
Week 4
From Matrix-Vector Multiplication to
Matrix-Matrix Multiplication

There are a LOT of programming assignments this week.

• They are meant to help clarify “slicing and dicing”.

• They show that the right abstractions in the mathematics, when reflected in how we program, allow one to implement
algorithms very quickly.

• They help you understand special properties of matrices.

Practice as much as you think will benefit your understanding of the material. There is no need to do them all!

4.1 Opening Remarks

4.1.1 Predicting the Weather

* View at edX
The following table tells us how the weather for any day (e.g., today) predicts the weather for the next day (e.g., tomorrow):

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

This table is interpreted as follows: If today is rainy, then the probability that it will be cloudy tomorrow is 0.6, etc.

117

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 118

Homework 4.1.1.1 If today is cloudy, what is the probability that tomorrow is

• sunny?

• cloudy?

• rainy?

* View at edX

Homework 4.1.1.2 If today is sunny, what is the probability that the day after tomorrow is sunny? cloudy? rainy?

Try this! If today is cloudy, what is the probability that a week from today it is sunny? cloudy? rainy?
Think about this for at most two minutes, and then look at the answer.

* View at edX
When things get messy, it helps to introduce some notation.

• Let χ
(k)
s denote the probability that it will be sunny k days from now (on day k).

• Let χ
(k)
c denote the probability that it will be cloudy k days from now.

• Let χ
(k)
r denote the probability that it will be rainy k days from now.

The discussion so far motivate the equations

χ
(k+1)
s = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.1×χ

(k)
r

χ
(k+1)
c = 0.4×χ

(k)
s + 0.3×χ

(k)
c + 0.6×χ

(k)
r

χ
(k+1)
r = 0.2×χ

(k)
s + 0.4×χ

(k)
c + 0.3×χ

(k)
r .

The probabilities that denote what the weather may be on day k and the table that summarizes the probabilities are often
represented as a (state) vector, x(k), and (transition) matrix, P, respectively:

x(k) =


χ
(k)
s

χ
(k)
c

χ
(k)
r

 and P =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

 .

The transition from day k to day k+1 is then written as the matrix-vector product (multiplication)
χ
(k+1)
s

χ
(k+1)
c

χ
(k+1)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(k)
s

χ
(k)
c

χ
(k)
r


or x(k+1) = Px(k), which is simply a more compact representation (way of writing) the system of linear equations.

What this demonstrates is that matrix-vector multiplication can also be used to compactly write a set of simultaneous linear
equations.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

4.1. Opening Remarks 119

Assume again that today is cloudy so that the probability that it is sunny, cloudy, or rainy today is 0, 1, and 0, respectively:

x(0) =


χ
(0)
s

χ
(0)
c

χ
(0)
r

=


0

1

0

 .

(If we KNOW today is cloudy, then the probability that is is sunny today is zero, etc.)

Ah! Our friend the unit basis vector reappears!

Then the vector of probabilities for tomorrow’s weather, x(1), is given by
χ
(1)
s

χ
(1)
c

χ
(1)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0

1

0



=


0.4×0 + 0.3×1 + 0.1×0

0.4×0 + 0.3×1 + 0.6×0

0.2×0 + 0.4×1 + 0.3×0

=


0.3

0.3

0.4

 .

Ah! Pe1 = p1, where p1 is the second column in matrix P. You should not be surprised!

The vector of probabilities for the day after tomorrow, x(2), is given by
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r

=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.3

0.3

0.4



=


0.4×0.3 + 0.3×0.3 + 0.1×0.4

0.4×0.3 + 0.3×0.3 + 0.6×0.4

0.2×0.3 + 0.4×0.3 + 0.3×0.4

=


0.25

0.45

0.30

 .

Repeating this process (preferrably using Python rather than by hand), we can find the probabilities for the weather for the
next seven days, under the assumption that today is cloudy:

k

0 1 2 3 4 5 6 7

x(k) =


0

1

0




0.3

0.3

0.4




0.25

0.45

0.30




0.265

0.415

0.320




0.2625

0.4225

0.3150




0.26325

0.42075

0.31600




0.26312

0.42112

0.31575




0.26316

0.42104

0.31580



* View at edX

Homework 4.1.1.3 Follow the instructions in the above video

* View at edX
We could build a table that tells us how to predict the weather for the day after tomorrow from the weather today:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/e80e0158392a4300867e2d637414e896/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 120

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

One way you can do this is to observe that
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r



=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r


= Q


χ
(0)
s

χ
(0)
c

χ
(0)
r

 ,

where Q is the transition matrix that tells us how the weather today predicts the weather the day after tomorrow. (Well, actually,
we don’t yet know that applying a matrix to a vector twice is a linear transformation... We’ll learn that later this week.)

Now, just like P is simply the matrix of values from the original table that showed how the weather tomorrow is predicted
from today’s weather, Q is the matrix of values for the above table.

Homework 4.1.1.4 Given

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

fill in the following table, which predicts the weather the day after tomorrow given the weather today:

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-matrix multipli-
cation, since you won’t learn about that until later this week... May we suggest that you instead use MATLAB to
perform the necessary calculations.

4.1. Opening Remarks 121

4.1.2 Outline

4.1. Opening Remarks . 117
4.1.1. Predicting the Weather . 117
4.1.2. Outline . 121
4.1.3. What You Will Learn . 122

4.2. Preparation . 123
4.2.1. Partitioned Matrix-Vector Multiplication . 123
4.2.2. Transposing a Partitioned Matrix . 125
4.2.3. Matrix-Vector Multiplication, Again . 129

4.3. Matrix-Vector Multiplication with Special Matrices . 132
4.3.1. Transpose Matrix-Vector Multiplication . 132
4.3.2. Triangular Matrix-Vector Multiplication . 134
4.3.3. Symmetric Matrix-Vector Multiplication . 140

4.4. Matrix-Matrix Multiplication (Product) . 143
4.4.1. Motivation . 143
4.4.2. From Composing Linear Transformations to Matrix-Matrix Multiplication 145
4.4.3. Computing the Matrix-Matrix Product . 145
4.4.4. Special Shapes . 148
4.4.5. Cost . 153

4.5. Enrichment . 154
4.5.1. Markov Chains: Their Application . 154

4.6. Wrap Up . 154
4.6.1. Homework . 154
4.6.2. Summary . 155

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 122

4.1.3 What You Will Learn

Upon completion of this unit, you should be able to

• Apply matrix vector multiplication to predict the probability of future states in a Markov process.

• Make use of partitioning to perform matrix vector multiplication.

• Transpose a partitioned matrix.

• Partition conformally, ensuring that the size of the matrices and vectors match so that matrix-vector multiplication works.

• Take advantage of special structures to perform matrix-vector multiplication with triangular and symmetric matrices.

• Express and implement various matrix-vector multiplication algorithms using the FLAME notation and FlamePy.

• Make connections between the composition of linear transformations and matrix-matrix multiplication.

• Compute a matrix-matrix multiplication.

• Recognize scalars and column/row vectors as special cases of matrices.

• Compute common vector-vector and matrix-vector operations as special cases of matrix-matrix multiplication.

• Compute an outer product xyT as a special case of matrix-matrix multiplication and recognize that

– The rows of the resulting matrix are scalar multiples of yT .

– The columns of the resulting matrix are scalar multiples of x.

