s 3

Week

Matrix-Vector Operations

3.1 Opening Remarks

3.1.1 Timmy Two Space

@ View at edX

Homework 3.1.1.1 Click on the below link to open a browser window with the “Timmy Two Space” exercise.
This exercise was suggested to us by our colleague Prof. Alan Cline. It was first implemented using an [Python
Notebook by Ben Holder. During the Spring 2014 offering of LAFF on the edX platform, one of the partici-
pants, Ed McCardell, rewrote the activity as @ Timmy! on the web. (If this link does not work, open
LAFF-2.0xM/Timmy/index.html).

If you get really frustrated, here is a hint:

@ View at edX
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3.1.3 What You Will Learn

Upon completion of this unit, you should be able to

Recognize matrix-vector multiplication as a linear combination of the columns of the matrix.
Given a linear transformation, determine the matrix that represents it.

Given a matrix, determine the linear transformation that it represents.

Connect special linear transformations to special matrices.

Identify special matrices such as the zero matrix, the identity matrix, diagonal matrices, triangular matrices, and sym-
metric matrices.

Transpose a matrix.

Scale and add matrices.

Exploit properties of special matrices.

Extrapolate from concrete computation to algorithms for matrix-vector multiplication.
Partition (slice and dice) matrices with and without special properties.

Use partitioned matrices and vectors to represent algorithms for matrix-vector multiplication.

Use partitioned matrices and vectors to represent algorithms in code.
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3.2 Special Matrices

3.2.1 The Zero Matrix

@ View at edX

Homework 3.2.1.1 Let Ly : R* — R™ be the function defined for every x € R" as Ly(x) = 0, where 0 denotes the
zero vector “of appropriate size”. Ly is a linear transformation.

True/False

We will denote the matrix that represents Ly by 0, where we typically know what its row and column sizes are from context
(in this case, 0 € R™*"). If it is not obvious, we may use a subscript (0,,,) to indicate its size, that is, m rows and n columns.

By the definition of a matrix, the jth column of matrix 0 is given by Lo(e;) = 0 (a vector with m zero components). Thus,
the matrix that represents Ly, which we will call the zero matrix, is given by the m X n matrix

0
0

It is easy to check that for any x € R", 05X, = Op,.

Definition 3.1 A matrix A € R™*" equals the m X n zero matrix if all of its elements equal zero.

Througout this course, we will use the number 0 to indicate a scalar, vector, or matrix of “appropriate size”.

In Figure 3.1, we give an algorithm that, given an m x n matrix A, sets it to zero. Notice that it exposes columns one at a
time, setting the exposed column to zero.

MATLAB provides the function “zeros” that returns a zero matrix of indicated size. Your are going to write your own, to
helps you understand the material.

Make sure that the path to the 1aff subdirectory is added in MATLAB, so that the various routines form the laff library that
we are about to use will be found by MATLAB. How to do this was discussed in Unit 1.6.3.

Homework 3.2.1.2 With the FLAME API for MATLAB (FLAME @1ab) implement the algorithm in Figure 3.1.
You will use the function laff_zerov( x ), which returns a zero vector of the same size and shape (column or
row) as input vector x. Since you are still getting used to programming with M-script and FLAME @lab, you may
want to follow the instructions in this video:

@ View at edX

Some links that will come in handy:

e @ Spark
(alternatively, open the file ® LAFF-2.0xM/Spark/index.html)

o @& PictureFLAME
(alternatively, open the file ® LAFF-2.0xM/PictureFLAME/PictureFLAME. html

You will need these in many future exercises. Bookmark them!
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Algorithm: [A] := SET_TO_ZERO(A)

Partition A — ( Ap | AR )
whereA; has 0 columns

while n(AL) <n(A) do

Repartition

(4| ax)= (40| [22)

wherea; has 1 column

a;:=0 (Set the current column to zero)

Continue with

(4] an) (o fa]a)

endwhile

Figure 3.1: Algorithm for setting matrix A to the zero matrix.

Homework 3.2.1.3 In the MATLAB Command Window, type
A = zeros( 5,4 )

What is the result?

Homework 3.2.1.4 Apply the zero matrix to Timmy Two Space. What happens?
1. Timmy shifts off the grid.
2. Timmy disappears into the origin.
3. Timmy becomes a line on the x-axis.

4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

3.2.2 The Identity Matrix

@ View at edX

Homework 3.2.2.1 Let L; : R” — R” be the function defined for every x € R” as L;(x) = x. Ly is a linear transfor-
mation.
True/False

We will denote the matrix that represents L; by the letter I (capital “T”) and call it the identity matrix. Usually, the size of
the identity matrix is obvious from context. If not, we may use a subscript, I,,, to indicate the size, that is: a matrix that has n
rows and n columns (and is hence a “square matrix”).
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Again, by the definition of a matrix, the jth column of / is given by L;(e;) = e;. Thus, the identity matrix is given by

1lo]-]o
ol1]--]o
I:(eo‘el‘m‘e"’l): S R IR B
0l0|-|1

Here, and frequently in the future, we use vertical lines to indicate a partitioning of a matrix into its columns. (Slicing and
dicing again!) It is easy to check that Ix = x.

Definition 3.2 A matrix I € R™" equals the n X n identity matrix if all its elements equal zero, except for the elements on the
diagonal, which all equal one.

The diagonal of a matrix A consists of the entries 0, o, {1 1, etc. In other words, all elements o; ;.

Througout this course, we will use the capital letter / to indicate an identity matrix “of appropriate size”.

We now motivate an algorithm that, given an n X n matrix A, sets it to the identity matrix.
We’ll start by trying to closely mirror the Set_to_zero algorithm from the previous unit:

Algorithm: [A] := SET_TO_IDENTITY (A)

Partition A — ( Ap | Ap )
whereA; has 0 columns

while n(AL) <n(A) do

Repartition

(4| ax) = (40| [4:)

wherea; has 1 column

ay:=e; (Set the current column to the correct unit basis vector)

Continue with

(4] ) (o fa]a)

endwhile

The problem is that our notation doesn’t keep track of the column index, j. Another problem is that we don’t have a routine to
set a vector to the jth unit basis vector.

