fmcad®

Proceedings of the 18th Conference on
Formal Methods in Computer-Aided Design (FMCAD 2018)
Austin, Texas, USA, October 30 — November 2, 2018

Edited by
Nikolaj Bjgrner and Arie Gurfinkel

In cooperation with ac m) In-Cooperation
ACM Special Interest Group on Programming Languages V
ACM Special Interest Group on Software Engineering

7 SIGPLAN SIGNOFT

Technical co-sponsorship of IEEE I E E E

il
e
e 1011
) 1111
o =
a1
i . n
e 1111
i

: J—-i I
LA
I

=1

1
2]

Proceedings of the 18th Conference on

Formal Methods in Computer-Aided Design
FMCAD 2018

October 30 — November 2, 2018

Austin, Texas, USA

Edited by Nikolaj Bjgrner and Arie Gurfinkel

ISBN: 978-0-9835678-8-2
Copyright owned jointly by the authors and FMCAD Inc.
Austin Texas Lake Front by Stuart Seeger is licensed under CC BY 2.0

Preface

The International Conference on Formal Methods in Computer Aided Design (FMCAD), held at Austin, Texas, from October
30-November 2 in 2018, is the eightteenth in a series of meetings on the theory and applications of rigorous formal techniques
for the automated design of systems. The FMCAD conference covers formal aspects of specification, verification, synthesis,
testing, and security, and is a leading forum for researchers and practitioners in academia and industry alike.

The program of FMCAD 2018 comprises a tutorial day with three tutorials on deep neural networks, certified SAT solving
and distributed protocol verification; two keynotes on formal methods applied to block chains and financial algorithms, a forum
for doctoral students. Finally, the main program contains the presentations of the accepted papers.

The tutorial day features three presentations

o “Formal Verification of Deep Neural Networks”, by Nina Narodytska, VMWare Research.

« “Formal Verification of Unsatisfiability Results”, by Marijn Heule, UT Austin.

o “Deductive Verification of Distributed Protocols in First-Order Logic”, by Oded Padon, Stanford University.

The keynotes focus on the application of formal verification in industry, and on the verification of cloud computing platforms
and dependable systems in particular:

o “Formal Verification of Financial Algorithms with Imandra” by Grant Passmore, Aesthetic Integration.

o “Formal Design, Implementation and Verification of Blockchain Languages” by Grigore Rosu, University of Illinois

Urbana-Champaign.

FMCAD also hosts the sixth edition of the Student Forum, which has been held annually since 2013 and provides a platform
for graduate students at any career stage to introduce their research to the FMCAD community. The FMCAD Student Forum
2018 was organized by Dejan Jovanovi¢ and Andrew Reynolds and features posters and short presentations of fourteen accepted
contributions. A detailed description of the Student Forum, listing all accepted contributions, is provided in the conference
proceedings.

FMCAD 2018 received 73 submissions. The committee decided to accept 26 papers. Each submission received at least four
reviews. The topics of the accepted papers include hardware and software verification, SAT, SMT, and Horn clause solving,
temporal logics, concurrency, learning, synthesis, and certification.

Organizing this event would not have been possible without the support of a large number of people and our sponsors. The
program committee members and additional reviewers, listed on the following pages, did an excellent job providing detailed
and insightful reviews, which helped the authors to improve their submissions and guided the selection of the papers accepted
for publication. We thank each and every one of them for dedicating their time and providing their expertise. Moreover, we’d
like to give special thanks to the sub-committee which agreed to select the recipients of this year’s Best Paper Award. We
thank Jade Alglave (ARM and UCL) for agreeing to be Publication Chair, and Dejan Jovanovi¢ and Andrew Reynolds for
organizing this year’s FMCAD Student Forum. Our webmaster, Tom vaj Dijk, has our gratitude for maintaining and regularly
updating the FMCAD website. We thank all students who volunteered to help running the event. As always, the help and
expertise of the FMCAD steering committee made the organization of FMCAD much easier. We thank Armin Biere (Johannes
Kepler University in Linz, Austria), Alan Hu (University of British Columbia, Canada), and especially Warren A. Hunt,. Jr.
(University of Texas at Austin) and Vigyan Singhal (Oski Tech) and Georg Weissenbacher (TU Wien) for supporting and
encouraging us, and guiding us through the organization process.

Holding a conference like FMCAD would not be feasible without the financial support of our sponsors. We would like to
express our gratitude to our sponsors Amazon, Centaur Technology Inc., Galois Inc., IBM, Mentor Graphics, Microsoft, and
Synopsis.

FMCAD 2018 is in-cooperation with the ACM and its Special Interest Groups on Programming Languages (SIGPLAN) and
on Software Engineering (SIGSOFT). The FMCAD conference also received technical sponsorship from the IEEE Council
on Electronic Design Automation. The conference proceedings will be available through the ACM Digital Library, the IEEE
Xplore Digital Library, and are also freely accessible on the FMCAD Website.

Last but not least, we thank all authors who submitted their papers to FMCAD 2018 (accepted or not), and whose contributions
and presentations form the core of the conference. We are grateful to everyone who presented their paper, gave a keynote
or a tutorial, devoting a significant amount of their time to the FMCAD conference. We thank all attendees of FMCAD for
supporting the conference and making FMCAD a stimulating and enjoyable event.

Nikolaj Bjgrner and Arie Gurfinkel
FMCAD 2018 Program Chairs
Austin, Texas, USA, October 2018

Organization Committee

Program Co-Chairs
Nikolaj Bjgrner
Arie Gurfinkel

Webmaster
Tom van Dijk

Publicity Chair
Yakir Vizel

Publication Chairs
Jade Alglave
Arie Gurfinkel

Student Forum Chairs
Dejan Jovanovié
Andrew Reynolds

Steering Committee
Armin Biere
Alan Hu
Warren Hunt
Vigyan Singhal
Georg Weissenbacher

Microsoft, USA
University of Waterloo, Canada

Johannes Kepler University Linz

The Technion

UCL
University of Waterloo

SRI International
The University of Iowa

Johannes Kepler University in Linz, Austria
University of British Columbia, Canada
University of Texas at Austin, USA

Oski Tech

TU Wien, Austria

Program Committee

Jade Alglave

June Andronick
Armin Biere

Per Bjesse

Nikolaj Bjgrner
Roderick Bloem
Gianpiero Cabodi
Supratik Chakraborty
Sylvain Conchon
Bruno Dutertre
Alberto Griggio
Arie Gurfinkel
Liana Hadarean
Fei He

Joe Hendrix
Warren Hunt
Alexander Ivrii
Dejan Jovanovié
Temesghen Kahsai
George Karpenkov
Tim King

Igor Konnov

Ken McMillan
Alexander Nadel
Giles Reger
Andrew Reynolds
Leonid Ryzhyk
Martina Seidl
Natasha Sharygina
Sharon Shoham
Anna Slobodova
Mathias Soeken
Daryl Stewart
Christoph Sticksel
Niklas Sorensson
Murali Talupur
Jaco van de Pol
Tom van Dijk
Yakir Vizel

Georg Weissenbacher

University College London
CSIRO|Data61 and UNSW
Johannes Kepler University Linz
Synopsys Inc.

Microsoft

Graz University of Technology
Politecnico di Torino

IIT Bombay

Universite Paris-Sud

SRI international

Fondazione Bruno Kessler
University of Waterloo

Synopsys

Tsinghua University

University of Illinois at Urbana-Champaign
The University of Texas at Austin
IBM

SRI International

Groq

Apple

Google

INRIA Nancy (LORIA)
Microsoft

Intel

The University of Manchester
The University of Iowa

VMware Research

Johannes Kepler University Linz
Universita della Svizzera italiana (USI Lugano, Switzerland)
Tel Aviv University

Centaur Technology

Ecole Polytechnique Fédérale de Lausanne
ARM

The MathWorks

Mentor Graphics

FormalSim

University of Twente

Johannes Kepler University Linz
The Technion

Vienna University of Technology

Additional Reviewers

Arbel, Eli
Asadi, Sepideh

Bakhirkin, Alexey
Bhayat, Ahmed
Blicha, Martin
Brecknell, Matthew
Bu, Lei

Burlyaev, Dmitry

Camurati, Paolo
Casburn, Ledah

Ebrahimi, Masoud
Eisner, Cindy

Fedyukovich, Grigory
Finocchiaro, Fabrizio

Hartmanns, Arnd
Hassan, Zyad
Hyvérinen, Antti

Tusupov, Rinat

Jain, Himanshu
Jain, Mitesh
Jansen, Nils
Joosten, Sebastiaan

Karl, Anja
Koelbl, Alfred
Koenighofer, Bettina

Kukovec, Jure
Kundu, Sudipta

Lazi¢, Marijana

Manevich, Roman
Marescotti, Matteo
Melquiond, Guillaume
Morgan, Carroll
Mohle, Sibylle

Nadezhin, Dmitry
Namjoshi, Kedar
Narodytska, Nina
Nevo, Ziv

O’Leary, John

Padon, Oded
Palena, Marco
Pasini, Paolo
Pu, Geguang

Riener, Heinz
Ritirc, Daniela
Ryvchin, Vadim

Sethi, Divjyot
Sewell, Thomas
Solovyev, Alexey
Sumners, Rob

Tian, Chun

Table of Contents

Invited Papers

Formal Verification of Deep Neural NEtWOTKSttt et e et e et e e e e e e 1
Nina Narodytska

Formal Verification of Unsatisfiability ReSULLS e e e e e 2
Marijn Heule

Deductive Verification of Distributed Protocols in First-Order LOgicC.t e e 3
Oded Padon

Formal Verification of Financial Algorithms with Imandra. e 4
Grant Passmore

Formal Design, Implementation and Verification of Blockchain Languagesoiuiiuiiii e 5
Grigore Rosu