4.2. Preparation 123

4.2 Preparation

4.2.1 Partitioned Matrix-Vector Multiplication

* View at edX

Motivation

Consider

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

=



−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2


,

x =


x0

χ1

x2

=



1

2

3

4

5


, and y =


y0

ψ1

y2

 ,

where y0,y2 ∈ R2. Then y = Ax means that

y =


y0

ψ1

y2

=


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22




x0

χ1

x2

=


A00x0 + a01χ1 + A02x2

aT
10x0 + α11χ1 + aT

12x2

A20x0 + a21χ1 + A22x2



=



 −1 2

1 0

 1

2

 +

 4

−1

3 +

 1 0

−2 1

 4

5


(

2 −1
) 1

2

 +
(

3
)

3 +
(

1 2
) 4

5

 1 2

−1 −2

 1

2

 +

 3

0

3 +

 4 3

1 2

 4

5




=



 (−1)× (1)+(2)× (2)

(1)× (1)+(0)× (2)

+

 (4)× (3)

(−1)× (3)

+

 (1)× (4)+(0)× (5)

(−2)× (4)+(1)× (5)


(2)× (1)+(−1)× (2)+ (3)× (3)+ (1)× (4)+(2)× (5) (1)× (1)+(2)× (2)

(−1)× (1)+(−2)× (2)

+

 (3)×3

(0)×3

+

 (4)× (4)+(3)× (5)

(1)× (4)+(2)× (5)




=

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 124



(−1)× (1)+(2)× (2)+(4)× (3)+(1)× (4)+(0)× (5)

(1)× (1)+(0)× (2)+(−1)× (3)+(−2)× (4)+(1)× (5)

(2)× (1)+(−1)× (2)+(3)× (3)+(1)× (4)+(2)× (5)

(1)× (1)+(2)× (2)+(3)× (3)+(4)× (4)+(3)× (5)

(−1)× (1)+(−2)× (2)+(0)× (3)+(1)× (4)+(2)× (5)


=



19

−5

23

45

9


Homework 4.2.1.1 Consider

A =



−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2


and x =



1

2

3

4

5


,

and partition these into submatrices (regions) as follows:
A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 and


x0

χ1

x2

 ,

where A00 ∈ R3x3, x0 ∈ R3, α11 is a scalar, and χ1 is a scalar. Show with lines how A and x are partitioned:

−1 2 4 1 0

1 0 −1 −2 1

2 −1 3 1 2

1 2 3 4 3

−1 −2 0 1 2





1

2

3

4

5


.

Homework 4.2.1.2 With the partitioning of matrices A and x in the above exercise, repeat the partitioned matrix-
vector multiplication, similar to how this unit started.

Theory

Let A ∈ Rm×n, x ∈ Rn, and y ∈ Rm. Partition

A =


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1

 , x =


x0

x1
...

xN−1

 , and y =


y0

y1
...

yM−1


where

• m = m0 +m1 + · · ·+mM−1,

• mi ≥ 0 for i = 0, . . . ,M−1,

• n = n0 +n1 + · · ·+nN−1,

• n j ≥ 0 for j = 0, . . . ,N−1, and

4.2. Preparation 125

• Ai, j ∈ Rmi×n j , x j ∈ Rn j , and yi ∈ Rmi .

If y = Ax then 
A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1




x0

x1
...

xN−1



=


A0,0x0 +A0,1x1 + · · ·+A0,N−1xN−1

A1,0x0 +A1,1x1 + · · ·+A1,N−1xN−1
...

AM−1,0x0 +AM−1,1x1 + · · ·+AM−1,N−1xN−1

 .

In other words,

yi =
N−1

∑
j=0

Ai, jx j.

This is intuitively true and messy to prove carefully. Therefore we will not give its proof, relying on the many examples we
will encounter in subsequent units instead.

If one partitions matrix A, vector x, and vector y into blocks, and one makes sure the dimensions match up, then blocked
matrix-vector multiplication proceeds exactly as does a regular matrix-vector multiplication except that individual multi-
plications of scalars commute while (in general) individual multiplications with matrix and vector blocks (submatrices and
subvectors) do not.

The labeling of the submatrices and subvectors in this unit was carefully chosen to convey information. Consider

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


The letters that are used convey information about the shapes. For example, for a01 and a21 the use of a lowercase Roman
letter indicates they are column vectors while the T s in aT

10 and aT
12 indicate that they are row vectors. Symbols α11 and χ1

indicate these are scalars. We will use these conventions consistently to enhance readability.

Notice that the partitioning of matrix A and vectors x and y has to be “conformal”. The simplest way to understand this is
that matrix-vector multiplication only works if the sizes of matrices and vectors being multiply match. So, a partitioning
of A, x, and y, when performing a given operation, is conformal if the suboperations with submatrices and subvectors that
are encountered make sense.

4.2.2 Transposing a Partitioned Matrix

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/2

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 126

Motivation

Consider 
1 −1 3 2

2 −2 1 0

0 −4 3 2


T

=


 1 −1 3

2 −2 1

  2

0


(

0 −4 3
) (

2
)


T

=



 1 −1 3

2 −2 1

T (
0 −4 3

)T

 2

0

T (
2
)T



=




1 2

−1 −2

3 1




0

−4

3


(

2 0
) (

2
)

=


1 2 0

−1 −2 −4

3 1 3

2 0 2

 .

This example illustrates a general rule: When transposing a partitioned matrix (matrix partitioned into submatrices), you
transpose the matrix of blocks, and then you transpose each block.

Homework 4.2.2.1 Show, step-by-step, how to transpose
1 −1 3 2

2 −2 1 0

0 −4 3 2



Theory

Let A ∈ Rm×n be partitioned as follows:

A =


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,N−1

 ,

where Ai, j ∈ Rmi×n j . Then

AT =


AT

0,0 AT
1,0 · · · AT

M−1,0

AT
0,1 AT

1,1 · · · AT
M−1,1

...
...

...

AT
0,N−1 AT

1,N−1 · · · AT
M−1,N−1

 .

Transposing a partitioned matrix means that you view each submatrix as if it is a scalar, and you then transpose the matrix
as if it is a matrix of scalars. But then you recognize that each of those scalars is actually a submatrix and you also transpose
that submatrix.

4.2. Preparation 127

Special cases

We now discuss a number of special cases that you may encounter.

Each submatrix is a scalar. If

A =


α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1
...

...
...

αM−1,0 αM−1,1 · · · αM−1,N−1


then

AT =


αT

0,0 αT
1,0 · · · αT

M−1,0

αT
0,1 αT

1,1 · · · αT
M−1,1

...
...

...

αT
0,N−1 αT

1,N−1 · · · αT
M−1N−1

=


α0,0 α1,0 · · · αM−1,0

α0,1 α1,1 · · · αM−1,1
...

...
...

α0,N−1 α1,N−1 · · · αM−1,N−1

 .

This is because the transpose of a scalar is just that scalar.

The matrix is partitioned by rows. If

A =


ãT

0

ãT
1
...

ãT
m−1

 ,

where each ãT
i is a row of A, then

AT =


ãT

0

ãT
1
...

ãT
m−1



T

=
((

ãT
0
)T (

ãT
1
)T · · ·

(
ãT

m−1
)T
)
=
(

ã0 ã1 · · · ãm−1

)
.

This shows that rows of A, ãT
i , become columns of AT : ãi.

The matrix is partitioned by columns. If

A =
(

a0 a1 · · · an−1

)
,

where each a j is a column of A, then

AT =
(

a0 a1 · · · an−1

)T
=


aT

0

aT
1
...

aT
n−1

 .

This shows that columns of A, a j, become rows of AT : aT
j .

2×2 blocked partitioning. If

A =

 AT L AT R

ABL ABR

 ,

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 128

then

AT =

 AT
T L AT

BL

AT
T R AT

BR

 .

3×3 blocked partitioning. If

A =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

then

AT =


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


T

=


AT

00
(
aT

10
)T AT

20

aT
01 αT

11 aT
21

AT
02

(
aT

12
)T AT

22

=


AT

00 a10 AT
20

aT
01 α11 aT

21

AT
02 a12 AT

22

 .

Anyway, you get the idea!!!

4.2. Preparation 129

Homework 4.2.2.2 Transpose the following matrices:

1.
(

3
)

2.