To overcome this, we recognize that the jth column of A, which in our algorithm above appears as aj, and the jth unit basis
vector can each be partitioned into three parts:

apl 0
ar=a;=| oy and e;j=1 1 |,
any 0

where the 0’s refer to vectors of zeroes of appropriate size. To then set a; (= a;) to the unit basis vector, we can make the
assignments

0

aot
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(V451

any = 0

The algorithm in Figure 3.2 very naturally exposes exactly these parts of the current column.

Algorithm: [A] := SET_TO_IDENTITY(A)

A A
Partition A — e IR

Apr | Agr
whereA7; is 0 x 0

while m(Ar) <m(A) do

Repartition
Ago | aor | Aoz
Arp | Arr - -
ayp | %1 | ap
AL | Agr
Ay | a1 | A

whereo;;is 1 x 1

set current column to appropriate unit basis vector

ap; ;=0 set ap;’s components to zero
o1 := 1
az; =0 set ax1’s components to zero

Continue with

Ago | ap1 | Aoz
Arp | ATR

— T 11

Apr | Agr

Ay | ax | Axn

endwhile

Figure 3.2: Algorithm for setting matrix A to the identity matrix.

Why is it guaranteed that o refers to the diagonal element of the current column?

Answer: A7y starts as a 0 x 0 matrix, and is expanded by a row and a column in every iteration. Hence, it is always square.
This guarantees that oy is on the diagonal.

MATLAB provides the routine “eye” that returns an identity matrix of indicated size. But we will write our own.
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Homework 3.2.2.2 With the FLAME API for MATLAB (FLAME @lab) implement the algorithm in Figure 3.2.
You will use the functions laff_zerov( x ) and laff_onev( x ), which return a zero vector and vector of all
ones of the same size and shape (column or row) as input vector x, respectively. Try it yourself! (Hint: in Spark,
you will want to pick Direction TL->BR.) Feel free to look at the below video if you get stuck.

Some links that will come in handy:

e @ Spark
(alternatively, open the file ® LAFF-2.0xM/Spark/index.html)

* @& PictureFLAME
(alternatively, open the file ® LAFF-2.0xM/PictureFLAME/PictureFLAME. html)

You will need these in many future exercises. Bookmark them!

@ View at edX

Homework 3.2.2.3 In the MATLAB Command Window, type
A =ceye( 4,4)

What is the result?

Homework 3.2.2.4 Apply the identity matrix to Timmy Two Space. What happens?

1. Timmy shifts off the grid.

2. Timmy disappears into the origin.

3. Timmy becomes a line on the x-axis.
4. Timmy becomes a line on the y-axis.

5. Timmy doesn’t change at all.

Homework 3.2.2.5 The trace of a matrix equals the sum of the diagonal elements. What is the trace of the identity
[ e RV

3.2.3 Diagonal Matrices

@ View at edX

Let Lp : R" — R” be the function defined for every x € R” as

X0 doX0
X1 311
L(f . pP= , ;
An—1 6,,71)(,171

where 9, ...,d,_; are constants.
Here, we will denote the matrix that represents Lp by the letter D. Once again, by the definition of a matrix, the jth column
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of D is given by

0 3y x 0 0 0
0 8j71 x 0 0 0
Lp(ej)=Lp(| 1 |)=] §x1 |=[ &x1 | =8| 1 |=3je.
0 Ojr1x0 0 0
0 0,-1 %0 0 0
This means that
6 0 - 0
0 6, -- 0
D:( dpeo ‘ die ‘ ‘ Op—1€n—1 )Z
0 0 - &4

Definition 3.3 A matrix A € R™" is said to be diagonal if o; j = 0 for all i # j so that

(x070 0 - 0
0 o, 0
A =
0 0 - Op1p-1
0 0 2
Homework 3.2.3.1 LetA=] 0 —1 0 |andx= 1 |. Evaluate Ax.
0 2 -2
2 0
Homework 3.2.3.2 Let D = 0 -3 0 . What linear transformation, L, does this matrix represent? In
0o 0 -1

particular, answer the following questions:
e L:R" — R™ What are m and n?

* A linear transformation can be described by how it transforms the unit basis vectors:

X2

An algorithm that sets a given square matrix A to a diagonal matrix that has as its ith diagonal entry the ith entry of vector
x ig given in Figure 3.3.
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Algorithm: [A] := SET_TO_DIAGONAL_MATRIX(A,x)
. Arp | Arr X7
Partition A — X — | —
Apr | Ar Xp
whereAr; is 0 x 0, x7 has 0 elements
while m(A7r.) <m(A) do
Repartition
Ago | aor | Aoz X0
Arp | ATr - - xr —_—
| ap | |an | |7 7| w
Apr | Agr XB -
Ay | a2 | A2 X2
wherea; is 1 x 1, is a scalar
apl - — 0
011 == X1
ajz| = 0
Continue with
Ago | ao1 | Aoz X0
Arp | Arr T T Xr —
“— ajo (0411 ap, , | —] %1
Apr | Agr XB —
Ay | ax | Ax X2
endwhile

Figure 3.3: Algorithm that sets A to a diagonal matrix with the entries of x on its diagonal.

Homework 3.2.3.3 Implement a function
[ Aout ] = DiagonalMatrix_unb( A, x )

based on Figure 3.3.

Homework 3.2.3.4 In the MATLAB Command Window, type

x = [ -1; 2; -3 ]
A = diag( x )

What is the result?