The FMCAD 2018 Graduate Student FOrUMt et et e e e et 6

Dejan Jovanovi¢ and Andrew Reynolds

Hardware

CoSA: Integrated Verification for Agile Hardware Designttt e e 7
Cristian Mattarei, Makai Mann, Clark Barrett, Ross Daly, Dillon Huff and Pat Hanrahan

ILA-MCM: Integrating Memory Consistency Models with Instruction-Level Abstractions for Heterogeneous System-on-Chip

VETIHICALION « . .o ettt ettt ettt et e et e et e e e e e e e e e e 12
Hongce Zhang, Caroline Trippel, Yatin Manerkar, Aarti Gupta, Margaret Martonosi and Sharad Malik
BMC with Memory Models as MOAUIESttt e e et e e e e e e et e 22

Hernan Ponce-De-Leon, Florian Furbach, Keijo Heljanko and Roland Meyer

Quantifiers and SAT

Complete Test Sets And Their APPrOXIMALIONSo u vttt ettt et ettt e e e et et e e e e et e e e e et a e aeas 31
Eugene Goldberg

Expansion-Based QBF Solving Without ReCUISION. e e e 40
Roderick Bloem, Nicolas Braud-Santoni, Vedad HadZié¢, Uwe Egly, Florian Lonsing and Martina Seidl

Bit-Vector Interpolation and Quantifier Elimination by Lazy Reduction..........o e 50
Peter Backeman, Philipp Ruemmer and Aleksandar Zelji¢

Liveness

Analyzing the Fundamental Liveness Property of the Chord Protocol. e 60
Julien Brunel, David Chemouil and Jeanne Tawa

k-FAIR = k-LIVENESS + FAIR: Revisiting SAT-based Liveness Algorithms i i 69

Alexander Ivrii, Ziv Nevo and Jason Baumgartner

Temporal Prophecy for Proving Temporal Properties of Infinite-State Systems i, 74
Oded Padon, Jochen Hoenicke, Kenneth L. McMillan, Andreas Podelski, Mooly Sagiv and Sharon Shoham

Concurrency

Automatic Synchronization for GPU Kernels e e et e e e 85
Sourav Anand and Nadia Polikarpova

Rely-Guarantee Reasoning for Automated Bound Analysis of Lock-Free Algorithms i, 94
Thomas Pani, Georg Weissenbacher and Florian Zuleger

Verification

Template-Based Verification of Heap-Manipulating Programsot e 103
Viktor Malik, Martin Hruska, Peter Schrammel and Tomas Vojnar

Using Loop Bound Analysis For Invariant Generation.ttt ettt e ettt 112
Pavel Cadek, Clemens Danninger, Moritz Sinn and Florian Zuleger

Post-Verification Debugging and Rectification of Finite Field Arithmetic Circuits using Computer Algebra Techniques................ 121
Vikas Rao, Utkarsh Gupta, Irina llioaea, Arpitha Srinath, Priyank Kalla and Florian Enescu

Learning and Synthesis

Automata Learning for Symbolic EXECULIONottt e et e e 130
Bernhard K. Aichernig, Roderick Bloem, Masoud Ebrahimi, Martin Tappler and Johannes Winter

Functional Synthesis via Input-Output SeParationttt et ettt 139
Supratik Chakraborty, Dror Fried, Lucas Martinelli Tabajara and Moshe Vardi

Learning Linear Temporal Propertiesottt ettt et e e et et e et e et e e e 148
Ivan Gavran and Daniel Neider

SMT and CHC

The Eldarica HOn SOIVETttt ettt ettt e et e e et e e et e et e et e et e e 158
Hossein Hojjat and Philipp Ruemmer

Trau: SMT SOIVer fOr SIrING COMSIIANES« . vttt sttt ettt et e e ettt et e e e e e et et et et e et et e et et ea 165
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep, Lukas Holik, Ahmed Rezine and Philipp Rummer

Solving Constrained Horn Clauses Using Syntax and Dataot e 170
Grigory Fedyukovich, Sumanth Prabhu, Kumar Madhukar and Aarti Gupta

Rails

Analysis of Relay Interlocking Systems via SMT-based Model Checking of Switched Multi-Domain Kirchhoff Networks............. 179
Roberto Cavada, Alessandro Cimatti, Sergio Mover, Mirko Sessa, Giuseppe Cadavero and Giuseppe Scaglione

Design-Time Railway Capacity Verification using SAT modulo Discrete Event Simulation.................. 188
Bjgrnar Luteberget, Koen Claessen and Christian Johansen

Certificates

Complete and Efficient DRAT Proof Checkingt e e e 197
Adrian Rebola Pardo and Luis Cruz-Filipe

Semantic-based Automated Reasoning for AWS Access Policies using SMT i e 206
John Backes, Pauline Bolignano, Byron Cook, Catherine Dodge, Andrew Gacek, Kasper Luckow, Neha Rungta, Oksana Tkachuk
and Carsten Varming

A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4 it 215
Heiko Becker, Nikita Zyuzin, Raphaél Monat, Eva Darulova, Magnus O. Myreen and Anthony Fox
Certifying Proofs for LTL Model Checking e e et et 225

Alberto Griggio, Marco Roveri and Stefano Tonetta

Formal Verification of Deep Neural Networks

(Invited Tutorial)

Nina Narodytska
VMware Research, Palo Alto, California
Email: nnarodytska@vmware.com

Abstract—Deep neural networks are among the most successful
artificial intelligence technologies making impact in a variety
of practical applications. However, many concerns were raised
about the ‘magical’ power of these networks. It is disturbing that
we are really lacking of understanding of the decision making
process behind this technology. Therefore, a natural question
is whether we can trust decisions that neural networks make.
One way to address this issue is to define properties that we
want a neural network to satisfy. Verifying whether a neural
network fulfills these properties sheds light on the properties
of the function that it represents. In this tutorial, we overview
several approaches to verifying neural networks properties. The
first set of methods encode neural networks into Integer Linear
Programs or Satisfiability Modulo Theory formulas. They come
up with domain-specific algorithms to solve verification problems.
The second approach is to treat the neural network as a non-
linear function and to use global optimization techniques for
verification. The third line of work uses abstract interpretation
to certify neural networks. Finally, we consider a special class
of neural networks — Binarized Neural Networks — that can be
represented and analyzed using Boolean Satisfiability. We discuss
how we can take advantage of the structure of neural networks
in the search procedure.

I. INTRODUCTION

Deep neural networks have become ubiquitous in machine
learning with applications ranging from computer vision to
speech recognition and natural language processing. Neural
networks demonstrate excellent performance on many practi-
cal problems, often beating specialized algorithms for these
problems, which led to their rapid adoption in industrial
applications. With such a wide adoption, important questions
arise regarding our understanding of the decision making
process of these neural networks: Is there a way to analyze
deep neural networks? How robust are these networks to
perturbations of inputs? Recently, a new line of research on
understanding neural networks has emerged that looks into a
wide range of such questions, from interpretability of neural
networks to verifying their properties [1], [2], [3], [4], [5], [6],
(71, [8].

One emerging technique to analyze a neural network is
based on formal verification. The idea is to encode the network
and the property we aim to verify as a formal statement, using
ILP, SMT or SAT, for example. If the encoding provides an
exact representation of the network then we can study any
property related to this network, e.g. how sensitive the network
is to perturbations of the input.

In this tutorial, we look at main trends in verification of
deep learning networks.

(1]

(2]
(3]
[4]

(51

(6]
(71

(8]

e We recap basic neural networks concepts and discuss a

set of interesting properties of neural network, including
properties that relate inputs and outputs of the network,
e.g. robustness and invertibility, and properties that relate
two networks, like network equivalence.

We discuss common encodings of deep neural networks
as Boolean, SMT or ILP formulas. We will consider how
various NN properties that can be represented in these
formalisms.

We survey the main methods developed in neural net-
works verification. We start with a group of methods that
use SMT or ILP solvers to encode verification problems.
These methods range from methods that use only one
technology to solve the problem to methods that combine
SMT and ILP techniques during the search process. Then
we will look into methods that treat neural networks as
non-linear functions and use global optimization tech-
niques to perform verification. Finally, we consider the
line of work that uses abstract interpretation to certify
neural networks.

We consider a special class of neural networks — Bina-
rized Neural Networks. These networks have a number of
important features that are useful in resource constrained
environments, like embedded devices. We discuss how
binarized neural networks can be represented as Boolean
formulas. We show that structural properties of binarized
neural networks can be exploited to reason about this
class of networks.

REFERENCES

D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba, “Network
dissection: Quantifying interpretability of deep visual representations,”
CoRR, vol. abs/1704.05796, 2017.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” in /CLR, 2014.
L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in CAV, 2010, pp. 243-257.
X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety Verification
of Deep Neural Networks,” in CAV’17, ser. Lecture Notes in Computer
Science. Springer, 2017, pp. 3-29.

G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Re-
luplex: An Efficient SMT Solver for Verifying Deep Neural Networks,”
in CAV’17, 2017, pp. 97-117.

C. Cheng, G. Niihrenberg, and H. Ruess, “Verification of binarized neural
networks,” CoRR, vol. abs/1710.03107, 2017.

N. Narodytska, S. P. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh,
“Verifying properties of binarized deep neural networks,” CoRR, vol.
abs/1709.06662, 2017.

F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Automated
verification of neural networks: Advances, challenges and perspectives,”
CoRR, vol. abs/1805.09938, 2018.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Formal Verification of Unsatisfiability Results

(Invited Tutorial)

Marijn J.H. Heule
The University of Texas at Austin
marijn@cs.utexas.edu

Satisfiability (SAT) solvers are used for determining the correctness of hardware and software systems. It is therefore crucial
that these solvers justify their claims by providing proofs that can be independently verified. This holds also for various other
applications that use SAT solvers. Just recently, long-standing mathematical problems were solved using SAT, including the
Erdos Discrepancy Problem, the Pythagorean Triples Problem, and Schur Number Five. Especially in such cases, proofs are
at the center of attention, and without them, the result of a solver is almost worthless.