3

1

1

8


3.
(

3 1 1 8
)

4.


1 2 3 4

5 6 7 8

9 10 11 12



5.


1 5 9

2 6 10

3 7 11

4 8 12



6.


1 2 3 4

5 6 7 8

9 10 11 12



7.




1 2 3 4

5 6 7 8

9 10 11 12


T

For any matrix A ∈ Rm×n,
AT T

= (AT)T = A

4.2.3 Matrix-Vector Multiplication, Again

* View at edX

Motivation

In the next few units, we will modify the matrix-vector multiplication algorithms from last week so that they can take advantage
of matrices with special structure (e.g., triangular or symmetric matrices).

Now, what makes a triangular or symmetric matrix special? For one thing, it is square. For another, it only requires one
triangle of a matrix to be stored. It was for this reason that we ended up with “algorithm skeletons” that looked like the one in
Figure 4.1 when we presented algorithms for “triangularizing” or “symmetrizing” a matrix.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/f8440e061cd34d8985d1a88544564989/3

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 130

Algorithm: [A] := ALGORITHM SKELETON(A)

Partition A→

 AT L AT R

ABL ABR


whereAT L is 0×0

while m(AT L)< m(A) do

Repartition AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


whereα11 is 1×1

Continue with AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22


endwhile

Figure 4.1: Code skeleton for algorithms when matrices are triangular or symmetric.

Now, consider a typical partitioning of a matrix that is encountered in such an algorithm:


A00 a01 A02

aT
10 α01 aT

12

A20 a21 A22

=



× × × × × ×
× × × × × ×

× × × × × ×

× × × × × ×
× × × × × ×
× × × × × ×


,

where each × represents an entry in the matrix (in this case 6×6). If, for example, the matrix is lower triangular,


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

=



× 0 0 0 0 0

× × 0 0 0 0

× × × 0 0 0

× × × × 0 0

× × × × × 0

× × × × × ×


,

4.2. Preparation 131

Algorithm: y := MVMULT N UNB VAR1B(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := MVMULT N UNB VAR2B(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.2: Alternative algorithms for matrix-vector multiplication.

then a01 = 0, A02 = 0, and aT
12 = 0. (Remember: the “0” is a matrix or vector “of appropriate size”.) If instead the matrix is

symmetric with only the lower triangular part stored, then a01 =
(
aT

10
)T

= a10, A02 = AT
20, and aT

12 = aT
21.

The above observation leads us to express the matrix-vector multiplication algorithms for computing y := Ax+ y given in
Figure 4.2. Note:

• For the left algorithm, what was previously the “current” row in matrix A, aT
1 , is now viewed as consisting of three parts:

aT
1 =

(
aT

10 α11 aT
12

)
while the vector x is now also partitioned into three parts:

x =


x0

χ1

x1

 .

As we saw in the first week, the partitioned dot product becomes

aT
1 x =

(
aT

10 α11 aT
12

)
x0

χ1

x1

= aT
10x0 +α11χ1 +aT

12x2,

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 132

which explains why the update

ψ1 := aT
1 x+ψ1

is now

ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1.

• Similar, for the algorithm on the right, based on the matrix-vector multiplication algorithm that uses the AXPY operations,
we note that

y := χ1a1 + y

is replaced by 
y0

ψ1

y2

 := χ1


a01

α11

a21

+


y0

ψ1

y2


which equals 

y0

ψ1

y2

 :=


χ1a01 + y0

χ1α11 +ψ1

χ1a21 + y2

 .

This explains the update

y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2.

Now, for matrix-vector multiplication y := Ax+ y, it is not beneficial to break the computation up in this way. Typically, a dot
product is more efficient than multiple operations with the subvectors. Similarly, typically one AXPY is more efficient then
multiple AXPYs. But the observations in this unit lay the foundation for modifying the algorithms to take advantage of special
structure in the matrix, later this week.

Homework 4.2.3.1 Implement routines

• [y out] = Mvmult n unb var1B(A, x, y); and

• [y out] = Mvmult n unb var2B(A, x, y)

that compute y := Ax+ y via the algorithms in Figure 4.2.

4.3 Matrix-Vector Multiplication with Special Matrices

4.3.1 Transpose Matrix-Vector Multiplication

* View at edX

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/1

4.3. Matrix-Vector Multiplication with Special Matrices 133

Algorithm: y := MVMULT T UNB VAR1(A,x,y)

Partition A→
(

AL AR

)
, y→

 yT

yB


where AL is m×0 and yT is 0×1

while m(yT)< m(y) do

Repartition

(
AL AR

)
→
(

A0 a1 A2

)
,

 yT

yB

→


y0

ψ1

y2


ψ1 := aT

1 x+ψ1

Continue with

(
AL AR

)
←
(

A0 a1 A2

)
,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := MVMULT T UNB VAR2(A,x,y)

Partition A→

 AT

AB

 , x→

 xT

xB


where AT is 0×n and xT is 0×1

while m(AT)< m(A) do

Repartition AT

AB

→


A0

aT
1

A2

 ,

 xT

xB

→


x0

χ1

x2


y := χ1a1 + y

Continue with AT

AB

←


A0

aT
1

A2

 ,

 xT

xB

←


x0

χ1

x2


endwhile

Figure 4.3: Algorithms for computing y := AT x+ y.

Motivation

Let A =


1 −2 0

2 −1 1

1 2 3

 and x =


−1

2

−3

. Then

AT x =


1 −2 0

2 −1 1

1 2 3


T 

−1

2

−3

=


1 2 1

−2 −1 2

0 1 3



−1

2

−3

=


0

−6

−7

 .

The thing to notice is that what was a column in A becomes a row in AT .

Algorithms

Let us consider how to compute y := AT x+ y.
It would be possible to explicitly transpose matrix A into a new matrix B (using, for example, the transpose function you

wrote in Week 3) and to then compute y := Bx+ y. This approach has at least two drawbacks:

• You will need space for the matrix B. Computational scientists tend to push the limits of available memory, and hence
are always hesitant to use large amounts of space that isn’t absolutely necessary.

• Transposing A into B takes time. A matrix-vector multiplication requires 2mn flops. Transposing a matrix requires 2mn
memops (mn reads from memory and mn writes to memory). Memory operations are very slow relative to floating point
operations... So, you will spend all your time transposing the matrix.

Now, the motivation for this unit suggest that we can simply use columns of A for the dot products in the dot product based
algorithm for y := Ax+y. This suggests the algorithm in FLAME notation in Figure 4.3 (left). Alternatively, one can exploit the

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 134

fact that columns in A become rows of AT to change the algorithm for computing y := Ax+ y that is based on AXPY operations
into an algorithm for computing y := AT x+ y, as shown in Figure 4.3 (right).

Implementation

Homework 4.3.1.1 Implement the routines

• [y out] = Mvmult t unb var1(A, x, y); and

• [y out] = Mvmult t unb var2(A, x, y)

that compute y := AT x+ y via the algorithms in Figure 4.3.

Homework 4.3.1.2 Implementations achieve better performance (finish faster) if one accesses data consecutively
in memory. Now, most scientific computing codes store matrices in “column-major order” which means that the
first column of a matrix is stored consecutively in memory, then the second column, and so forth. Now, this means
that an algorithm that accesses a matrix by columns tends to be faster than an algorithm that accesses a matrix by
rows. That, in turn, means that when one is presented with more than one algorithm, one should pick the algorithm
that accesses the matrix by columns.
Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns.

• For the matrix-vector multiplication y := Ax+y, would you recommend the algorithm that uses dot products
or the algorithm that uses axpy operations?

• For the matrix-vector multiplication y :=AT x+y, would you recommend the algorithm that uses dot products
or the algorithm that uses axpy operations?