In linear algebra an element-wise vector-vector product is not a meaningful operation: when x,y € R" the product xy has
no meaning. However, MATLAB has an “element-wise multiplication” operator “. *’’. Try

Ky
diag( x ) *y
Conclude that element-wise multiplication by a vector is the same as multiplication by a diagonal matrix with diagonal
elements equal to the elements of that vector.
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Homework 3.2.3.5 Apply the diagonal matrix to Timmy Two Space. What happens?
0 2

1. Timmy shifts off the grid.

2. Timmy is rotated.

3. Timmy doesn’t change at all.

4. Timmy is flipped with respect to the vertical axis.

5. Timmy is stretched by a factor two in the vertical direction.

-1 0
Homework 3.2.3.6 Compute the trace of
0 2
3.2.4 Triangular Matrices
@ View at edX
Xo 200 — X1+ X2
Homework 3.2.4.1 Let Ly : R* — R3 be defined as Ly (| x; |) = 31 —%2 |- We have proven for
X2 —2%2

similar functions that they are linear transformations, so we will skip that part. What matrix, U, represents this
linear transformation?

A matrix like U in the above practice is called a triangular matrix. In particular, it is an upper triangular matrix.
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The following defines a number of different special cases of triangular matrices:

Definition 3.4 (Triangular matrix)
A matrix A € R"*" is said to be

Q0,0 0
o o
lower Lo bl
triangular | o; j =0ifi < j
Oy—20 Op—21 Oly—2.n-2 0
Oyp—1,0 Oy—1,1 Oyp—1n—2  Op—1n-1
. 0 0 0
strictly 0 o
o
lower 1o
triangular | o; ; =0ifi < j
Op—20 Oy—21 0 0
Op—1,0 01,1 Oy—1,n—2 0
. 1 0 0 0
;‘”” o o0 1 0 0
ower 0 ifi<j
triangular | o; j =
1 ifi=j
(xn72,0 Op—2,1 1 0
Oy—10 Op—11 Op—1p-2 1
Qoo Qo1 Qo,n—2 Qo n—1
upper 0 oy, 0 p—2 O -1
triangular | o; j =0ifi> j
0 Op—2.n—2 Opy—2.n—1
0 0 Op—1,n—1
strictl 0o, 1 0lo,n—2 0lo,n—1
uppery 0 Oip-2  Oip-i
triangular | o; ; =0ifi> j
0 0 Op—2,n—1
0 0 0
) 1 oo 0o -2  Olopu—1
unit
o 0 1 O1p—2  Opp—1
up.per O lf‘l > j
triangular | o; j =
1 ifi=j
1 Oly—2.n—1
0 1

If a matrix is either lower or upper triangular, it is said to be triangular.

Homework 3.2.4.2 A matrix that is both lower and upper triangular is, in fact, a diagonal matrix.

Always/Sometimes/Never

Homework 3.2.4.3 A matrix that is both strictly lower and strictly upper triangular is, in fact, a zero matrix.

Always/Sometimes/Never

The algorithm in Figure 3.4 sets a given matrix A € R"*" to its lower triangular part (zeroing the elements above the

diagonal).

Homework 3.2.4.4 In the above algorithm you could have replaced ag; := 0 with al, := 0.

Always/Sometimes/Never
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Algorithm: [A] := SET_TO_LOWER_TRIANGULAR_MATRIX(A)

Partition A —

whereAr; is0x 0
while m(A7r.) <m(A) do

Repartition
Arp | Arr
Apr | Agr

whereo;; is 1 x

Arp | Arr
Apr | Asr

Ago | ao1 | Aoz

T
ajg | %11 | app

Ay | a2 | A2
1

apl =0

set the elements of the current column above the diagonal to zero

set ap;’s components to zero

Continue with

Arp | Arr
Apr | Asr

endwhile

Ago | ao1 | Aoz

T T
— aj | 011 ajn

Ay | ax | Axn

Figure 3.4: Algorithm for making a matrix A a lower triangular matrix by setting the entries above the diagonal to zero.

Homework 3.2.4.5 Consider the

following algorithm.

Algorithm: [A] := SET_TO_???_TRIANGULAR_MATRIX(A)

Apr | Asr
whereAr; is 0 x 0

. Arp | Arr
Partition A —

while m(Ar;) <m(A) do

Repartition

Arp | Arr
H
Apr | Asr

whereois 1 x 1

Continue with

Aoo
Arr | Arr T
«— | d

ApL | Asr

aor | Aoz
T
o aj,
Ay | an | A

endwhile
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The MATLAB functions tril and triu, when given an n X n matrix A, return the lower and upper triangular parts of A,
respectively. The strictly lower and strictly upper triangular parts of A can be extracted by the calls tril ( A, -1 ) and triu(
A, 1 ), respectively. We now write our own routines that sets the appropriate entries in a matrix to zero.

(Implement as many as you enjoy implementing. Then move on.)

* the upper triangular part. (Set_to_upper_triangular_matrix)

* the strictly upper triangular part. (Set_to_strictly_upper_triangular matrix)
* the unit upper triangular part. (Set_to_unit_upper_triangular matrix)

* strictly lower triangular part. (Set_to_strictly_lower_triangular matrix)

* unit lower triangular part. (Set _to_unit_lower_triangular matrix)

Homework 3.2.4.6 Implement functions for each of the algorithms from the last homework. In other words,
implement functions that, given a matrix A, return a matrix equal to

Homework 3.2.4.7 In MATLAB try this:

A=11,2,3;4,56;7,8,9 1]

tril( A )

tril( A, -1)

tril( A, -1 ) + eye( size( A ) )
triu( A )

triu( A, 1)

triu( A, 1) + eye( size( A ) )

1. Timmy shifts off the grid.

2. Timmy becomes a line on the x-axis.
3. Timmy becomes a line on the y-axis.
4. Timmy is skewed to the right.

5. Timmy doesn’t change at all.

11
Homework 3.2.4.8 Apply to Timmy Two Space. What happens to Timmy?
0 1

3.2.5 Transpose Matrix

@ View at edX

Definition 3.5 Ler A € R™*" and B € R"™. Then B is said to be the transpose of A if, for 0 <i<mand 0 < j <n, Bj; = 0y ;.

