1,0 +β1,0 α1,1 +β1,1 · · · α1,n−1 +β1,n−1
...

...
...

αm−1,0 +βm−1,0 αm−1,1 +βm−1,1 · · · αm−1,n−1 +βm−1,n−1

• Matrix addition commutes: A+B = B+A.

• Matrix addition is associative: (A+B)+C = A+(B+C).

• (A+B)T = AT +BT .

Matrix-vector multiplication

Ax =

α0,0 α0,1 · · · α0,n−1

α1,0 α1,1 · · · α1,n−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,n−1

χ0

χ1
...

χn−1

=

α0,0χ0+ α0,1χ1+ · · ·+ α0,n−1χn−1

α1,0χ0+ α1,1χ1+ · · ·+ α1,n−1χn−1
...

...
...

...

αm−1,0χ0+ αm−1,1χ1+ · · ·+ αm−1,n−1χn−1

3.5. Wrap Up 115

=
(

a0 a1 · · · an−1

)

χ0

χ1
...

χn−1

= χ0a0 +χ1a1 + · · ·+χn−1an−1

=

ãT

0

ãT
1
...

ãT
m−1

x =

ãT

0 x

ãT
1 x
...

ãT
m−1x

Week 3. Matrix-Vector Operations 116