The point of this last exercise is to make you aware of the fact that knowing more than one algorithm can give you a
performance edge. (Useful if you pay $30 million for a supercomputer and you want to get the most out of its use.)

4.3.2 Triangular Matrix-Vector Multiplication

* View at edX

Motivation

Let U ∈ Rn×n be an upper triangular matrix and x ∈ Rn be a vector. Consider

Ux =


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22




x0

χ1

x2

=



−1 2 4 1 0

0 0 −1 −2 1

0 0 3 1 2

0 0 0 4 3

0 0 0 0 2





1

2

3

4

5



=



?

? 0

0

T  1

2

+(3)(3)+

 1

2

T  4

5


?

?


=



?

?

(3)(3)+

 1

2

T  4

5


?

?


,

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/2

4.3. Matrix-Vector Multiplication with Special Matrices 135

where ?s indicate components of the result that aren’t important in our discussion right now. We notice that uT
10 = 0 (a vector

of two zeroes) and hence we need not compute with it.

Theory

If

U →

 UT L UT R

UBL UBR

=


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

 ,

where UT L and U00 are square matrices. Then

• UBL = 0, uT
10 = 0, U20 = 0, and u21 = 0, where 0 indicates a matrix or vector of the appropriate dimensions.

• UT L and UBR are upper triangular matrices.

We will just state this as “intuitively obvious”.
Similarly, if

L→

 LT L LT R

LBL LBR

=


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

 ,

where LT L and L00 are square matrices, then

• LT R = 0, l01 = 0, L02 = 0, and lT
12 = 0, where 0 indicates a matrix or vector of the appropriate dimensions.

• LT L and LBR are lower triangular matrices.

Algorithms

Let us start by focusing on y :=Ux+ y, where U is upper triangular. The algorithms from the previous section can be restated
as in Figure 4.4, replacing A by U . Now, notice the parts in gray. Since uT

10 = 0 and u21 = 0, those computations need not be
performed! Bingo, we have two algorithms that take advantage of the zeroes below the diagonal. We probably should explain
the names of the routines:

TRMVP UN UNB VAR1: Triangular matrix-vector multiply plus (y), with upper triangular matrix that is not trans-
posed, unblocked variant 1.

(Yes, a bit convoluted, but such is life.)

Homework 4.3.2.1 Write routines

• [y out] = Trmvp un unb var1 (U, x, y); and

• [y out] = Trmvp un unb var2(U, x, y)

that implement the algorithms in Figure 4.4 that compute y :=Ux+ y.

Homework 4.3.2.2 Modify the algorithms in Figure 4.5 so that they compute y := Lx+ y, where L is a lower
triangular matrix: (Just strike out the parts that evaluate to zero. We suggest you do this homework in conjunction
with the next one.)

Homework 4.3.2.3 Write the functions

• [y out] = Trmvp ln unb var1 (L, x, y); and

• [y out] = Trmvp ln unb var2(L, x, y)

that implement thenalgorithms for computing y := Lx+ y from Homework 4.3.2.2.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 136

Algorithm: y := TRMVP UN UNB VAR1(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := uT
10x0+ υ11χ1 +uT

12x2 +ψ1

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP UN UNB VAR2(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1u01 + y0

ψ1 := χ1υ11 +ψ1

y2 := χ1u21 + y2

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.4: Algorithms for computing y :=Ux+ y, where U is upper triangular.

Homework 4.3.2.4 Modify the algorithms in Figure 4.6 to compute x := Ux, where U is an upper triangular
matrix. You may not use y. You have to overwrite x without using work space. Hint: Think carefully about the
order in which elements of x are computed and overwritten. You may want to do this exercise hand-in-hand with
the implementation in the next homework.

Homework 4.3.2.5 Write routines

• [x out] = Trmv un unb var1 (U, x); and

• [x out] = Trmv un unb var2(U, x)

that implement the algorithms for computing x :=Ux from Homework 4.3.2.4.

Homework 4.3.2.6 Modify the algorithms in Figure 4.7 to compute x := Lx, where L is a lower triangular matrix.
You may not use y. You have to overwrite x without using work space. Hint: Think carefully about the order
in which elements of x are computed and overwritten. This question is VERY tricky... You may want to do this
exercise hand-in-hand with the implementation in the next homework.

4.3. Matrix-Vector Multiplication with Special Matrices 137

Algorithm: y := TRMVP LN UNB VAR1(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := lT
10x0 +λ11χ1 + lT

12x2 +ψ1

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP LN UNB VAR2(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1l01 + y0

ψ1 := χ1λ11 +ψ1

y2 := χ1l21 + y2

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.5: Algorithms to be used in Homework 4.3.2.2.

Homework 4.3.2.7 Write routines

• [y out] = Trmv ln unb var1 (L, x); and

• [y out] = Trmv ln unb var2(L, x)

that implement the algorithms from Homework 4.3.2.6 for computing x := Lx.

Homework 4.3.2.8 Develop algorithms for computing y :=UT x+ y and y := LT x+ y, where U and L are respec-
tively upper triangular and lower triangular. Do not explicitly transpose matrices U and L. Write routines

• [y out] = Trmvp ut unb var1 (U, x, y); and

• [y out] = Trmvp ut unb var2(U, x, y)

• [y out] = Trmvp lt unb var1 (L, x, y); and

• [y out] = Trmvp ln unb var2(L, x, y)

that implement these algorithms.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 138

Algorithm: y := TRMVP UN UNB VAR1(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := uT
10x0+ υ11χ1 +uT

12x2 +ψ1

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP UN UNB VAR2(U,x,y)

Partition U →

 UT L UT R

UBL UBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where UT L is 0×0, xT , yT are 0×1

while m(UT L)< m(U) do
Repartition

 UT L UT R

UBL UBR

→


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 U22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1u01 + y0

ψ1 := χ1υ11 +ψ1

y2 := χ1u21 + y2

Continue with

 UT L UT R

UBL UBR

←


U00 u01 U02

uT
10 υ11 uT

12

U20 u21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.6: Algorithms to be used in Homework 4.3.2.4.

Homework 4.3.2.9 Develop algorithms for computing x := UT x and x := LT x, where U and L are respectively
upper triangular and lower triangular. Do not explicitly transpose matrices U and L. Write routines

• [y out] = Trmv ut unb var1 (U, x); and

• [y out] = Trmv ut unb var2(U, x)

• [y out] = Trmv lt unb var1 (L, x); and

• [y out] = Trmv ln unb var2(L, x)

that implement these algorithms.

Cost

Let us analyze the algorithms for computing y :=Ux+ y. (The analysis of all the other algorithms is very similar.)
For the dot product based algorithm, the cost is in the update ψ1 := υ11χ1 +uT

12x2 +ψ1 which is typically computed in two
steps:

• ψ1 := υ11χ1 +ψ1; followed by

• a dot product ψ1 := uT
12x2 +ψ1.

4.3. Matrix-Vector Multiplication with Special Matrices 139

Algorithm: y := TRMVP LN UNB VAR1(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := lT
10x0 +λ11χ1 + lT

12x2 +ψ1

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := TRMVP LN UNB VAR2(L,x,y)

Partition L→

 LT L LT R

LBL LBR

 ,

x→

 xT

xB

 , y→

 yT

yB


where LT L is 0×0, xT , yT are 0×1

while m(LT L)< m(L) do
Repartition

 LT L LT R

LBL LBR

→


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1l01 + y0

ψ1 := χ1λ11 +ψ1

y2 := χ1l21 + y2

Continue with

 LT L LT R

LBL LBR

←


L00 l01 L02

lT
10 λ11 lT

12

L20 l21 L22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.7: Algorithms to be used in Homework 4.3.2.6.