The transpose of a matrix A is denoted by AT so that B = AT

has been transposed.

We have already used T to indicate a row vector, which is consistent with the above definition: it is a column vector that
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-1 0 2 1 —1
Homework 3.2.5.1 LetA = 2 —1 1 2 |andx= 2 |. What are AT and x7?
3 1 -1 3 4

Clearly, (AT)T = A.

Notice that the columns of matrix A become the rows of matrix AT Similarly, the rows of matrix A become the columns of
matrix A .

The following algorithm sets a given matrix B € R to the transpose of a given matrix A € R"™*":

Algorithm: [B] := TRANSPOSE(A, B)
Br
Partition A — ( AL | Ag ) ,B—
Bg
whereA; has O columns, By has O rows
while n(AL) <n(A) do
Repartition
By
Br —
(L) = (ol ) () 32
Bg —
B;
wherea; has 1 column, b has 1 row
bl :=al (Set the current row of B to the current col-
umn of A)
Continue with
By
Br —
(lae ) (aofa ). (22) < | 2
Bp
B,
endwhile

The T in b is part of indicating that b1 is a row. The T in al in the assignment changes the column vector a; into a row
vector so that it can be assigned to b
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Homework 3.2.5.2 Consider the following algorithm.

Algorithm: [B] := TRANSPOSE_ALTERNATIVE(A, B)

Partition A — ,B—>< B | Br )

Ap
whereAr has 0 rows, By, has 0 columns

while m(Ar) <m(A) do

Repartition
Ao
Ar
STt ()
Ap —_—
Az

wherea; has 1 row, b; has 1 column

Continue with

A Ao
( T)e S| (L ) (oo | m)

endwhile

Modify the above algorithm so that it copies rows of A into columns of B.

Homework 3.2.5.3 Implement functions
* Transpose_unb( A, B )

* Transpose_alternativeunb( A, B )

Homework 3.2.5.4 The transpose of a lower triangular matrix is an upper triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.5 The transpose of a strictly upper triangular matrix is a strictly lower triangular matrix.
Always/Sometimes/Never

Homework 3.2.5.6 The transpose of the identity is the identity.
Always/Sometimes/Never

Homework 3.2.5.7 Evaluate
T
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Homework 3.2.5.8 If A = AT then A = I (the identity).
True/False

3.2.6 Symmetric Matrices

@ View at edX

A matrix A € R™" is said to be symmetric if A = A .

In other words, if A € R"™*" is symmetric, then o; ; = o;; for all 0 < i, j < n. Another way of expressing this is that

00,0 o, 1 e Oop—2 0o,n—1
0,1 01,1 e Olyp—2 Ol n—1
A =
Qn—2 Ojp—2 -+ Op—2p-2 Op_2p-1
Q-1 Orp—1 -+ Op—2p—1 Oy—1n-1
and
0,0 o0 e Op—2.0 Oy—1,0
1,0 o1 Op—2,1 Olp—1,1
A =
Op—20 Op—21 -+ Op—24-2 Op—1,-2
Op—1,0 Op—1,0 -+ Op—1p—2 Ou—1n-1
Homework 3.2.6.1 Assume the below matrices are symmetric. Fill in the remaining elements.
2 0O -1 2 0O 0O 2 1 -1
-2 1 =3 |; -2 1 0O [; o 1 -3
o o -1 -1 3 -1 o oo -1
Homework 3.2.6.2 A triangular matrix that is also symmetric is, in fact, a diagonal matrix. Always/Some-
times/Never

The nice thing about symmetric matrices is that only approximately half of the entries need to be stored. Often, only the
lower triangular or only the upper triangular part of a symmetric matrix is stored. Indeed: Let A be symmetric, let L be the

lower triangular matrix stored in the lower triangular part of A, and let L is the strictly lower triangular matrix stored in the
strictly lower triangular part of A. Then A = L+ LT

Q0,0 1,0 e Op—2,0 Op—1,0
1,0 o1 Op—2,1 Op—1,1
A =

Up—2,0 0Ln—Z,I Op—2.n—2 Olp—1,n—2

Op—10 Op—11 -+ Op—1pn—2 Oy—1n—1
0,0 0 0 0 0 oo -+ 20 Opuo1p0
o0 o1 0 0 0 0 s O Oyl

= +
p—2,0 Op—21 T Op—2,n—2 0 0 0 e 0 Olp—1,n—2

®p—1,0 Qp—1,1 s Op—1p—2  Op—1pn-1 0 0 0 0
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0,0 0 0
01,0 o1 01,0
= +
020 O Oy—20-2 0 020 Op2]
Op—1,0 Op—1,1 Op—1n—2  Op—1n—1 Op—1,0 Op—1,1

Oly—1,n—2 0

Let A be symmetric and assume that A = L+L" as discussed above. Assume that only L is stored in A and that we would
like to also set the upper triangular parts of A to their correct values (in other words, set the strictly upper triangular part of A to
L). The following algorithm performs this operation, which we will call “symmetrizing” A:

Algorithm: [A] := SYMMETRIZE_ FROM_LOWER_TRIANGLE(A)

Arp | Arr

Partition A —

Apr | Agr

whereAr; is 0 x 0
while m(Ar.) <m(A) do

Repartition
A A Ago | ao1 | Aoz
L | Arr
T T
| ajp | %1 | ay,
Apr | Agr
Ay | an | A

whereo;;is 1 x 1

(set ap;’s components to their symmetric parts below the diagonal)

apl = (alTO)T

Continue with

Ago | ao1 | Aoz
Arp | Arr T T
«— ajo o1 ajn
ApL | Asr

Ay | ap

endwhile

Homework 3.2.6.3 In the above algorithm one can replace ag; := alTO by a1T2 =asy.

Always/Sometimes/Never
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Homework 3.2.6.4 Consider the following algorithm.