What the mathematical problems and the industrial applications have in common, is that proofs are often of considerable
size—in the case of the Schur Number Five about 2 petabytes in a highly compressed format. To demonstrate how to increase
trust in the correctness of multi-CPU-year computations, we validated the poof of the Schur Number Five problem. We certified
the proof using the ACL2 theorem proving system. Given the enormous size of the proof, we argue that any result produced
by SAT solvers can now be validated using highly trustworthy systems with reasonable overhead.

The tutorial also covers how to use tools that validate proofs of unsatisfiability. Apart from verifying SAT-solving results,
these tools support producing unsatisfiable cores and optimized proofs. Unsatisfiable cores can be useful in various debugging
settings, while optimized proofs allow for fast validation by a formally-verified tool and an independent party.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Deductive Verification of Distributed Protocols in First-Order Logic

(Invited Tutorial)

Oded Padon
Stanford University, USA

Formal verification of infinite-state systems, and dis-
tributed systems in particular, is a long standing research
goal. In the deductive verification approach, the programmer
provides inductive invariants and pre/post specifications of
procedures, reducing the verification problem to checking
validity of logical verification conditions. This check is
often performed by automated theorem provers and SMT
solvers, substantially increasing productivity in the verifica-
tion of complex systems. However, the unpredictability of
automated provers presents a major hurdle to usability of
these tools. This problem is particularly acute in case of
provers that handle undecidable logics, for example, first-
order logic with quantifiers and theories such as arithmetic.
The resulting extreme sensitivity to minor changes has a
strong negative impact on the convergence of the overall
proof effort.

On the other hand, there is a long history of work on
decidable logics or fragments of logics. Generally speak-
ing, decision procedures for these logics perform more
predictably and fail more transparently than provers for
undecidable logics. In particular, in the case of a false
proof goal, they usually can provide a concrete counter-
model to help diagnose the problem. However, decidable
logics pose severe limitations on expressiveness, and it is
not immediately clear that such logics can be applied to
proving complex protocols or systems.

In this tutorial, we will explore a practical approach to
using first order-logic, and a decidable fragment thereof,
to prove complex distributed protocols and systems. The
approach, implemented in the Ivy verification tool, applies
abstraction and modular reasoning techniques to mitigate
the expressiveness limitations of decidable fragments. The
high-level strategy involves the following ideas:

e Abstracting infinite-state systems using first-order
logic.

o Carefully controlling quantifier-alternations to en-
sure decidability.

« Using modular reasoning principles to decompose a
proof into decidable lemmas.

Experience to date indicates that the approach, based on
first-order logic, is surprisingly powerful, and it is possible
to prove safety and liveness properties of complex protocols
(e.g., Paxos variants), and also to produce verified low-
level implementations, using decidable logics. Moreover, the
effort required to structure the proof in this way is more
than repaid by greater reliability of proof automation, which

significantly reduces the overall verification effort. Better
matching human reasoning capabilities to the capabilities of
automated provers results in a more stable and predictable
formal development process.

This tutorial is based on joint works [1], [2], [3], [4],
[5], [6], [7], [8] with Jochen Hoenicke, Neil Immerman,
Aleksandr Karbyshev, Giuliano Losa, Kenneth L. McMil-
lan, Aurojit Panda, Andreas Podelski, Mooly Sagiv, Sharon
Shoham, Marcelo Taube, James R. Wilcox, and Doug Woos.

References

[1] K. L. McMillan, “Modular specification and verification of a cache-
coherent interface,” in 2016 Formal Methods in Computer-Aided
Design, FMCAD 2016, Mountain View, CA, USA, October 3-6, 2016,
R. Piskac and M. Talupur, Eds. IEEE, 2016, pp. 109-116. [Online].
Available: http://dx.doi.org/10.1109/FMCAD.2016.7886668

[2] K. L. McMillan and O. Padon, “Deductive verification in decidable
fragments with ivy,” in Static Analysis - 25th International Sympo-
sium, SAS 2018, Freiburg im Breisgau, Germany, August 29-31, 2018,
Proceedings, 2018.

[3] O. Padon, J. Hoenicke, G. Losa, A. Podelski, M. Sagiv, and
S. Shoham, “Reducing liveness to safety in first-order logic,”
PACMPL, vol. 2, no. POPL, pp. 26:1-26:33, 2018. [Online].
Auvailable: http://doi.acm.org/10.1145/3158114

[4] O. Padon, J. Hoenicke, K. L. McMillan, A. Podelski, M. Sagiv, and
S. Shoham, “Temporal prophecy for proving temporal properties of
infinite-state systems,” in 2018 Formal Methods in Computer-Aided
Design, FMCAD 2018, Austin, Texas, USA, October 30 - November 2,
2018, 2018.

[5] O. Padon, N. Immerman, S. Shoham, A. Karbyshev, and M. Sagiv,
“Decidability of inferring inductive invariants,” in Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, 2016, pp. 217-231. [Online]. Available:
http://doi.acm.org/10.1145/2837614.2837640

[6] O. Padon, G. Losa, M. Sagiv, and S. Shoham, “Paxos made
epr: Decidable reasoning about distributed protocols,” Proc. ACM
Program. Lang., vol. 1, no. OOPSLA, pp. 108:1-108:31, Oct. 2017.
[Online]. Available: http://doi.acm.org/10.1145/3140568

[7]1 O. Padon, K. L. McMillan, A. Panda, M. Sagiv, and S. Shoham, “Ivy:
safety verification by interactive generalization,” in Proceedings of the
37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-
17, 2016, 2016, pp. 614-630.

[8] M. Taube, G. Losa, K. L. McMillan, O. Padon, M. Sagiv, S. Shoham,
J. R. Wilcox, and D. Woos, “Modularity for decidability of deductive
verification with applications to distributed systems,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June
18-22, 2018, J. S. Foster and D. Grossman, Eds. ACM, 2018, pp. 662—
677. [Online]. Available: http://doi.acm.org/10.1145/3192366.3192414

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Formal Verification of Financial Algorithms with
Imandra

(Invited Keynote)

Grant Olney Passmore
Aesthetic Integration and Clare Hall, Cambridge
grant.passmore@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~gp351/
https://www.imandra.ai/

Index Terms

formal verification, financial algorithms, Imandra, dark pools, market microstructure

Many deep issues plaguing today’s financial markets are symptoms of a fundamental problem: The complexity of algorithms
underlying modern finance has significantly outpaced the power of traditional tools used to design and regulate them. At
Aesthetic Integration, we’ve pioneered the use of formal verification for analysing the safety and fairness of financial algorithms.
With a focus on financial infrastructure (e.g., the matching logics of exchanges and dark pools), we’ll describe the landscape,
and illustrate our Imandra formal verification system on a number of real-world examples. We’ll sketch many open problems
and future directions along the way.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Formal Design, Implementation and Verification of
Blockchain Languages

(Invited Keynote)

Grigore Rosu
University of Illinois at Urbana-Champaign, USA
grosu@illinois.edu
http://fsl.cs.illinois.edu/grosu
and
Runtime Verification, Inc., USA
grigore.rosul@runtimeverification.com

Index Terms
formal verification, semantics, blockchain

Many of the recent cryptocurrency bugs and exploits are due to flaws or weaknesses of the underlying blockchain program-
ming languages or virtual machines. The usual post-mortem approach to formal language semantics and verification, where the
language is firstly implemented and used in production for many years before a need for formal semantics and verification tools
naturally arises, simply does not work anymore. New blockchain languages or virtual machines are proposed at an alarming
rate, followed by new versions of them every few weeks, together with programs (or smart contracts) in these languages that
are responsible for financial transactions of potentially significant value. Formal analysis and verification tools are therefore
needed immediately for such languages and virtual machines. We present recent academic and commercial results in developing
blockchain languages and virtual machines that come directly equipped with formal analysis and verification tools. The main
idea is to generate all these automatically, correct-by-construction from a formal specification. We demonstrate the feasibility
of the proposed approach by applying it to two blockchains, Ethereum and Cardano.

LINKS

Runtime Verification, Inc:

-http://runtimeverification.com
Smart contract verification approach and verified contracts:

- https://runtimeverification.com/smartcontract/

- https://github.com/runtimeverification/verified-smart-contracts
Formally specified, automatically generated virtual machines for the blockchain:

- EVM: https://github.com/runtimeverification/evm-semantics

- IELE: https://github.com/runtimeverification/iele-semantics

Supported in part by NSF grant CCF-1421575, NSF grant CNS-1619275, and an IOHK (http://iohk.1io) gift.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

The FMCAD 2018 Graduate Student Forum

Dejan Jovanovié
SRI International

Abstract—The FMCAD Student Forum provides a platform
for graduate students at any career stage to introduce their
research to the wider Formal Methods community, and solicit
feedback. In 2018, the event took place in Austin, Texas, as
integral part of the FMCAD conference. Fourteen students were
invited to give a short talk and present a poster illustrating
their work. The presentations covered a broad range of topics
in the field of verification, such as from SAT/SMT solving and
theorem proving, analysis and verification of hardware, software,
and cyber-physical systems.

Since 2013, the FMCAD conference features a Student
Forum, providing a platform for graduate students at any
career stage to introduce their research to the wider Formal
Methods community. The FMCAD 2018 Graduate Student
Forum follows the tradition of its predecessors, which took
place in

1) Portland, Oregon, USA in 2013 [4],

2) Lausanne, Switzerland in 2014 [3],

3) Austin, Texas, USA in 2015 [5],

4) Mountain View, CA, USA in 2016 [2], and
5) Vienna, Austria in 2017 [1].