Now, during the first iteration, uT
12 and x2 are of length n−1, so that that iteration requires 2(n−1)+2 = 2n flops for the first

step. During the kth iteration (starting with k = 0), uT
12 and x2 are of length (n−k−1) so that the cost of that iteration is 2(n−k)

flops. Thus, if A is an n×n matrix, then the total cost is given by

n−1

∑
k=0

[2(n− k)] = 2
n−1

∑
k=0

(n− k) = 2(n+(n−1)+ · · ·+1) = 2
n

∑
k=1

k = 2(n+1)n/2.

flops. (Recall that we proved in the second week that ∑
n
i=1 i = n(n+1)

2 .)

Homework 4.3.2.10 Compute the cost, in flops, of the algorithm for computing y := Lx+ y that uses AXPY s.

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 140

Homework 4.3.2.11 As hinted at before: Implementations achieve better performance (finish faster) if one ac-
cesses data consecutively in memory. Now, most scientific computing codes store matrices in “column-major
order” which means that the first column of a matrix is stored consecutively in memory, then the second column,
and so forth. Now, this means that an algorithm that accesses a matrix by columns tends to be faster than an
algorithm that accesses a matrix by rows. That, in turn, means that when one is presented with more than one
algorithm, one should pick the algorithm that accesses the matrix by columns.
Our FLAME notation makes it easy to recognize algorithms that access the matrix by columns. For example, in
this unit, if the algorithm accesses submatrix a01 or a21 then it accesses columns. If it accesses submatrix aT

10 or
aT

12, then it accesses the matrix by rows.
For each of these, which algorithm accesses the matrix by columns:

• For y :=Ux+ y, TRSVP UN UNB VAR1 or TRSVP UN UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y := Lx+ y, TRSVP LN UNB VAR1 or TRSVP LN UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y :=UT x+ y, TRSVP UT UNB VAR1 or TRSVP UT UNB VAR2?
Does the better algorithm use a dot or an axpy?

• For y := LT x+ y, TRSVP LT UNB VAR1 or TRSVP LT UNB VAR2?
Does the better algorithm use a dot or an axpy?

4.3.3 Symmetric Matrix-Vector Multiplication

* View at edX

Motivation

Consider


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,=



−1 2 4 1 0

2 0 −1 −2 1

4 −1 3 1 2

1 −2 1 4 3

0 1 2 3 2


.

Here we purposely chose the matrix on the right to be symmetric. We notice that aT
10 = a01, AT

20 = A02, and aT
12 = a21. A

moment of reflection will convince you that this is a general principle, when A00 is square. Moreover, notice that A00 and A22
are then symmetric as well.

Theory

Consider

A =

 AT L AT R

ABL ABR

=


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

 ,

where AT L and A00 are square matrices. If A is symmetric then

• AT L, ABR, A00, and A22 are symmetric;

• aT
10 = aT

01 and aT
12 = aT

21; and

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/cd5d402b2f114fbfa47083c5ebc77969/3

4.3. Matrix-Vector Multiplication with Special Matrices 141

Algorithm: y := SYMV U UNB VAR1(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 :=

aT
01︷︸︸︷

aT
10 x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := SYMV U UNB VAR2(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1 a21︸︷︷︸
a12

+ y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.8: Algorithms for computing y := Ax+ y where A is symmetric, where only the upper triangular part of A is stored.

• A20 = AT
02.

We will just state this as “intuitively obvious”.

Algorithms

Consider computing y := Ax+y where A is a symmetric matrix. Since the upper and lower triangular part of a symmetric matrix
are simply the transpose of each other, it is only necessary to store half the matrix: only the upper triangular part or only the
lower triangular part. In Figure 4.8 we repeat the algorithms for matrix-vector multiplication from an earlier unit, and annotate
them for the case where A is symmetric and only stored in the upper triangle. The change is simple: a10 and a21 are not stored
and thus

• For the left algorithm, the update ψ1 := aT
10x0+α11χ1+aT

12x2+ψ1 must be changed to ψ1 := aT
01x0+α11χ1+aT

12x2+ψ1.

• For the algorithm on the right, the update y2 := χ1a21 + y2 must be changed to y2 := χ1a12 + y2 (or, more precisely,
y2 := χ1(aT

12)
T + y2 since aT

12 is the label for part of a row).

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 142

Algorithm: y := SYMV L UNB VAR1(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2



ψ1 := aT
10x0 +α11χ1 +aT

12x2 +ψ1

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Algorithm: y := SYMV L UNB VAR2(A,x,y)

Partition A→

 AT L AT R

ABL ABR

 ,

x→

 xT

xB

 , y→

 yT

yB


where AT L is 0×0, xT , yT are 0×1

while m(AT L)< m(A) do
Repartition

 AT L AT R

ABL ABR

→


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

→


x0

χ1

x2

 ,

 yT

yB

→


y0

ψ1

y2


y0 := χ1a01 + y0

ψ1 := χ1α11 +ψ1

y2 := χ1a21 + y2

Continue with

 AT L AT R

ABL ABR

←


A00 a01 A02

aT
10 α11 aT

12

A20 a21 A22

,

 xT

xB

←


x0

χ1

x2

 ,

 yT

yB

←


y0

ψ1

y2


endwhile

Figure 4.9: Algorithms for Homework 4.3.3.2

Homework 4.3.3.1 Write routines

• [y out] = Symv u unb var1 (A, x, y); and

• [y out] = Symv u unb var2(A, x, y)

that implement the algorithms in Figure 4.8.

Homework 4.3.3.2 Modify the algorithms in Figure 4.9 to compute y := Ax+y, where A is symmetric and stored
in the lower triangular part of matrix. You may want to do this in conjunction with the next exercise.

Homework 4.3.3.3 Write routines

• [y out] = Symv l unb var1 (A, x, y); and

• [y out] = Symv l unb var2(A, x, y)

that implement the algorithms from the previous homework.

4.4. Matrix-Matrix Multiplication (Product) 143

Homework 4.3.3.4 Challenge question! As hinted at before: Implementations achieve better performance (finish
faster) if one accesses data consecutively in memory. Now, most scientific computing codes store matrices in
“column-major order” which means that the first column of a matrix is stored consecutively in memory, then the
second column, and so forth. Now, this means that an algorithm that accesses a matrix by columns tends to be
faster than an algorithm that accesses a matrix by rows. That, in turn, means that when one is presented with more
than one algorithm, one should pick the algorithm that accesses the matrix by columns. Our FLAME notation
makes it easy to recognize algorithms that access the matrix by columns.
The problem with the algorithms in this unit is that all of them access both part of a row AND part of a column.
So, your challenge is to devise an algorithm for computing y := Ax+ y where A is symmetric and only stored in
one half of the matrix that only accesses parts of columns. We will call these “variant 3”. Then, write routines

• [y out] = Symv u unb var3 (A, x, y); and

• [y out] = Symv l unb var3(A, x, y)

Hint: (Let’s focus on the case where only the lower triangular part of A is stored.)

• If A is symmetric, then A = L+ L̂T where L is the lower triangular part of A and L̂ is the strictly lower
triangular part of A.

• Identify an algorithm for y := Lx+ y that accesses matrix A by columns.

• Identify an algorithm for y := L̂T x+ y that accesses matrix A by columns.

• You now have two loops that together compute y := Ax+ y = (L+ L̂T)x+ y = Lx+ L̂T x+ y.

• Can you “merge” the loops into one loop?

4.4 Matrix-Matrix Multiplication (Product)

4.4.1 Motivation

* View at edX

The first unit of the week, in which we discussed a simple model for prediction the weather, finished with the following
exercise:

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/1
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/1

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 144

Given

Today

sunny cloudy rainy

Tomorrow

sunny 0.4 0.3 0.1

cloudy 0.4 0.3 0.6

rainy 0.2 0.4 0.3

fill in the following table, which predicts the weather the day after tomorrow given the weather today:

Today

sunny cloudy rainy

Day after
Tomorrow

sunny

cloudy

rainy

Now here is the hard part: Do so without using your knowledge about how to perform a matrix-matrix multiplication, since
you won’t learn about that until later this week...