Algorithm: [A] := SYMMETRIZE_ FROM_UPPER_TRIANGLE(A)

. Arp | Arr
Partition A —
ApL | Asr

whereAr, is 0 x 0

while m(Ar.) <m(A) do

Repartition
A A Ao | ao1 | Aoz
TL TR
= | aly | our | afy
ApL | Asr
Ay | a1 | A

whereo;is 1 x 1

Continue with

Ao | aor | Aoz
Arr | Arr T T
< aip o1 aj,

ApL | Asr

Ay | a1 | A2

endwhile

What commands need to be introduced between the lines in order to “symmetrize” A assuming that only its upper
triangular part is stored initially.

Homework 3.2.6.5 Implement functions

e Symmetrize_from_lower_triangle_unb( A, B )

* Symmetrize_from_upper_triangle_unb( A, B )

3.3 Operations with Matrices

3.3.1 Scaling a Matrix

@ View at edX

Theorem 3.6 Let Ly : R" — R™ be a linear transformation and, for all x € R", define the function Lg : R" — R™ by Lp(x) =
BLA(x), where B is a scalar. Then Lg(x) is a linear transformation.

Homework 3.3.1.1 Prove the above theorem.

Let A be the matrix that represents Ls. Then, for all x € R”, B(Ax) = BL4(x) = Lg(x). Since Lg is a linear transformation,
there should be a matrix B such that, for all x € R”, Bx = Lg(x) = B(Ax). Recall that b; = Bej, the jth column of B. Thus,
bj=Be;=B(Aej) = Paj, where a; equals the jth column of A. We conclude that B is computed from A by scaling each column
by B. But that simply means that each element of B is scaled by f.

The above motivates the following definition.
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If A € R™" and B € R, then

0lo,0 0lo, 1 0l0,n—1 Boio,o
01,0 o1 Ol n—1 Bou o
B =
Om—10 Obn—1,1 Obp—1 n—1 Boun—1,0
An alternative motivation for this definition is to consider
Clo,0X0+ Oo 1 X1+ -+
ol 0X0+ o1+ -+
B(Ax) = P
Om—-10X0+ Op—11X1+ -+
B(ao,0x0+ oo ixi+ o+
B(ou0x0+ o1+ -+
B(Om—10X0+ Om—11X1+ -+
Baw,0xo+ Boo X1+ o+
Boui oxo+ Bayixi+ -+
Bou—10X0+ BOm—1,1x1+ -+
oo Bow,1 Botg,n—1
Bau o Bour1 Boti 1
Boun—1,0 BOum—1.1 Boun—1n—1

Boo,1

Bou 1

Botu—1,1

00,n—1Xn—1

O n—1Xn—1
On—1,n—1Xn—1
(X'O,nf 1Xn—1 )
al,n—an—l )
am—l,n—an—l)
Ba07n71Xn71

Bot n—1Xn—1

B(xm—l,n—IXn—l

An—1

Baﬂ,n—l

Bot n—1

Bam—l,n—l

.o
N— —

Since, by design, B(Ax) = (BA)x we can drop the parentheses and write BAx (which also equals A(Px) since L(x) = Axis a

linear transformation).

Given matrices B € R and A € R™*", the following algorithm scales A by .
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Algorithm: [A] := SCALE_MATRIX(f3,A)

Partition A — ( Ap | AR )
whereA; has 0 columns

while n(AL) <n(A) do

Repartition

(4| ax)= (40| [22)

wherea; has 1 column

ay :=Pay (Scale the current column of A)

Continue with

(4] an) (o fa]a)

endwhile

Homework 3.3.1.2 Consider the following algorithm.

Algorithm: [A] := SCALE_MATRIX_ALTERNATIVE(P,A)

Ar
Partition A —

Ap
whereAr has 0 rows

while m(Ar) <m(A) do

Repartition

A o
T
— “1T
Ap
Az

wherea; has 1 row

Continue with

A Ao
T
— ||
Ap
Az

endwhile

What update will scale A one row at a time?

With MATLAB, when beta is a scalar and 2 is a matrix, the simple command beta * A will scale A by alpha.

Homework 3.3.1.3 Implement function Scale matrix_unb( beta, A ).
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Homework 3.3.1.4

@ View at edX

Let A € R"™" be a symmetric matrix and 3 € R a scalar, BA is symmetric.
Always/Sometimes/Never

Homework 3.3.1.5

@ View at edX

Let A € R™" be a lower triangular matrix and B € R a scalar, BA is a lower triangular matrix.
Always/Sometimes/Never

Homework 3.3.1.6 Let A € R"*" be a diagonal matrix and B € R a scalar, BA is a diagonal matrix.
Always/Sometimes/Never

Homework 3.3.1.7 Let A € R™*" be a matrix and B € R a scalar, (BA)” = BAT.
Always/Sometimes/Never

3.3.2 Adding Matrices

@ View at edX

Homework 3.3.2.1 The sum of two linear transformations is a linear transformation. More formally: Let Ly :
R" — R™ and Lg : R"” — R be two linear transformations. Let L¢ : R" — R™ be defined by Le(x) = La(x) + Lg(x).
L is a linear transformation.

Always/Sometimes/Never

Now, let A, B, and C be the matrices that represent L4, Lg, and L¢ in the above theorem, respectively. Then, for all x € R”,
Cx = Lc(x) = La(x) + Lg(x). What does ¢}, the jth column of C, equal?

cj=Cej=Lc(ej) = La(ej) +Lp(ej) = Aej+ Bej = aj+bj,

where a;, b;, and c; equal the jth columns of A, B, and C, respectively. Thus, the jth column of C equals the sum of the
corresponding columns of A and B. That simply means that each element of C equals the sum of the corresponding elements of
A and B.