Graduate students were invited to submit short reports
describing their ongoing research in the scope of the FMCAD
conference. Based on the reviews provided by the organizing
committee, 14 high-quality submissions were accepted and
presented at the forum. The reviews focused on the novelty
of the work, the technical maturity of the submission, and the
quality and soundness of the presentation. The presentations
covered a broad spectrum of topics relevant to the FMCAD
community, from SAT/SMT solving and theorem proving, to
analysis and verification of hardware, software, and cyber-
physical systems. The following contributions have been ac-
cepted:

o Thomas Pani, Georg Weissenbacher and Florian Zuleger.
Rely-Guarantee Reasoning for Automated Bound Analy-
sis of Concurrent, Shared-Memory Programs.

o Bjgrnar Lutebergen. On Synthesis and Optimization of
Railway Signalling and Interlocking Designs.

e David Narvdez. A Formally Verified Symmetry Breaking
Tool for SAT.

e Yi Chou. Run-time Assurance for Unmanned Aerial Ve-
hicles using Stochastic Modeling and Reachability Anal-
ysis.

o Souradeep Dutta. Verification of Deep Neural Networks.

e Makai Mann and Clark Barrett.Finding Critical Clauses
in SMT-based Hardware Verification

e Hari Govind Vediramana Krishnan. Prioritizing Lemmas
While Pushing.

Andrew Reynolds
The University of Iowa

e Li Huang and Eun-Young Kang. SMT-based Probabilistic
Analysis of Timing Constraints in Cyber-Physical Sys-
tems

o Nikita Zyuzin, Heiko Becker, Eva Darulova and Magnus
Myreen. Formalisation of Affine Arithmetic in Coq.

e Jakub Kuderski, Arie Gurfinkel and Jorge Navas. Type-
aware DSA-Style Points-To Analysis for Low Level
Code.

e Adrian Rebola Pardo. A Theory of Satisfiability-
Preserving Proofs in SAT Solving.

o Pavel Cadek. Upper and Lower Loop Bound Estimation
by Symbolic Execution and Loop Acceleration.

o Anton Xue, Ross Mawhorter, Gian Pietro Farina and
Stephen Chong. Towards the Formalization and Analysis
of R.

e Maxwell Shinn, Clarence Lehman and Ruzica Piskac.
Runtime Verification of Scientific Software.

The 2018 student forum also featured a Best Contribution
Award (based on the quality of the submission, the poster,
and the presentation), announced during the conference and
publicized on the FMCAD website.

The Student Forum would not have been possible without
the excellent contributions of the student authors. The help
and advice of Georg Weissenbacher, who organized the earlier
FMCAD 2015 student forum was invaluable. We would also
like to express our gratitude to all the reviewers of the FMCAD
Student Forum for their work.

REFERENCES

[1] K. Heljanko. The FMCAD 2017 graduate student forum. In Proceedings
of the 17th Conference on Formal Methods in Computer-Aided Design,
pages 10-10. FMCAD Inc, 2017.

H. Hojjat. The FMCAD 2016 graduate student forum. In Formal Methods
in Computer-Aided Design (FMCAD), 2016, pages 8-8. IEEE, 2016.

R. Piskac. The FMCAD 2014 graduate student forum. In Formal Methods
in Computer-Aided Design (FMCAD), 2014, pages 13-13. IEEE, 2014.
T. Wahl. The FMCAD graduate student forum. In Formal Methods in
Computer-Aided Design (FMCAD), 2013, pages 16-17. IEEE, 2013.

G. Weissenbacher. The FMCAD 2015 graduate student forum. In Formal
Methods in Computer-Aided Design (FMCAD), 2015, pages 8-8. IEEE,
2015.

[2

—
W
—_ =

[4

—_

[5

—_

Uhttps://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD18/student- forum/

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

CoSA: Integrated Verification for
Agile Hardware Design

Cristian Mattarei, Makai Mann, Clark Barrett, Ross G. Daly, Dillon Huff, and Pat Hanrahan
Stanford University
Stanford, California (USA)
{mattarei, makaim, clarkbarrett, ross.daly, dhuff, pmh}@stanford.edu

Abstract—Symbolic model-checking is a well-established tech-
nique used in hardware design to assess, and formally verify,
functional correctness. However, most modern model-checkers
encode the problem into propositional satisfiability (SAT) and do
not leverage any additional information beyond the input design,
which is typically provided in a hardware description language
such as Verilog.

In this paper, we present CoSA (CorelR Symbolic Analyzer),
a model-checking tool for CoreIR designs. CorelR is a new
intermediate representation for hardware. CoSA encodes model-
checking queries into first-order formulas that can be solved by
Satisfiability Modulo Theories (SMT) solvers. In particular, it
natively supports encodings using the theories of bitvectors and
arrays. CoSA is closely integrated with CoreIR and can thus
leverage CorelR-generated metadata in addition to user-provided
lemmas to assist with formal verification. CoSA supports multiple
input formats and provides a broad set of analyses including
equivalence checking and safety and liveness verification. CoSA
is open-source and written in Python, making it easily extendable.

I. INTRODUCTION

Formal verification has become an important part of the de-
sign process, particularly in the hardware domain. As hardware
and software systems become increasingly complex, more time
than ever before is spent on verification to avoid costly and
potentially dangerous bugs.

For many years, hardware model-checking experts focused
on general techniques applicable to any design provided in
a standard format such as a hardware description language
(HDL) or AIGER [6], without any extra information from
the designers. While there has been impressive progress,
these techniques still often fail to scale on industrial-sized
systems. This requires verification engineers to either shrink
the parameter sizes if possible, or manually add additional
lemmas. Frequently, these additional lemmas are simple in-
variants which are known by the designer or design tool, but
are not easily inferred by the formal system.

This paper introduces the CoreIR Symbolic Analyzer
(CoSA), a model-checking tool for the hardware intermediate
representation CoreIR [11]. CoSA can leverage additional
knowledge provided by CorelR to improve performance on
many classes of proofs.

This research was supported in part by the Defense Advanced Research
Projects Agency (contract FA8650-18-2-7854) and by gifts from Intel Corpo-
ration (through the Stanford Agile Hardware Project) and Cisco Systems.

High-level Functional . Yosys
Halid .
Definition alide (Verilog)
4 . 4 . 4
Intermediate Circuit
R CorelR
Representation)
Bitstream CGRA Place and

configuration Route

Fig. 1. AHA Flow

CoSA was developed as a tool for verifying correctness at
various stages of the toolflow in the Agile Hardware (AHA)
Project at Stanford University [18]. This project aims to
improve performance and design productivity by incorporat-
ing ideas from agile software development to speed up the
development cycle.

Compared to the software community, there are very few
open-source tools for hardware design and verification. As
seen in the software domain, open-source tools can help en-
courage innovation and distribute effort, the latter of which is
particularly lacking in the hardware community. Furthermore,
in the last decade, open-source SMT solvers have become
powerful tools for verification, and the community no longer
needs to rely exclusively on commercial tools. In support of
these goals, the Agile Hardware Project is developing an end-
to-end open-source toolchain.

The rest of the paper is organized as follows: Section II
provides background on CorelR and the Agile Hardware
Project; Section III describes CoSA’s supported formal anal-
yses, architecture, and integration with design; Section IV
describes a set of applications of the tool; Section V covers
related work on hardware verification tools; and Section VI
provides concluding remarks.

II. CorEIR

CorelR is an intermediate representation and compilation
framework for digital designs [11]. It is front-end agnostic and
thus can be a compiler target for any language representing
hardware designs. Primitives in the IR have the same semantics
as the SMT theory of bitvectors [3], allowing for easy formal
verification integration. CoreIR can be transformed into cus-
tom back-ends using a flexible pass framework, and serialized
into different hardware and SMT-based formats.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

In the AHA toolflow [18], depicted in Figure 1, a user first
writes an application in a high-level language, such as the
image processing domain-specific language, Halide [19]. This
compiles to CorelR and then goes through several optimization
passes before being mapped to a back-end. One of the main
targets of the AHA tool flow is a custom Course-Grained
Reconfigurable Array (CGRA). The CGRA is designed to have
the flexibility of an FPGA while improving performance on
certain kinds of applications (e.g. image processing) [23]. This
performance is gained by configuring at the word level and by
composing specialized heterogeneous tiles containing mem-
ories and dedicated processing elements (essentially ALUs).
A set of place and route tools produce a bitstream which
configures the CGRA to implement the application.

As shown in Figure 1, other high-level hardware description
languages can integrate with CorelR in addition to Halide. In
fact, the CGRA is written in Verilog, which is compiled into
CorelR using the VerilogToCorelR [13] Yosys [25] pass. An-
other example is the hardware design language Magma [21].

The verification goals in the AHA project include assessing
functional correctness of the CGRA, as well as verifying
that the firmware produces the correct configuration for the
high-level, behavioral definition from Halide. Given these
requirements, we integrated the formal verification at the
CorelR level, thus allowing us to support the required analyses.

III. COSA: COREIR SYMBOLIC ANALYZER

CoSA integrates with CorelR to provide formal analyses.
In this section we explain the analyses supported by the tool
and describe its architecture.

A. Formal Analyses

CoSA reduces all analyses to symbolic model-checking
problems [10]. The underlying theoretic model is a Symbolic
Transition System (STS), as expressed in Def. 1.

Def. 1 (Symbolic Transition System). A Symbolic Transition
System is a tuple S = (V,I,T) where V is a set of (input
Vi, state Vg, and output V() variables, I(V) is a formula
representing the initial states, and T'(V,V’) is a formula
representing the transitions. A state of S is an assignment
to the variables V.

The core analyses of CoSA are primarily based on safety
and liveness checking. A safety property is a formula ¢ which
should hold in every state of an STS M (denoted in Linear
Temporal Logic [22] as M = G). This is essentially invariant
verification, meaning that if the property holds then ¢ is an
invariant of the system. If the property does not hold, an
execution of the system that leads to = is typically provided
as a counterexample.