The entries in the table turn out to be the entries in the transition matrix Q that was described just above the exercise:
χ
(2)
s

χ
(2)
c

χ
(2)
r

 =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(1)
s

χ
(1)
c

χ
(1)
r



=


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r


= Q


χ
(0)
s

χ
(0)
c

χ
(0)
r

 ,

Now, those of you who remembered from, for example, some other course that
0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




χ
(0)
s

χ
(0)
c

χ
(0)
r




=




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3





χ
(0)
s

χ
(0)
c

χ
(0)
r


would recognize that

Q =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3

 .

And, if you then remembered how to perform a matrix-matrix multiplication (or you did P * P in Python), you would have
deduced that

Q =


0.3 0.25 0.25

0.4 0.45 0.4

0.3 0.3 0.35

 .

4.4. Matrix-Matrix Multiplication (Product) 145

These then become the entries in the table. If you knew all the above, well, GOOD FOR YOU!
However, there are all kinds of issues that one really should discuss. How do you know such a matrix exists? Why is

matrix-matrix multiplication defined this way? We answer that in the next few units.

4.4.2 From Composing Linear Transformations to Matrix-Matrix Multiplication

* View at edX

Homework 4.4.2.1 Let LA : Rk→Rm and LB : Rn→Rk both be linear transformations and, for all x ∈Rn, define
the function LC : Rn→ Rm by LC(x) = LA(LB(x)). LC(x) is a linear transformations.

Always/Sometimes/Never

Now, let linear transformations LA, LB, and LC be represented by matrices A∈Rm×k, B∈Rk×n, and C ∈Rm×n, respectively.
(You know such matrices exist since LA, LB, and LC are linear transformations.) Then Cx = LC(x) = LA(LB(x)) = A(Bx).

The matrix-matrix multiplication (product) is defined as the matrix C such that, for all vectors x, Cx = A(B(x)). The
notation used to denote that matrix is C = A×B or, equivalently, C = AB. The operation AB is called a matrix-matrix
multiplication or product.

If A is mA× nA matrix, B is mB× nB matrix, and C is mC× nC matrix, then for C = AB to hold it must be the case that
mC = mA, nC = nB, and nA = mB. Usually, the integers m and n are used for the sizes of C: C ∈ Rm×n and k is used for the
“other size”: A ∈ Rm×k and B ∈ Rk×n:

m

?

6

C

n
� -

= m

?

6

A

k� -

k

?

6

B

n
� -

Homework 4.4.2.2 Let A ∈ Rm×n. AT A is well-defined. (By well-defined we mean that AT A makes sense. In this
particular case this means that the dimensions of AT and A are such that AT A can be computed.)

Always/Sometimes/Never

Homework 4.4.2.3 Let A ∈ Rm×n. AAT is well-defined.
Always/Sometimes/Never

4.4.3 Computing the Matrix-Matrix Product

* View at edX
The question now becomes how to compute C given matrices A and B. For this, we are going to use and abuse the unit basis

vectors e j.
Consider the following. Let

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/2
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/3
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/3

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 146

• C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n; and

• C = AB; and

• LC : Rn→ Rm equal the linear transformation such that LC(x) =Cx; and

• LA : Rk→ Rm equal the linear transformation such that LA(x) = Ax.

• LB : Rn→ Rk equal the linear transformation such that LB(x) = Bx; and

• e j denote the jth unit basis vector; and

• c j denote the jth column of C; and

• b j denote the jth column of B.

Then

c j =Ce j = LC(e j) = LA(LB(e j)) = LA(Be j) = LA(b j) = Ab j.

From this we learn that

If C = AB then the jth column of C, c j, equals Ab j, where b j is the jth column of B.

Since by now you should be very comfortable with partitioning matrices by columns, we can summarize this as

(
c0 c1 · · · cn−1

)
=C = AB = A

(
b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

Now, let’s expose the elements of C, A, and B.

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
...

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 , A =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1

 ,

and B =


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

...

βk−1,0 βk−1,1 · · · βk−1,n−1

 .

We are going to show that

γi, j =
k−1

∑
p=0

αi,pβp, j,

which you may have learned in a high school algebra course.

4.4. Matrix-Matrix Multiplication (Product) 147

We reasoned that c j = Ab j:

γ0, j

γ1, j
...

γi, j
...

γm−1, j


=



α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αi,0 αi,1 · · · αi,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0, j

β1, j
...

βk−1, j

 .

Here we highlight the ith element of c j, γi, j, and the ith row of A. We recall that the ith element of Ax equals the dot product of
the ith row of A with the vector x. Thus, γi, j equals the dot product of the ith row of A with the vector b j:

γi, j =
k−1

∑
p=0

αi,pβp, j.

Let A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n. Then the matrix-matrix multiplication (product) C = AB is computed by

γi, j =
k−1

∑
p=0

αi,pβp, j = αi,0β0, j +αi,1β1, j + · · ·+αi,k−1βk−1, j.

As a result of this definition Cx = A(Bx) = (AB)x and can drop the parentheses, unless they are useful for clarity: Cx = ABx
and C = AB.

Homework 4.4.3.1 Compute

Q = P×P =


0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3




0.4 0.3 0.1

0.4 0.3 0.6

0.2 0.4 0.3



We emphasize that for matrix-matrix multiplication to be a legal operations, the row and column dimensions of the matrices
must obey certain constraints. Whenever we talk about dimensions being conformal, we mean that the dimensions are such
that the encountered matrix multiplications are valid operations.

Homework 4.4.3.2 Let A =


2 0 1

−1 1 0

1 3 1

−1 1 1

 and B =


2 1 2 1

0 1 0 1

1 0 1 0

. Compute

• AB =

• BA =

Homework 4.4.3.3 Let A ∈ Rm×k and B ∈ Rk×n and AB = BA. A and B are square matrices.
Always/Sometimes/Never

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 148

Homework 4.4.3.4 Let A ∈ Rm×k and B ∈ Rk×n.

AB = BA.

Always/Sometimes/Never

Homework 4.4.3.5 Let A,B ∈ Rn×n. AB = BA.
Always/Sometimes/Never

Homework 4.4.3.6 A2 is defined as AA. Similarly Ak = AA · · ·A︸ ︷︷ ︸
k occurrences of A

. Consistent with this, A0 = I so that

Ak = Ak−1A for k > 0.
Ak is well-defined only if A is a square matrix.

True/False

Homework 4.4.3.7 Let A,B,C be matrix “of appropriate size” so that (AB)C is well defined. A(BC) is well
defined.

Always/Sometimes/Never

4.4.4 Special Shapes

* View at edX
We now show that if one treats scalars, column vectors, and row vectors as special cases of matrices, then many (all?)

operations we encountered previously become simply special cases of matrix-matrix multiplication. In the below discussion,
consider C = AB where C ∈ Rm×n, A ∈ Rm×k, and B ∈ Rk×n.

m = n = k = 1 (scalar multiplication)

1 ?6C

1�-
= 1 ?6A

1�-

1 ?6B

1�-

In this case, all three matrices are actually scalars:(
γ0,0

)
=
(

α0,0

)(
β0,0

)
=
(

α0,0β0,0

)
so that matrix-matrix multiplication becomes scalar multiplication.

Homework 4.4.4.1 Let A =
(

4
)

and B =
(

3
)

. Then AB = .

n = 1,k = 1 (SCAL)

m

?

6

C

1�-

= m

?

6

A

1�-

1 ?6B

1�-

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/4

4.4. Matrix-Matrix Multiplication (Product) 149

Now the matrices look like
γ0,0

γ1,0
...