If A,B € R™*" then

00,0 Oo, 1t Ogp—1 Bo,o Boo - Pon-1
ol 0 o1 o Oy Bio Bii - Prat
A+B= ) ) ) + .
On—1,0 Om—11 - Op—in—1 Bn-10 Bm—11 - PBm—t1na-1
00,0+ Boo 00,1+ Bo1 e 00 -1+ Bon—1
or,0+Bio o1+ B Ot -1+ Bip—t
O—1,0+PBm=10 Cn—11+Bm—1,1 -+ Cn—tn—1+Bm—1,n-1

Given matrices A, B € R™*", the following algorithm adds B to A.
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Algorithm: [A] := ADD_MATRICES(A,B)

Partition A — ( A | A ),B—> ( B, | Bx )
whereA; has O columns, By has 0 columns

while n(AL) <n(A) do

Repartition

() (ol [40) () (m] ] 32

wherea; has 1 column, b has 1 column

ai:=a;+by (Add the current column of B to the current column of A)

Continue with

Colae ) (ool L) (ol o) (o] )

endwhile

Homework 3.3.2.2 Consider the following algorithm.

Algorithm: [A] := ADD_MATRICES_ALTERNATIVE(A, B)

Ar Br
Partition A — ,B—
Ap Bg

whereAr has 0 rows, By has 0 rows

while m(Ar) <m(A) do

Repartition

Ao By
Ar Br
= o | d
Ap Bg e
Az B

wherea; has 1 row, b has 1 row

Continue with

A Ao B Bo
_T — aT s _T — br

Ap Bg
Ay B>

endwhile

What update will add B to A one row at a time, overwriting A with the result?

When A and B are created as matrices of the same size, MATLAB adds two matrices with the simple command A + B .

We’ll just use that when we need it!
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Try this! In MATLAB execute

A=11,2;3,4;506]
B=1[-1,2;3,-4;5,6 ]
C=A+8B

Homework 3.3.2.3 LetA,B€ R™" A+ B=B+A.
Always/Sometimes/Never

Homework 3.3.2.4 LetA,B,C e R™". (A+B)+C=A+(B+C).
Always/Sometimes/Never

Homework 3.3.2.5 Let A,B € R™*" and Y€ R. y(A+ B) = YA +7B.
Always/Sometimes/Never

Homework 3.3.2.6 Let A € R™*" and B,y R. (B+7)A = BA+7A.
Always/Sometimes/Never

Homework 3.3.2.7 LetA,B € R™". (A+B)T =A” +B.
Always/Sometimes/Never

Homework 3.3.2.8 Let A,B € R"™" be symmetric matrices. A + B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.9 Let A, B € R™" be symmetric matrices. A — B is symmetric.
Always/Sometimes/Never

Homework 3.3.2.10 Let A, B € R"™" be symmetric matrices and a, B € R. oA + BB is symmetric.
Always/Sometimes/Never

Homework 3.3.2.11 Let A,B € R™*",

If A and B are lower triangular matrices then A + B is lower triangular.

True/False
If A and B are strictly lower triangular matrices then A + B is strictly lower triangular.

True/False
If A and B are unit lower triangular matrices then A + B is unit lower triangular.

True/False
If A and B are upper triangular matrices then A + B is upper triangular.

True/False
If A and B are strictly upper triangular matrices then A 4 B is strictly upper triangular.

True/False

If A and B are unit upper triangular matrices then A + B is unit upper triangular.

True/False
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Homework 3.3.2.12 Let A,B € R™",

If A and B are lower triangular matrices then A — B is lower triangular.

If A and B are upper triangular matrices then A — B is upper triangular.

If A and B are unit lower triangular matrices then A — B is strictly lower triangular.

If A and B are unit upper triangular matrices then A — B is unit upper triangular.

If A and B are strictly lower triangular matrices then A — B is strictly lower triangular.

If A and B are strictly upper triangular matrices then A — B is strictly upper triangular.

True/False
True/False
True/False
True/False
True/False

True/False

3.4 Matrix-Vector Multiplication Algorithms

3.4.1 Via Dot Products

Motivation

Recall that if y = Ax, where A € R™*", x € R", and y € R™, then

Yo 0Olo 0X 0+ Olo, 11+

\J1 0l 0Xo+ ol 1 X1+

y= . = . .
WYim-1 Om—1,0X0+ Om—1,1X1+

If one looks at a typical row,

o 0Xo+ QiiX1t+ oo+ Oip—1Xn—1

one notices that this is just the dot product of vectors
Q0
Qi1

a; = ) and x=

O n—1

@ View at edX

00,n—1Xn—1

(xl,n—IXn—l

st Oln—1,n—1Xn—1

X0
X1

Xn_l

In other words, the dot product of the ith row of A, viewed as a column vector, with the vector x, which one can visualize as

Yo Q0,0 o, 1

Qo,n—1

= Lo o

ai,nfl

Ym—1 Omel,O OCm,171

amfl,nfl

X0
X1

An—1
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The above argument starts to expain why we write the dot product of vectors x and y as x”y.
-1 0 2 -1
Example 3.7 Let A = 2 —1 1 and x = 2 |. Then
3 1 -1 1
-1
(—1 0 2) 2
1
-1 0o 2 —1 -1
Ax = 2 -1 1 2 | = (2 —1 1) 2
3 1 -1 1 1
-1
(3 1 —1) 2
1
T
— —1
0 2
1
2\ [ -1 (~1)(=1)+(0)2) + 2)(1) 3
- -1 2 | =] @cn+En@+ma) = -3
! ! B)=D+(1)@)+(=)(1) -2
3 ' —1
1 2
-1 1

Algorithm (traditional notation)

An algorithm for computing y := Ax+y (notice that we add the result of Ax to y) via dot products is given by

fori=0,....m—1
for j=0,....n—1
Vi =i+ 04 X
endfor

endfor

If initially y = 0, then it computes y := Ax.