Alternatively, a liveness property is a formula ¢ which
should hold infinitely often in every execution of an STS M
(denoted M = GF), A practical example of this analysis is
to verify that a processor is always going to be ready to receive
a new command. In liveness verification, a counterexample is
an execution where, at some point, ¢ no longer holds along

CoSA
Transition .
Analyzers Problem ‘ PrlntersJ Encoders
Systems
PySMT PyCorelR
[cvca]{ 73 }[MathSAT}[} [CorelR]

Fig. 2. CoSA Architecture

an infinite execution path. A typical representation of such a
trace is a “lasso-shaped” execution, in which the last state of
the trace is equal to one of the previous states.

When analyzing circuit designs, it is often necessary to
perform equivalence checking between two systems. The
checking is usually based on standard safety verification on
a synchronous combination of the systems under analysis, as
expressed in Definition 2.

Def. 2 (Synchronous Product of STS). Given two Symbolic
Transition Systems S := (V1,I1,T1) and Ss := (Va, I, T5)
where V3 N V4 = (), the synchronous product S of S; and Ss,
namely S7 X So, is defined as S := (V1 UVa, [1 ALy, Th AT5).

B. Verification Engines

CoSA analyzes model-checking problems with Bounded
Model-Checking (BMC) [5] techniques, and encodes them
using SMT formulas. For each analysis, CoSA provides
techniques able to prove or disprove the property. More
specifically, for the counterexample generation of safety and
liveness verifications the tool relies on BMC [5], while K-
Induction [20]/Interpolation [15] and K-Liveness [9] are used
to prove safety and liveness properties, respectively.

C. Framework

CoSA [14] is written in Python and its usage is regulated by
the modified BSD license. As represented in Figure 2, CoSA
builds on top of PySMT [12], which provides a solver-agnostic
Python library to interface with SMT solvers. The internal
architecture of CoSA is divided into the following parts:

o Transition Systems: defines the internal representation
of the model, which is based on a hierarchical set of
Transition Systems;

o Analyzers: implements the logic responsible for solving
a verification problem. This includes BMC engines and
liveness checking;

o Problems: used to define and manage the status of a
verification problem;

« Printers: provides support for trace printing (i.e., textual
or VCD format), and model translation such as the
generation of an SMV file [8];

« Encoders: responsible for encoding different model de-
scriptions into the internal representation. This includes
interpreting CorelR models, and extracting additional
information used to optimize the verification process.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Case Study # State Vars Total # Bits
A 44 14,771
B 110 27,307
C 1,029 (5 Arrays) 414,847

TABLE 1
SIZES OF THE CASE STUDIES - REPORTED FOR COMPOSED SYSTEMS.

For added flexibility, CoSA supports multiple input formats,
all of which get translated internally into STS’s. In fact,
the model under analysis is defined using a list of files
whose STS’s are synchronously combined (see Def. 2) to
produce a single STS. The supported input formats are CorelR,
Explicit-state Transition System (ETS), Symbolic Transition
System (STS), and BTOR2 [16]. More information on the
input formats is provided in [14]. This approach allows the
user to describe complex analyses without modifying the
original CoreIR model. For instance, the analysis of pro-
grammable hardware often requires a configuration sequence
before checking its behavior. This sequence typically includes
a reset procedure, for both pos-edge and neg-edge registers,
as well as a configuration phase which sequentially loads
a bitstream through the configuration port. CoSA facilitates
a clear separation between hardware definition, e.g., CorelR
design, and configuration sequence, e.g., ETS. CoSA can
generate SMT-LIB files for each of the analyses. Moreover,
the ability to translate to SMV format makes it possible to
use additional model-checkers such as nuXmv [8].

IV. CASE STUDIES

Below we include several case studies illustrating the utility
of CoSA. All of these examples come from the Agile Hard-
ware Project, and cover various stages in the Agile Hard-
ware flow including hardware design, optimization passes,
and mapping image processing applications to reconfigurable
hardware. All models were translated to CorelR from (System)
Verilog or Halide in order to be analyzed with CoSA. Table I
reports the number of variables in the models, including the
total size in Bits. All experiments were run on a 2.6GHz Intel
Core i7 with 16GB of RAM, and we compared with Yosys,
as a reference for open-source word-level model checking.

A. Hardware: Global Controller

The global controller is responsible for configuring the
CGRA, managing clock domains, and reading register values
for debugging. This module interfaces the JTAG controller,
which handles serial communications to and from the chip,
with the main CGRA fabric. In this case study, we focused on
verifying the global controller in isolation.

The global controller has a register named state which
records the current state. Certain operations might take mul-
tiple cycles to complete, so it uses a counter to keep track of
the number of cycles. At the beginning of an operation, the
counter is set to the expected delay, and the controller returns
to the ready state when the counter reaches zero.

Table II lists a selection of properties we attempted to verify
using CoSA and the result of each. For the third property,
CoSA exposed a bug in the design that could cause the global
controller to be stuck in the current state for 232 cycles. The

Property Result
Always return to ready state, assuming counter delay < 10 T
When not in ready state, the counter always decreases T
No underflow in counter F
Read signal is high implies the controller is in the read state T
Write signal is high implies the controller is in the write state F

TABLE II
PROPERTIES FOR THE GLOBAL CONTROLLER

global controller allows the user to configure the operation
delay, and because of subtle timing issues, the counter is
assigned to the user-specified delay minus one. Thus, if the
user asks for a delay of zero, the counter underflows. In this
case, the counter would count down starting at the maximum
value of a 32-bit unsigned integer and the only way to recover
would be to reset the controller. This issue was fixed by
special-casing zero-delay requests.

CoSA also found a counterexample trace in which the write
signal could be corrupted. This is accomplished by asking the
global controller to switch clock domains, then immediately
requesting a write operation. The clock domain switch disables
all other operations until the switch is completed, but there is
a delay of one clock cycle. Thus, if the write signal is enabled
within that delay, it is kept high throughout the clock domain
switch, but the controller is not in the write state. While
interesting, this could not happen in the full system, because it
always takes multiple cycles to produce each operation through
the JTAG controller.

We also compared the performance of CoSA against the
Yosys verification engine, only considering safety properties
since Yosys does not natively support liveness checking. We
ran the SMT solver CVC4 [1] on the SMT-LIB generated by
CoSA and by Yosys (configured with Verific [24] bindings for
parsing temporal SystemVerilog Assertions). It takes 4.684s
to check all the properties generated by CoSA and 5.395s to
check the properties generated by Yosys. The runtimes are
comparable, with CoSA running slightly faster.

B. Software: Fold-Constants Pass

CorelR has an extensible infrastructure for optimization
and analysis passes on hardware designs. In the context of
the Agile Hardware Project, the design goes through multiple
passes before being placed and routed on the fabric. To catch
bugs as close to the source as possible, it is desirable to check
that these passes produce functionally equivalent designs.

CoSA supports equivalence checking on CorelR design files
and, when necessary, incorporates extra information provided
by the CorelR pass to assist in the proof.

The fold-constants pass is interesting because it can change
the number of state variables in the system, which traditionally
makes equivalence checking far more difficult. The pass takes
any subgraph of the design which is always constant and
replaces it with a constant module. The replaced subgraph
could be combinational logic operating on constants, or it
could be a register which never changes value.

1) Equivalence Checking: Although this pass modifies the
design, the functional behavior of the system should not

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

CoSA

Counter-
example

Analyzers

Encoders
CorelR |
Design : CorelR

CorelR
Design

BMC with
K-Induction

751 —

752 —
andidate
Lemmas

) Equivalence
Proof

L Candidate
Lemmas

(after pass)

3

J

Fig. 3. CoSA automatic proof decomposition strategy for CoreIR passes

change. Given two STS’s S; and S;, we need to check that
S1 % So ': G(V]l = VIQ) - G(Vol = Voz).

A pure SMT-based K-Induction technique could solve this
problem; however, it does not scale well even for moder-
ately sized systems. Alternatively, a verification expert could
manually add additional lemmas, but this is time-consuming
and procedural. Instead, our approach is to generate lemmas
from CorelR, as depicted in Figure 3. In this specific case,
these lemmas express the part of the circuit that has been
replaced with a constant by CorelR, and CoSA adds them
as assumptions for the equivalence proof only if they are
invariants in the model.

With this proof decomposition, CoSA can check 52 lem-
mas and prove equivalence between pre-pass and post-pass
CorelR of a CGRA processing element tile configured to do a
multiplication in 50 seconds, whereas K-Induction without the
additional lemmas does not complete in 2 hours. To compare
with Yosys, we produced Verilog from CorelR for the pre-
pass and post-pass designs. These were instantiated together
in a top module, similar to the synchronous product encoding
in CoSA. K-Induction in Yosys was also unable to prove
equivalence in 2 hours.

C. Firmware: Sequential Equivalence of Design and Config-
ured Hardware

We have shown above that CoSA can prove properties of
Verilog designs, as well as functional equivalence between
CorelR designs transformed by optimization passes. It is
also useful to verify that the configured CGRA faithfully
implements the application described by a CorelR file.

As a simple example, we generated CorelR that implements
a 2x1 convolution, henceforth referred to as the application.
This was mapped to CGRA primitives, and then the place
and route tools were used to produce a bitstream for a 4x4
CGRA. From the bitstream, we generated an ETS, Sgrg,
which toggles configuration signals and passes the bitstream
to the CGRA inputs. We simulated the CGRA synchronized
with Sgrs in CoSA to configure the CGRA.

For performance reasons, it helps to simulate without un-
rolling. In this case, the transition relation was only unrolled
one step. The SMT solver was called repeatedly to generate
the next step, and the initial state was reassigned each time.
A separate check can verify that the configuration phase
is deterministic and correct. For space reasons this is not
covered here. Once the CGRA was configured, the reset and

configuration signals were disabled, and the initial state was
assigned to the configured state.