γm−1,0

=


α0,0

α1,0
...

αm−1,0


(

β0,0

)
=


α0,0β0,0

α1,0β0,0
...

αm−1,0β0,0

=


β0,0α0,0

β0,0α1,0
...

β0,0αm−1,0

= β0,0


α0,0

α1,0
...

αm−1,0

 .

In other words, C and A are vectors, B is a scalar, and the matrix-matrix multiplication becomes scaling of a vector.

Homework 4.4.4.2 Let A =


1

−3

2

 and B =
(

4
)

. Then AB = .

m = 1,k = 1 (SCAL)

1 ?6 C

n
� -

= 1 ?6A

1�-

1 ?6 B

n
� -

Now the matrices look like(
γ0,0 γ0,1 · · · γ0,n−1

)
=

(
α0,0

)(
β0,0 β0,1 · · · β0,n−1

)
= α0,0

(
β0,0 β0,1 · · · β0,n−1

)
=

(
α0,0β0,0 α0,0β0,1 · · · α0,0β0,n−1

)
.

In other words, C and B are just row vectors and A is a scalar. The vector C is computed by scaling the row vector B by the
scalar A.

Homework 4.4.4.3 Let A =
(

4
)

and B =
(

1 −3 2
)

. Then AB = .

m = 1,n = 1 (DOT)

1 ?6C

1�-
= 1 ?6 A

k� -

k

?

6

B

1�-

The matrices look like

(
γ0,0

)
=
(

α0,0 α0,1 · · · α0,k−1

)


β0,0

β1,0
...

βk−1,0

=
k−1

∑
p=0

α0,pβp,0.

In other words, C is a scalar that is computed by taking the dot product of the one row that is A and the one column that is B.

Homework 4.4.4.4 Let A =
(

1 −3 2
)

and B =


2

−1

0

. Then AB =

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 150

k = 1 (outer product)

m

?

6

C

n
� -

= m

?

6

A

1�-

1 ?6 B

n
� -


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
. . .

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 =


α0,0

α1,0
...

αm−1,0



(
β0,0 β0,1 · · · β0,n−1

)

=


α0,0β0,0 α0,0β0,1 · · · α0,0β0,n−1

α1,0β0,0 α1,0β0,1 · · · α1,0β0,n−1
...

...
. . .

...

αm−1,0β0,0 αm−1,0β0,1 · · · αm−1,0β0,n−1



Homework 4.4.4.5 Let A =


1

−3

2

 and B =
(
−1 −2

)
. Then AB =

4.4. Matrix-Matrix Multiplication (Product) 151

Homework 4.4.4.6 Let a =


1

−3

2

 and bT =
(
−1 −2

)
and C = abT . Partition C by columns and by rows:

C =
(

c0 c1

)
and C =


c̃T

0

c̃T
1

c̃T
2


Then

• c0 = (−1)


1

−3

2

=


(−1)× (1)

(−1)×(−3)

(−1)× (2)

 True/False

• c1 = (−2)


1

−3

2

=


(−2)× (1)

(−2)×(−3)

(−2)× (2)

 True/False

• C =


(−1)× (1) (−2)× (1)

(−1)×(−3) (−2)×(−3)

(−1)× (2) (−2)× (2)

 True/False

• c̃T
0 = (1)

(
−1 −2

)
=
(

(1)×(−1) (1)×(−2)
)

True/False

• c̃T
1 = (−3)

(
−1 −2

)
=
(

(−3)×(−1) (−3)×(−2)
)

True/False

• c̃T
2 = (2)

(
−1 −2

)
=
(

(2)×(−1) (2)×(−2)
)

True/False

• C =


(−1)× (1) (−2)× (1)

(−1)×(−3) (−2)×(−3)

(−1)× (2) (−2)× (2)

 True/False

Homework 4.4.4.7 Fill in the boxes:
�
�
�
�


(

2 −1 3
)
=


4 � �
−2 � �

2 � �
6 � �



Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 152

Homework 4.4.4.8 Fill in the boxes:
2

−1

1

3


(
� � �

)
=


4 −2 6

� � �
� � �
� � �



n = 1 (matrix-vector product)

m

?

6

C

1�-

= m

?

6

A

k� -

k

?

6

B

1�-


γ0,0

γ1,0
...

γm−1,0

 =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0,0

β1,0
...

βk−1,0


We have studied this special case in great detail. To emphasize how it relates to have matrix-matrix multiplication is computed,
consider the following: 

γ0,0
...

γi,0
...

γm−1,0


=



α0,0 α0,1 · · · α0,k−1
...

...
. . .

...

αi,0 αi,1 · · · αi,k−1
...

...
. . .

...

αm−1,0 αm−1,1 · · · αm−1,k−1




β0,0

β1,0
...

βk−1,0



m = 1 (row vector-matrix product)

1 ?6 C

n
� -

= 1 ?6 A

k� -

k

?

6

B

n
� -

(
γ0,0 γ0,1 · · · γ0,n−1

)
=

(
α0,0 α0,1 · · · α0,k−1

)


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
. . .

...

βk−1,0 βk−1,1 · · · βk−1,n−1



4.4. Matrix-Matrix Multiplication (Product) 153

so that γ0, j = ∑
k−1
p=0 α0,pβp, j. To emphasize how it relates to have matrix-matrix multiplication is computed, consider the

following: (
γ0,0 · · · γ0, j · · · γ0,n−1

)

=
(

α0,0 α0,1 · · · α0,k−1

)


β0,0 · · · β0, j · · · β0,n−1

β1,0 · · · β1, j · · · β1,n−1
...

...
...

βk−1,0 · · · βk−1, j · · · βk−1,n−1

 .

Homework 4.4.4.9 Let A =
(

0 1 0
)

and B =


1 −2 2

4 2 0

1 2 3

. Then AB =

Homework 4.4.4.10 Let ei ∈ Rm equal the ith unit basis vector and A ∈ Rm×n. Then eT
i A = ǎT

i , the ith row of A.
Always/Sometimes/Never

Homework 4.4.4.11 Get as much practice as you want with the MATLAB script in

LAFF-2.0xM/Programming/Week04/PracticeGemm.m

If you understand how to perform a matrix-matrix multipli-
cation, then you know how to perform all other operations
with matrices and vectors that we have encountered so far.

4.4.5 Cost

* View at edX
Consider the matrix-matrix multiplication C = AB where C ∈Rm×n, A∈Rm×k, and B∈Rk×n. Let us examine what the cost

of this operation is:

• We argued that, by definition, the jth column of C, c j, is computed by the matrix-vector multiplication Ab j, where b j is
the jth column of B.

• Last week we learned that a matrix-vector multiplication of a m× k matrix times a vector of size k requires 2mk floating
point operations (flops).

• C has n columns (since it is a m×n matrix.).

Putting all these observations together yields a cost of

n× (2mk) = 2mnk flops.

https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/5
https://courses.edx.org/courses/course-v1:UTAustinX+UT.5.05x+2T2020/courseware/96fcce54cb464469a157d2314cf7eecf/5624519960ea4e5390b00849dbcb8709/5

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 154

Try this! Recall that the dot product of two vectors of size k requires (approximately) 2k flops. We learned in the
previous units that if C = AB then γi, j equals the dot product of the ith row of A and the jth column of B. Use this
to give an alternative justification that a matrix multiplication requires 2mnk flops.

4.5 Enrichment

4.5.1 Markov Chains: Their Application

Matrices have many “real world” applications. As we have seen this week, one noteworthy use is connected to Markov
chains. There are many, many examples of the use of Markov chains. You can find a brief look at some significant appli-
cations in THE FIVE GREATEST APPLICATIONS OF MARKOV CHAINS by Philipp von Hilgers and Amy N. Langville.
(http://langvillea.people.cofc.edu/MCapps7.pdf).