Now, let us revisit the fact that the matrix-vector multiply can be computed as dot products of the rows of A with the vector
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x. Think of the matrix A as individual rows:
~T

where a; is the (column) vector which, when transposed, becomes the ith row of the matrix. Then

~T ~T
a agx
JIT ElTx
Ax = xX= ,
~T ~T
A1 A1 X

which is exactly what we reasoned before. To emphasize this, the algorithm can then be annotated as follows:

fori=0,....m—1
for j=0,....n—1
Vi i= W+ 04y i)Y VYi= Wi+diTx
endfor

endfor

Algorithm (FLAME notation)
We now present the algorithm that casts matrix-vector multiplication in terms of dot products using the FLAME notation with

which you became familiar earlier this week:

Algorithm: y := MVMULT_N_UNB_VARI1(A,x,y)

yr

T
Partition A = [ =— ],y —
Ap VB

whereA7 is 0 x n and y7 is 0 x 1

while m(A7) <m(A) do

Repartition
Ao Yo
A — yr —_
wve) I 0 R G e
Ap — yB —
Ar Y2

wherea; is a row

Y= alTx+\|!1

Continue with

endwhile
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Homework 3.4.1.1 Implement function Mvmult_n_unb_varl( &, x, y ).

3.4.2 Via AXPY Operations

Motivation

Note that, by definition,

@ View at edX

0lo,0X0+ Olo,1X1+ -+ 00,n—1Xn—1
0l1,0X0+ o X1+ -+t O n—1Xn—1
AX: . . =
Op—1,0X0+ Ohp—11X1+ -+ Oyp—1n—1Xn—1
0lo.0 0o, o, n—1
o0 Ol o1 n—1
X0 +X1 + o An—1
Oln—1,0 Oln—1,1 Olp—1,n—1
-1 0 2 —1
Example 3.8 Let A = 2 -1 1 |andx= 2 |. Then
3 1 -1 1
—1 0 2 —1 —1 0 2
Ax = 2 -1 1 2 |=(=Df 2 |+@)] -1 |+ 1
3 1 -1 1 3 1 -1
(=D(=1) (2)(0) (1)(2)
= =D@) [+ @D [+ M)
(=1(3) (2)(1) (H(=1)
(=D (=1)+(0)(2)+(2)(1) 3
= | @ED+E@+0Mm | =| -3
BG)(=D)+1)(2)+(=1)(1) -2

Algorithm (traditional notation)

The above suggests the alternative algorithm for computing y := Ax+y given by
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for j=0,....n—1
fori=0,....m—1
Vi =i+ 0 X
endfor

endfor

If we let a; denote the vector that equals the jth column of A, then

A=(aofa |- fa)
and
0.0 0lo,1 0o,n—1
1,0 o1 Ol ,n—1
Ax = Yo . + %1 . +e A1
On—1,0 Olpn—1,1 Obpn—1,n—1
| S —
ao ai ap—1

= Xoao+X1a1+---+Xn—1an-1-

This is emphasized by annotating the algorithm as follows:

for j=0,....n—1

fori=0,....m—1

Yii=Vi+0 X o Yi=Xajty

endfor

endfor

Algorithm (FLAME notation)

Here is the algorithm that casts matrix-vector multiplication in terms of AXPYs using the FLAME notation:
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Algorithm: y := MVMULT_N_UNB_VAR2(A,x,y)
Xr
Partition A — (ALlAR) e
XB
whereA; ism x 0 and x7 is 0 x 1
while m(xr) <m(x) do
Repartition
X0
XT —
ArlAr )= (A A ), | —| =
(sbae) (ko) () 3
x2
wherea; is a column
yi=X1a1+y
Continue with
X0
XT —
ALlAr ) < | A Ay |, | =] < | X
(i) (mfol ) (2] < |
x
endwhile

Homework 3.4.2.1 Implement function Mvmult_n_unb_var2( &, x, y ).
(Hint: use the function laff_dots( x, y, alpha ) that updates ot :=x"y+ )

3.4.3 Compare and Contrast

@ View at edX

Motivation

It is always useful to compare and contrast different algorithms for the same operation.

Algorithms (traditional notation)

Let us put the two algorithms that compute y := Ax +y via “double nested loops” next to each other:

for j=0,...,n—1 fori=0,....m—1
fori=0,....m—1 for j=0,....n—1
Vi =i+ 0 X Vi =i+ 04y jXj
endfor endfor
endfor endfor

On the left is the algorithm based on the AXPY operation and on the right the one based on the dot product. Notice that these
loops differ only in that the order of the two loops are interchanged. This is known as “interchanging loops” and is sometimes
used by compilers to optimize nested loops. In the enrichment section of this week we will discuss why you may prefer one
ordering of the loops over another.
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The above explains, in part, why we chose to look at y := Ax+ y rather than y := Ax. For y := Ax+y, the two algorithms
differ only in the order in which the loops appear. To compute y := Ax, one would have to initialize each component of
y to zero, Y; := 0. Depending on where in the algorithm that happens, transforming an algorithm that computes y := Ax
elements of y at a time (the inner loop implements a dot product) into an algorithm that computes with columns of A (the
inner loop implements an AXPY operation) gets trickier.

Algorithms (FLAME notation)

Now let us place the two algorithms presented using the FLAME notation next to each other:

Algorithm: y := MVMULT_N_UNB_VAR1(A,x,y)

Ar T
Partition A — [ =—] ,y— y_
Ap YB

where Ay isOxnandyris0x1
while m(A7) <m(A) do

Repartition
Ao Yo
Ar _— r _—
— =l | (=]~ ]w
Ap — yB -
Az 2
L] ::a]Tx-i-\Vl

Continue with

Ao Yo
Ar - yr —
— || d|.[—]|« | w
Ap -_ YB —

Az 2

endwhile

Algorithm: y := MVMULT_N_UNB_VAR2(A,x,y)

X1
Partition A — (ALlAR) L X > | —
XB

where A; ism x0and x7 is 0 x 1
while m(xr) <m(x) do
Repartition

XB

y=xia1+y

Continue with

XB

endwhile

() (ko) () 3

(i) (wfolss). () |

The algorithm on the left clearly accesses the matrix by rows while the algorithm on the right accesses it by columns. Again,
this is important to note, and will be discussed in enrichment for this week.