A 2x1 convolution slides a 2-dimensional kernel over an
input image. In hardware, this is implemented serially using a
linebuffer to delay input pixels. In this case, it was configured
for 10x10 input images, and thus the linebuffer has depth 10.

The application implements the linebuffer using a memory
with a 5-bit address and a counter. The CGRA implements
the linebuffer with nontrivial use of two memories with 9-bit
addresses. Convolution depends on the correct linebuffer be-
havior; thus, these memories could not be soundly blackboxed
in a SAT-based model checker. CoSA encodes memories from
both the application file and the translated CGRA using the
SMT theory of arrays.

We were unable to prove full equivalence because, due
to the linebuffers, the equivalence property is not inductive.
Unfortunately, we also cannot strengthen the property with
array extensionality because of the different use and address
widths of memories in the two linebuffer implementations:
the memory abstractions are incomparable via standard array
equivalence. However, in 2 minutes CoSA was able to prove
that if reset is held low, the configuration of the CGRA
does not change. Furthermore, CoSA showed in just over 80
minutes that, under basic assumptions of correct usage, the
configured CGRA matches the behavior of the CorelR 2x1
convolution for all executions up to 20 cycles (10 cycles of
valid pixel output). For the first ten cycles, inputs are invalid.
Thus, CoSA begins sequential equivalence checking once the
linebuffer is full and output pixels are valid. Full verification
with larger designs is the aim of ongoing work.

V. RELATED WORK

BtorMC [17] is a word-level model checker that relies on
the SMT-solver Boolector 3.0 [17] to solve (invariant) model
checking problems using bounded techniques [4]. Differently
from CoSA, BtorMC is tightly integrated with Boolector, and
it does not allow for a simple integration with different solvers.

Yosys [25] is an open source Verilog synthesis suite that
provides SMT-based invariant model checking. It interfaces
with SMT solvers via SMT-LIB [2] files. Yosys can also rely
on ABC [7] for other analyses such as liveness checking.
However, ABC engines are based on an encoding into SAT.

VI. CONCLUSION

In this paper we introduced the CoreIR Symbolic Analyzer
(CoSA), an open-source formal verification tool for CorelR.
CoSA provides a broad set of SMT-based formal analyses in-
cluding model checking and equivalence checking. Moreover,
CoSA is able to automatically extract additional information,
such as lemmas, from CorelR to speed up verification tasks.

A series of case studies from the Agile Hardware (AHA)
Project at Stanford University [18] were described in order
to show that CoSA is capable of handling real hardware
verification problems.

For future work, we intend to extend the functionality of
CoSA to include full support of Linear Temporal Logic (LTL)
and additional input formats such as SMV.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

(1]

[2]

[3]

[4

—

[5

—_

[6

oy

[7

—

[8

[t

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

REFERENCES

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi’c,
T. King, A. Reynolds, and C. Tinelli. Cvc4. In G. Gopalakrishnan and
S. Qadeer, editors, Proceedings of the 23rd International Conference on
Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes
in Computer Science, pages 171-177. Springer, jul 2011. Snowbird,
Utah.

C. Barrett, A. Stump, C. Tinelli, et al. The smt-lib standard: Version
2.0. In Proceedings of the Sth International Workshop on Satisfiability
Modulo Theories (Edinburgh, England), volume 13, page 14, 2010.

C. W. Barrett, R. Sebastiani, S. A. Seshia, C. Tinelli, et al. Satisfiability
modulo theories. Handbook of satisfiability, 185:825-885, 2009.

A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic Model Checking
without BDDs. In International conference on tools and algorithms
for the construction and analysis of systems, pages 193-207. Springer,
1999.

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu, et al. Bounded
model checking. Advances in computers, 58(11):117-148, 2003.

A. Biere, K. Heljanko, and S. Wieringa. Aiger 1.9 and beyond. Available
at fmv. jku. at/hwmccll/beyondl. pdf, 2011.

R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In International Conference on Computer Aided
Verification, pages 24—40. Springer, 2010.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli,
S. Mover, M. Roveri, and S. Tonetta. The nuxmv symbolic model
checker. In International Conference on Computer Aided Verification,
pages 334-342. Springer, 2014.

K. Claessen and N. Sorensson. A liveness checking algorithm that
counts. In Formal Methods in Computer-Aided Design (FMCAD), 2012,
pages 52-59. IEEE, 2012.

E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen.
Symbolic model checking. In International Conference on Computer
Aided Verification, pages 419-422. Springer, 1996.

R. Daly. CorelR: A simple LLVM-style hardware compiler. https:
/lgithub.com/rdaly525/coreir, 2017.

M. Gario and A. Micheli. Pysmt: a solver-agnostic library for fast
prototyping of smt-based algorithms. In Proceedings of the 13th
International Workshop on Satisfiability Modulo Theories (SMT), pages
373-384, 2015.

D. Huff. Verilog to CorelR translator. https://github.com/dillonhuff/
VerilogToCorelR, 2018.

C. Mattarei. CoSA: CoreIR Symbolic Analyzer. https://github.com/
cristian-mattarei/CoSA, 2018.

K. L. McMillan. Interpolation and sat-based model checking. In
International Conference on Computer Aided Verification, pages 1-13.
Springer, 2003.

A. Niemetz, M. Preiner, C. Wolf, and A. Biere. Btor2 , BtorMC and
Boolector 3.0. In H. Chockler and G. Weissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV 2018, Held as
Fart of the Federated Logic Conference, FloC 2018, Oxford, UK, July
14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in
Computer Science, pages 587-595. Springer, 2018.

A. Niemetz, M. Preiner, C. Wolf, and A. Biere. BTOR2, BtorMC and
Boolector 3.0. In Computer Aided Verification - 30th International
Conference, CAV 2018, Oxford, UK, July 14-17, Lecture Notes in
Computer Science. Springer, 2018.

J. Parkhurst, M. Horowitz, P. Hanrahan, and C. Barrett. AHA Agile
Hardware Project. https://aha.stanford.edu/, 2018.

J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe. Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines.
ACM SIGPLAN Notices, 48(6):519-530, 2013.

M. Sheeran, S. Singh, and G. Stalmarck. Checking safety properties
using induction and a sat-solver. In International conference on formal
methods in computer-aided design, pages 127-144. Springer, 2000.

S. University. Magma: a Hardware Design Language Embedded in
Python. https://github.com/phanrahan/magma, 2017.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic.
In Logics for concurrency, pages 238-266. Springer, 1996.

A. Vasilyev, N. Bhagdikar, A. Pedram, S. Richardson, S. Kvatinsky,
and M. Horowitz. Evaluating programmable architectures for imaging
and vision applications. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 1-13, Oct 2016.

[24] Verific Design Automation. Verific. http://www.verific.com/.
[25] C. Wolf, J. Glaser, and J. Kepler.

Yosys-a free Verilog synthesis
suite. In Proceedings of the 21st Austrian Workshop on Microelectronics
(Austrochip), 2013.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

ILA-MCM: Integrating Memory Consistency Models with
Instruction-Level Abstractions for Heterogeneous System-on-Chip Verification

Hongce Zhang, Caroline Trippel, Yatin A. Manerkar, Aarti Gupta, Margaret Martonosi, Sharad Malik
Princeton University, USA

Abstract—Modern Systems-on-Chip (SoCs) integrate hetero-
geneous compute elements ranging from non-programmable
specialized accelerators to programmable CPUs and GPUs. To
ensure correct system behavior, SoC verification techniques
must account for inter-component interactions through shared
memory, which necessitates reasoning about memory consistency
models (MCMs) This paper presents ILA-MCM, a symbolic
reasoning framework for automated SoC verification, where
MCMs are integrated with Instruction-Level Abstractions (ILAs)
that have been recently proposed to model architecture-level
program-visible states and state updates in heterogeneous SoC
components.

ILA-MCM enables reasoning about system-wide properties
that depend on functional state updates as well as ordering
relations between them. Central to our approach is a novel facet
abstraction, where a single program-visible variable is associated
with potentially multiple facets that act as auxiliary state vari-
ables. Facets are updated by ILA “instructions,” and the required
orderings between these updates are captured by MCM axioms.
Thus, facets provide a symbolic constraint-based integration
between operational ILA models and axiomatic MCM specifica-
tions. We have implemented a prototype ILA-MCM framework
and use it to demonstrate two verification applications in this
paper: (a) finding a known bug in an accelerator-based SoC, plus
a new potential bug under a weaker MCM, and (b) checking that
a recently proposed low-level GPU hardware implementation is
correct with respect to a high-level ILA-MCM specification.

I. INTRODUCTION

Systems-on-Chip (SoCs) integrate specialized hardware to
meet the power-performance requirements posed by emerging
applications. Specialized hardware can be programmable (e.g.,
Graphics Processing Units or GPUs) or non-programmable
(e.g., an AES cryptographic accelerator). They outperform
general purpose processors in specific domains like machine
learning [1], scientific computation [2], and cryptographic op-
erations [3]. The multiple processing units in an SoC typically
run concurrently. This concurrency can be difficult to reason
about, leading to design and implementation bugs in functional
correctness as well as security. Furthermore, when SoC
components interact via shared memory or memory-mapped
input and output (MMIO), one also needs to reason about
memory consistency models (MCMs). Although programmers
generally find it easier to think about concurrent code with
sequentially consistent (SC) ordering semantics, modern
instruction set architectures (ISAs) have weaker MCMs in an
effort to achieve better performance and scalability.

This work was supported in part by the Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC and DARPA.

This work was supported in part by the National Science Foundation, XPS
Program, Grant No. 1628926.

Previous MCM verification efforts have focused on
modeling and analyzing MCMs at different levels of the
software/hardware stack in parallel systems [4-11]. These
approaches typically use small parallel programs, called litmus
tests, for reasoning about the MCMs themselves. They focus
on ordering relations between simple instructions, rather
than on symbolic reasoning of complex control and data
flow in programs, which is often needed in SoC verification.
Moreover, none of these efforts consider non-programmable
hardware accelerators, which may not have an ISA.