4.6 Wrap Up

4.6.1 Homework

Homework 4.6.1.1 Let A ∈ Rm×n and x ∈ Rn. Then (Ax)T = xT AT .
Always/Sometimes/Never

Homework 4.6.1.2 Our laff library has a routine

laff gemv(trans, alpha, A, x, beta, y)

that has the following property

• laff gemv(’No transpose’, alpha, A, x, beta, y) computes y := αAx+βy.

• laff gemv(’Transpose’, alpha, A, x, beta, y) computes y := αAT x+βy.

The routine works regardless of whether x and/or y are column and/or row vectors.
Our library does NOT include a routine to compute yT := xT A. What call could you use to compute yT := xT A if
yT is stored in yt and xT in xt?

• laff gemv(’No transpose’, 1.0, A, xt, 0.0, yt).

• laff gemv(’No transpose’, 1.0, A, xt, 1.0, yt).

• laff gemv(’Transpose’, 1.0, A, xt, 1.0, yt).

• laff gemv(’Transpose’, 1.0, A, xt, 0.0, yt).

Homework 4.6.1.3 Let A =

 1 −1

1 −1

. Compute

• A2 =

• A3 =

• For k > 1, Ak =

http://langvillea.people.cofc.edu/MCapps7.pdf

4.6. Wrap Up 155

Homework 4.6.1.4 Let A =

 0 1

1 0

.

• A2 =

• A3 =

• For n≥ 0, A2n =

• For n≥ 0, A2n+1 =

Homework 4.6.1.5 Let A =

 0 −1

1 0

.

• A2 =

• A3 =

• For n≥ 0, A4n =

• For n≥ 0, A4n+1 =

Homework 4.6.1.6 Let A be a square matrix. If AA = 0 (the zero matrix) then A is a zero matrix. (AA is often
written as A2.)

True/False

Homework 4.6.1.7 There exists a real valued matrix A such that A2 =−I. (Recall: I is the identity)
True/False

Homework 4.6.1.8 There exists a matrix A that is not diagonal such that A2 = I.
True/False

4.6.2 Summary

Partitioned matrix-vector multiplication


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
. . .

...

AM−1,0 AM−1,1 · · · AM−1,N−1




x0

x1
...

xN−1

=


A0,0x0 +A0,1x1 + · · ·+A0,N−1xN−1

A1,0x0 +A1,1x1 + · · ·+A1,N−1xN−1
...

AM−1,0x0 +AM−1,1x1 + · · ·+AM−1,N−1xN−1

 .

Transposing a partitioned matrix


A0,0 A0,1 · · · A0,N−1

A1,0 A1,1 · · · A1,N−1
...

...
...

AM−1,0 AM−1,1 · · · AM−1,N−1



T

=


AT

0,0 AT
1,0 · · · AT

M−1,0

AT
0,1 AT

1,1 · · · AT
M−1,1

...
...

...

AT
0,N−1 AT

1,N−1 · · · AT
M−1,N−1

 .

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 156

Composing linear transformations

Let LA : Rk → Rm and LB : Rn→ Rk both be linear transformations and, for all x ∈ Rn, define the function LC : Rn→ Rm by
LC(x) = LA(LB(x)). Then LC(x) is a linear transformations.

Matrix-matrix multiplication

AB = A
(

b0 b1 · · · bn−1

)
=
(

Ab0 Ab1 · · · Abn−1

)
.

If

C =


γ0,0 γ0,1 · · · γ0,n−1

γ1,0 γ1,1 · · · γ1,n−1
...

...
...

...

γm−1,0 γm−1,1 · · · γm−1,n−1

 , A =


α0,0 α0,1 · · · α0,k−1

α1,0 α1,1 · · · α1,k−1
...

...
...

...

αm−1,0 αm−1,1 · · · αm−1,k−1

 ,

and B =


β0,0 β0,1 · · · β0,n−1

β1,0 β1,1 · · · β1,n−1
...

...
...

...

βk−1,0 βk−1,1 · · · βk−1,n−1

 .

then C = AB means that γi, j = ∑
k−1
p=0 αi,pβp, j.

A table of matrix-matrix multiplications with matrices of special shape is given at the end of this week.

Outer product

Let x ∈ Rm and y ∈ Rn. Then the outer product of x and y is given by xyT . Notice that this yields an m×n matrix:

xyT =


χ0

χ1
...

χm−1




ψ0

ψ1
...

ψn−1



T

=


χ0

χ1
...

χm−1


(

ψ0 ψ1 · · · ψn−1

)

=


χ0ψ0 χ0ψ1 · · · χ0ψn−1

χ1ψ0 χ1ψ1 · · · χ1ψn−1
...

...
...

χm−1ψ0 χm−1ψ1 · · · χm−1ψn−1

 .

4.6. Wrap Up 157

m n k Shape Comment

1 1 1 1 ?6C

1�-
= 1 ?6A

1�-

1 ?6B

1�- Scalar multiplication

m 1 1 m

?

6

C

1�-

= m

?

6

A

1�-

1 ?6B

1�-

Vector times scalar = scalar
times vector

1 n 1 1 ?6 C

n
� -

= 1 ?6A

1�-

1 ?6 B

n
� -

Scalar times row vector

1 1 k
1 ?6C

1�-
= 1 ?6 A

k� -

k

?

6

B

1�-

Dot product (with row and col-
umn)

m n 1 m

?

6

C

n
� -

= m

?

6

A

1�-

1 ?6 B

n
� -

Outer product

m 1 k m

?

6

C

1�-

= m

?

6

A

k� -

k

?

6

B

1�-

Matrix-vector multiplication

1 n k
1 ?6 C

n
� -

= 1 ?6 A

k� -

k

?

6

B

n
� -

Row vector times matrix multi-
ply

Week 4. From Matrix-Vector Multiplication to Matrix-Matrix Multiplication 158

LAFF routines

O
pe

ra
tio

n
A

bb
re

v.
D

efi
ni

tio
n

Fu
nc

tio
n

A
pp

ro
x.

co
st

la
ff

flo
ps

m
em

op
s

Ve
ct

or
-v

ec
to

r
op

er
at

io
ns

C
op

y
(C

O
P

Y
)

y
:=

x
co
py
(
x,

y
)

0
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

α
x

sc
al
(
al
ph
a,

x
)

n
2n

V
ec

to
rs

ca
lin

g
(S

C
A

L
)

x
:=

x/
α

in
vs
ca
l(

al
ph
a,

x
)

n
2n

Sc
al

ed
ad

di
tio

n
(A

X
P

Y
)

y
:=

α
x+

y
ax
py
(
al
ph
a,

x,
y
)

2n
3n

D
ot

pr
od

uc
t(

D
O

T
)

α
:=

xT
y

al
ph
a
=
do
t(

x,
y
)

2n
2n

D
ot

pr
od

uc
t(

D
O

T
S)

α
:=

xT
y+

α
do
ts
(
x,

y,
al
ph
a
)

2n
2n

L
en

gt
h

(N
O

R
M

2)
α

:=
‖x
‖ 2

al
ph
a
=
no
rm
2(

x
)

2n
n

M
at

ri
x-

ve
ct

or
op

er
at

io
ns

G
en

er
al

m
at

ri
x-

ve
ct

or
y

:=
α

A
x+

β
y

ge
mv
(
’N
o
tr
an
sp
os
e’
,
al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

m
ul

tip
lic

at
io

n
(G

E
M

V
)

y
:=

α
A

T
x+

β
y

ge
mv
(
‘T
ra
ns
po
se
’,

al
ph
a,

A,
x,

be
ta
,
y
)

2m
n

m
n

R
an

k-
1

up
da

te
(G

E
R

)
A

:=
α

xy
T
+

A
ge
r(

al
ph
a,

x,
y,

A
)

2m
n

m
n