3.4.4 Cost of Matrix-Vector Multiplication

Consider y := Ax+y, where A € R™*":

Yo Qo,0X0+
Vi o1,0X0+

y = =
Yin—1 Olpn—1 ,0X0+

@ View at edX

o1 X1+ -+ Oon—1Xn-11+  Wo
X+ -t O n—1Xn—1+ V2

(xmfl,lX1+ R (xmfl.,nlerzfl"' ‘Ilmfl

Notice that there is a multiply and an add for every element of A. Since A has m X n = mn elements, y := Ax+y, requires mn
multiplies and mn adds, for a total of 2mn floating point operations (flops). This count is the same regardless of the order of the
loops (i.e., regardless of whether the matrix-vector multiply is organized by computing dot operations with the rows or axpy
operations with the columns).
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3.5 Wrap Up

3.5.1 Homework

No additional homework this week. You have done enough...

3.5.2 Summary

Special Matrices

Name Represents linear transformation Has entries
0 0 0
Lo:R" — R™ 0 0 0
Zero matrix, 0,,,x, € R™*" 0 0=0pxn=
Lo(x) =0 for all x
0 0 0
1 0
L :R"— R” 0 1
Identity matrix, I € R"*" ! I=1,,=
L;(x) = x for all x
0 0 1
S O 0
Lp:R"—R" 0 & - 0
Diagonal matrix, D € R**" P D=
ify=1Lp ()C) then Vi = SiXi
0 0 8nfl
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Triangular matrices

A € R™" js said to be... | if ...
0,0 0
o o
lower 1.0 1.1
triangular o =0ifi < j
Op20 Oy-21 Op—2p-—2 0
Op—1,0 Op—1,1 Op—1n—2  Op—1n—1
. 0 0 0
strictly 0 0
o
lower 10
triangular o;;=0ifi<j
Op—20 Op—21 0 0
Op—1,0 Olp—1.1 Olp—1,n—2 0
1 0 0 0
f‘”” o o0 1 0 0
ower 0 ifi<j
triangular o= ]
1 ifi=j
Op—20 Op—21 1 0
Op10 Oy_11 Op1p—2 1
00 Qo1 0,n—2 0l,n—1
upper 0 oy O -2 O -1
triangular o j=0ifi>j
Op—2.n—2 Olp—2.n—1
0 0 Op—1,n—1
strictly Qo1 Qo n—2 Qo n—1
upper 0 oy n—2 oy n—1
triangular o j=0ifi > j
Op—2.n—1
0 0
. 1 o, Gon-2  OQon-1
unit
e 0 1 Op2 Oy
upper 0 ifi>j
triangular o=
1 ifi=j
1 Op—2.n—1
0 1
Transpose matrix
T
0,0 Qo,n—2 0o, n—1 Q0,0 1,0 On—2.0 Oln—1,0
1,0 Ol ,n—2 O n—1 0o, 1 Ol Oln—2,1 Oln—1,1
Oln—2,0 On—2n—2  Om—2n—1 Qopn—2 O pn—2 On—2n-2 Oin—1,n—-2
Oln—1,0 Op—1,n—2  Oim—1n—1 Qon—1 O pn—1 On—2n—-1 Om—1n-1
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Symmetric matrix

Matrix A € R"*" is symmetric if and only if A = AT:

©o,0 0o, 1 0lo,n—2 0o,n—1 ®o,0 1,0 Op—2,0 Oly—1,0
01,0 011 O n—2 O n—1 Qo,1 o1 Op—2.1 Op—1,1
A= = =AT
Op—20 Op—2,1 Op—2n—2 Oyp—2n—1 Oopn—2 O -2 Op—2n—2 Op—1p-2
Op—1,0 Op—1,1 Op—1,n—2 Op—1,n—1 Qo n—1 O p—1 Op—2n—1 Op—1n-1
Scaling a matrix
Let f € R and A € R™*". Then
pa = B(a|a | [ar )= (Bao|par| | pars )
00,0 0o, 1 0l n—1 Bow o Bow 1 Bog -1
5 0 0 o1 04 -1 B o B 1 Boty -1
am—l,() afm—l,l (xm—l,n—l Bam—l,O Bam—l,l B(xrn—l,n—l
Adding matrices
Let A,B € R™*", Then
A+B = ( ao ‘ aj ‘ ‘ an-1 >+( bo ‘ b ‘ ‘ bp—1 >:< ao +bo ‘ a;+b ‘ ‘ an—1+ by )
00,0 0,1 0l) 1 Bo.o Bo.1 Bo.a—1
0 0 o1 Ol 1 Bio Bi.1 Bin-1
JR— + .
On—10 Obn—1,1 Obyn— 1 n—1 Bn-10 Bm—1.1 Brm—1n-1
00,0 + Bo.o0 0,1 + Bo,1 0l0,n—1 + Bo,a—1
o0+ PBio o1+ B O n—1 +Pia-t
On—1,0 + Bm—1,0 Om—1,1 +Bm—1.1 Obn—1 n—1 + Prn—1,n—1
e Matrix addition commutes: A +B = B+ A.
 Matrix addition is associative: (A+B)+C =A+ (B+C).
s (A+B)T =AT +BT.
Matrix-vector multiplication
0lo,0 0Olo,1 0l n—1 X0 OooXo+ Ooi1X1+ -+  Oon—1Xn—1
01,0 01,1 o1 n—1 X1 ajoXot QX1+ oo+ O p—1Xn—1
A_x = =
Op—1,0 On—1,1 Oln—1,n—1 An—1 Obn—1,0X0+ Om—1,1X1+ =+ + Oun—1,n—1Xn—1




115

3.5. Wrap Up
X0
X1
= ( aop ‘ ai ‘ ‘ ap—1 ) . =Xoao+X1a1+ -+ Xn—10n-1
Xn—1
ay abx
= . x: .
ar i _x
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