Recently, an instruction-centric operational model for het-
erogeneous SoC components has been proposed, called an
Instruction-Level Abstraction (ILA) [12]. Analogous to a pro-
cessor ISA, an ILA models a hardware component’s program-
visible states and their updates in the form of instructions. This
provides a well-defined interface between sequential software
and the underlying hardware component. For an accelerator,
its ILA instructions correspond to commands at its interface.
ILAs have been successfully generated (using semi-automated
synthesis-based techniques) for many accelerators in prac-
tice [12—14]. In the rest of this paper, we use “instructions” to
denote ILA instructions, which correspond to instructions in
a processor ISA or to derived instructions for an accelerator.

An ILA can uniformly model rich instruction semantics
(i.e., including control and data flow) of a single processing
unit, e.g., a processor or an accelerator. Although existing
MCM specifications and verifiers are well-suited for
representing orderings between memory operations of multiple
processing units, they lack such rich instruction models. We
show that for general SoC verification, it is essential to reason
about both rich instructions in heterogeneous components and
memory orderings between them.

In this paper, we address this central challenge by proposing
a general symbolic framework called ILA-MCM, shown in
Figure 1. In this framework, each processing unit in an
SoC, such as a programmable processor or an accelerator,
is uniformly represented by an ILA. The MCM is described
using axioms, as in previous efforts [4—11], but is integrated
with the ILA operational models. This enables our ILA-
MCM framework to reason about functional state updates in
instructions as well as the effects of MCMs, thereby supporting
expressive properties involving both states and orderings for
SoC verification.

A novel feature of our ILA-MCM framework is the facet
abstraction, where a single program variable in an instruction
can be associated with multiple auxiliary state variables called
facets in the verification model. Facets are useful for modeling

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

ILA i
- (operstions) [NEZEN - MCM Axioms (o stonal
model) [ETRN for memory P
o 0 . model)
e el S Ol
. J s | C)
\A Bounded LN
; Facets Bounded
program jeq Caref . write program
sketch or integration sketch

Model Constraints
SMT

‘ Solver

Property Constraints

Fig. 1. The ILA-MCM Framework for heterogeneous SoC verification

memory subsystems and consistency effects, where different
observers in an SoC may see logically distinct values of the
same program-visible variable. The allowed values of facets
are constrained by the operational semantics of the instructions
as well as the memory consistency axioms. Thus, facets form
a critical link between operational ILA models and axiomatic
MCM specifications.

Another feature is that our verification procedure supports
both operational and axiomatic models in general. (For ex-
ample, our second application uses a low-level operational
model for memory consistency.) The executions of operational
models (e.g., ILAs) are based on a program sketch [151%,
which depends on the property to be verified. This creates
symbolic trace events (events, in short). Each event is guarded
by a condition and updates the state in an ILA or a facet.
The axioms are then instantiated, which may create additional
events or impose happens-before [16] ordering relations be-
tween events. We refer to these sets of constraints as the model
constraints. Finally, we add property constraints that refer to
states and ordering requirements for verification.

We use standard theories in first order logic to capture all
constraints, including the semantics of instructions in a pro-
gram and happens-before ordering relations between events.
The formula comprising all constraints is checked by a Sat-
isfiability Modulo Theory (SMT) solver [17]. Our framework
supports diverse verification tasks formulated as SMT queries,
including finding bugs (via falsification) or proving correctness
(via verification condition generation). We have implemented
a prototype ILA-MCM framework and demonstrate its use in
two challenging SoC verification applications in this paper.

To summarize, this paper makes the following contributions:

o« ILA-MCM framework: We propose a framework that
combines operational models for processing cores (in-
cluding accelerators) with axiomatic memory consistency
models to enable SMT-based reasoning of complex inter-
actions between hardware, software, and memory subsys-
tems in heterogeneous SoCs.

o Facet abstraction: We propose the facet abstraction,
where a single program-visible state variable can be

ISimilar to automated program synthesis, the “holes” in our program sketch
are filled in by a solver.

associated with multiple logically-distinct variables, to
represent updates on program-visible states with memory
consistency effects. The facets provide the basis for a
constraint-based integration of ILAs with MCMs.

« Evaluation on real-world SoCs designs: First, we show
an application of the ILA-MCM framework for finding
security bugs in SoC firmware [18], where our support for
expressive properties enables finding a malicious exploit
from a program sketch. Second, we show an application
for checking correctness of a low-level GPU hardware
implementation [19] against a high-level ILA-MCM spec-
ification, where our instruction-centric approach enables
its decomposition into simpler verification tasks.

An overview of various components in the ILA-MCM
framework is shown in Figure 2, annotated by the section num-
bers that describe these components. We start by introducing
the relevant background on ILAs and MCMs.

II. BACKGROUND
A. Instruction-Level Abstraction (ILA)

An ILA is a uniform abstraction for hardware accelerators
as well as general-purpose/specialized programmable proces-
sors [12]. It is an operational model that captures updates
by hardware to program-visible states (i.e., the states that are
accessible or observable via a user-facing program instruction).
It can be viewed as a generalization of the processor ISA in the
heterogeneous context, where the instructions for accelerators
are defined as the commands on their interface that update
program-visible states. In an ILA, each instruction has a
decode condition, and the instruction executes only when this
condition is true. An ILA also supports hierarchy, where an
instruction at a high level can be represented as a sequence
of child instructions at a lower level, as shown in Figure 2
for Instr A of ILA1l (under the “ILAs” column). Thus,
the granularity of ILA instructions can vary, ranging from
processor instructions to software functions. Furthermore, an
ILA is used for modeling a sequential thread of control, while
parallelism is modeled using multiple such threads.

B. Memory Consistency Model (MCM)

An MCM provides a specification to a programmer of the
order in which memory operations appear to execute [20].
Sequential consistency (SC), defined by Lamport [21],
specifies that: (1) memory accesses preserve the order within
each thread of a program, and (2) across threads, there is an
order of accesses that every observer agrees upon. Despite the
intuition of SC, nearly all modern ISAs adopt MCMs weaker
than SC. A weak MCM allows certain memory accesses to
be reordered within a program, and supplies fences or other
synchronization mechanisms to enforce required orders when
necessary. For example, the Total Store Order (TSO) model
allows a load to be reordered with earlier stores that access a
different address to allow the store-buffer optimization [22].

Figure 3 illustrates the effects of MCMs on a small multi-
threaded program with a proposed outcome, called a litmus
test. In this litmus test, each thread executes a store (st)

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

(a) ILA+MCM Framework (Components)

Program Sketch (P) ILAs (1) Facets (F) Axioms (4) | Property (¢)
ILAL: ‘ Instr A ‘ ‘ Instr Z ‘ Facets: F variable.agent Ordgring ¢(§‘ ﬁ,R)
’ Facetevents: Instr.wfe.<attr>| relations
| | Instr 2 : store M[1000], ? ‘ States: S hierarchy (optional) Instr.rfe.<attr> e.g. rf fr, .
_| Instr 3:load r?, M[?] rite-tacet event: X F: facets
Child-instr 2 Instr.wfe.<attr> § II-B . .
P1 for ILA1 R: orderings
I ; Read-facet event: Facet-Axioms
LI:I §II-A | §I1-A Child-instr n Instr.rfe.<attr> § III-B § II-C
P2 for ILA2
(b) lllustrated Example Processor Instruction: Setlock @t1 | SetLock.wfe.local @t2 Axiom Verification
Proc, Device, CE Tock.proc := r[?] TSO Write Procedure
P1 P2 P3 . SetLock.wfe.global @t3 | FacetOrder i
HB adds the blue | § II-D
SetLock r? - relation (HB) Tock.dev := lock.pro¢ -
lock.CE :=lock.proc HB relation
(See also Fig. 5) ‘
Fig. 2. Components of the ILA-MCM framework, with example fragments.
T1: T2: T1: T2:
t iyl 1 tIyvl, 1 st[r2], 1
stx], 1 stlyl, st[x], 1 stlyl, st [X] 1 Id r1, [V] Reorder
pPpo PpPo >< data Id r1, [r3]
Idr1, [yl fr fr Idr2, [x] Idr1, [y] Fr £21dr2, [x] setp.eq pl,r1,0
St [V] 1 rf\
(a) rl==0A (b) rl==0Ar2== AN ctrl r2==r3 :forbidden
Forbidden underSC Permitted underTSO fr \@ 11dr2, [x] r2!=r3 :permitted
r X
Fig. 3. A forbidden outcome in SC can become permitted under a weaker (a) r1==0Ar2==0: (b) Reordering allowed in TSO
MCM. Arrows show the ordering relations (in blue) between instructions. Observable under TSO ifrol=r3

and then a load (1d) instruction, where all memory locations
and registers are initially 0. Figure 3(a) assumes the SC
MCM, and thus forbids a program outcome where both load
instructions return 0. This is evident in a cycle of edges that
comprise the preserved program order between the store and
load instructions (shown as ppo edges) and the order between
the read in one thread and the write in the other (shown by
from-read (fr) edges). In contrast, under TSO (Figure 3(b)),
the ppo edges are removed (since a read can be reordered with
an earlier write), so the proposed outcome is permitted since
there is no cycle. In general, MCMs also consider the co edge
(coherence order between writes to the same address) and the
rf edge (reads-from order from a write to a load which reads
from that value).

C. Gaps in Prior Work

Despite a rich history of prior work in MCM verification,
they lack some key capabilities described below.
Symbolic Reasoning with Conditional Orderings. Our main
goal is to support general verification of SoC software and
hardware. However, most prior efforts in MCM verifica-
tion rely upon an explicit enumeration over addresses, data,
and conditional predicates that may affect orderings between
memory operations. Specifically, we consider the following
two types of conditional orderings: @ relations involving
predicated instructions or instructions after branches, and @
relations involving address/data-dependent values.

For example, Figure 4(a) shows @, with a predicate p1 on
the last load instruction in thread T2. Note that the existence
of the load event and the related fr edge (shown as a dashed

Fig. 4. Examples of conditional orderings. (a) @pl 1d executes iff pl is
true, ie., iff r1==0 (setting/using predicate pl is marked in red). (b) In
TSO, store-to-load reordering is allowed if the addresses are different.

arrow) are control-dependent. If this control-dependency is
ignored, the analysis will incorrectly deduce that the graph
is cyclic, i.e., the outcome is unobservable. Figure 4(b) shows
an example for case @, where reordering is allowed only when
the addresses in registers r2 and r3 are different.

In prior MCM efforts based on relational models, e.g.,
using Alloy [5] or Check tools [7-11], the addresses and
data are modeled by relational predicates, e.g., whether two
addresses are the same. However, such relations have to
be pre-specified and are not explored symbolically in the
solver. Similarly, Herd uses enumeration over all possible
values of relevant addresses/data. In contrast, ILA-MCM uses
symbolic reasoning to represent ordering relations dependent
on complex contro/data flow and avoids explicit enumeration.
Rich Instruction-Centric Models. Most previous efforts in
MCM verification focus on ordering relations between in-
structions, rather than on updates of program-visible states.
For example, arithmetic instructions are abstracted away in
relational models [5]. In Herd [4], the instructions are hard-
coded and do not model bit-precise hardware (e.g., there is no
register overflow behavior). Our goal is to support SoC veri-
fication by modeling rich instruction semantics for processors
as well as non-programmable accelerators, which is required
for reasoning about general (not just litmus) programs.
Expressive Properties. MCM verification has typically fo-
cused on specifying orderings and litmus tests, while pro-
gram/processor verification has focused on state-based veri-

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

fication or control-oriented properties. We aim to support SoC
verification using a wide range of expressive properties that
can refer to both states and orderings.

III. ILA-MCM FRAMEWORK

We now provide details of the main components of our
ILA-MCM framework (shown in Figure 2): program sketches,
facets, axioms, and verification procedure.

A. Program Sketch

We leverage existing work on programming by
sketches [23, 24] to synthesize a program that would
exercise a bug or abstractly capture unbounded executions.
Our program sketch comprises: (1) a set of partially-specified
state updates in instructions (and any child instructions), and
(2) a partial order on them. Holes (shown as question marks
in Figure 2) are allowed in the sketch. These are filled in
by the SMT solver during verification. Examples of holes
include symbolic values (e.g., content of a memory location)
or fields in an instruction encoding (e.g., address/data field
of the store and load in Figure 2).

The program sketch, which needs to be provided by the
user, typically depends on the correctness property. Although
a program sketch has a bounded number of instructions, one
can use an outer procedure to iteratively increase the bound, to
perform a deeper search for bugs or for a proof by induction
using given invariants. In the first column in Figure 2(b), the
example considers an SoC with a processor, a device, and
a cryptographic engine (CE). Thus, there are three program
sketches (P1, P2, P3) and a SetLock instruction is illustrated
in the program sketch (P1) for the processor. The second
column (under ILA) shows the related event, which updates
the lock variable by the value of some register (left as a hole
r?) and associates a symbolic timestamp t1 with the event.

B. The Facet Abstraction

To reason about the interactions between SoC components
via shared memory, we need to establish a relation between
program variables in instructions of different ILA models via
axioms in MCMs. We model this using a novel abstraction
described below.

1) State Variables for Facets: Facets are auxiliary variables
associated with a shared program-visible state variable that can
be observed by an “agent,” which may be a thread, a physical
structure or a processing core/accelerator, depending on the
ILA modeling granularity. Facets reflect the fact that different
agents may observe distinct values of the same shared variable
in different orders. For example, the store-to-load reordering
in TSO can result in the load seeing the new value from the
store earlier than instructions on another thread. In general,
each agent can potentially have its own facet for a shared
variable. In our experience, this per-agent-facet is general
enough to model weak consistency behaviors. (More facets can
be added if one wishes to model memory consistency at the
microarchitecture level, e.g., with store-buffers or caches, etc.)

We use the notation variable.agent for the facet that
corresponds to a specific agent’s view of a given program
variable. For the example considered in Figure 2(b), suppose
there is an on-chip interconnect between the three components,
and that there is a register in the device denoting a lock.
The device observes its value by directly reading the register,
which is regarded as the facet of the device (denoted lock.dev).
The device provides a memory-mapped interface, where other
agents can access the lock register as if accessing a memory
location. We model the lock register seen by the other agents
as facets, denoted lock.proc and lock.CE, respectively.

2) State Updates for Facets: Continuing with our example,
the ILA instruction SetLock on the processor can update the
lock by writing to the memory-mapped address of the lock
register in the device. The new value may first appear in the
processor’s local buffer, then go into a cache, and through the
interconnect, propagate to the device and finally update the
device’s register. This could result in different agents seeing
different values in different orders. We model this by creating
new events: write-facet events to update facets, and read-facet
events to read facets.

For example, TSO can be modeled such that each agent
has a facet for a shared program variable. A store instruction
creates two write-facet events, one to its own facet (local
write-facet event) and the other to all other facets (global
write-facet event). A load instruction corresponds to one read-
facet event, since it only needs to read from its own facet.
In general, any instructions or child-instructions accessing
shared variables can have associated facet events. The values
that facet read/write events use for updates are derived from
the ILA instruction semantics, while the orderings of facet
read/write events are specified by the facet-axioms in the
MCM. We use the notation instrwfe/rfe.<attr> to refer to
the write-facet events (wfe) or read-facet events (rfe), related
to a given instruction (instr), with a given attribute <attr>. In
the TSO model, <attr> can be local or global. The example
in Figure 2(b) shows two write-facet events (under Facets)
related to the setLock instruction under the TSO model.

C. Facet-Axioms for Integrating ILAs and MCMs

So far, we have described facets as state variables, and new
facet events associated with ILA instructions that update or
read them. The orderings between these events are specified
by MCM axioms. For SC and TSO, the complete set of facet-
axioms can be found in the Appendix. We highlight some
fragments of these in Figure 5. Note that we uniformly use
happens-before relations (denoted as HB) to specify order-
ings between events. In the SC model (top part), all facet
read/write events are synchronous (i.e., these events occur
at the same time) with the instructions (lines 1-2). In the
TSO model (lower part), the two write-facet events (local
or global) of a store instruction happen after the instruction
and follow the program order (lines 3-9). These axioms are
similar to those used in prior work, e.g., in the uspec TSO
model [7], except that facet-axioms relate instructions with
facet read/write events, while uspec axioms relate instructions

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

1: Axiom SC_WriteFacetOrder
2: forall w:WRITE | Sync[w , w.wfe.global]

3: Axiom TSO WriteFacetOrder

4: forall w:WRITE | HB[w , w.wfe.local] /\
5: HB[w.wfe.local , w.wfe.global

6: Axiom TSO_Store

7: forall wl:WRITE | forall w2:
8 PO[wl, w2
9 /\ HB[

WRITE (not wl) |
] => HB[wl.wfe.local, w2.wfe.local]
wl.wfe.global, w2.wfe.global]

10: Axiom RF_CO_FR
11: forall r:READ | exists w:WRITE

12: SameAddress[w,r] /\ SameData[w,r]/\ w.decode /\RF[w,r]/\(
13: forall w2:WRITE (not w) | (SameAddress([w,w2] /\

14: w2.decode)=> CO[w2,w] \/ FR[r,w2]

15: Define RF[w, r]

16: Define CO[wl,w2]
17: Define FR[r, w]

Fig. 5. SC and TSO axioms (fragments)

with microarchitectural structures like pipeline stages and
caches. Further, axioms for other MCMs can be similarly
defined. We have designed these axioms by hand (similar to
prior MCM work); addressing their correctness is beyond the
scope of this work.

The main highlight of the facet-axioms is that the relations
over facet events in the MCM are linked with control/data
flow in the ILA instructions via predicates interpreted over
ILA state variables and facets. Consider the RF_ CO_FR axiom
(lines 10-14), which states that: (a) all read events should
read from some executed write event with the same address,
and the data values of read and write should match, (b) if
a read r reads from a write w, any other executed write wo
should not interfere. Here, the predicates SameAddress and
SameData are interpreted over ILA state variables and facets.
Similarly, the symbolic decode condition of an instruction
(denoted instruction.decode) is a predicate over ILA state
variables. Note also that the definitions of rf, fr, and co edges
are based on the happens-before relation over facet-events.

D. ILA-MCM Verification Procedure

Our verification procedure is shown in Algorithm 1. Among
its inputs, the first is a program sketch P(7, R), where T is
a set of instances’ of partially-specified (child-) instructions,
and R is a partial order. Other inputs are a set of ILAs I,
the axioms A, and a property ¢. For each possible instruction
instance, the algorithm creates a trace step (simply called step)
using the instruction semantics® (line 5). We also associate
a symbolic timestamp with the step, encoded as an integer
(t, for step a). Values of timestamps only reflect relative
orderings. Recall that the instructions/child-instructions may
lead to facet read/write events, and steps are also created for
these events (lines 6-8). Next, any happens-before orderings
in the program sketch are interpreted as a less-than relation
on the associated timestamps (line 10). Then, we instantiate
the quantifiers and interpret the predicates in the axioms over

2Multiple occurrences of the same (child-) instruction are regarded as
separate instances in a trace.

3 Although not shown here, we use a concurrent static single assignment
(CSSA) encoding [25, 26], where uses of shared state variables are encoded
as 7-variables and updates to them are encoded as new definitions.

Algorithm 1 ILA-MCM Verification Procedure

1: procedure VERIFY(P(T, R),I, A, ¢)

2: > P(T, R): program sketch P, where T is a set of instances
of (child-) instructions and R is a partial order, I: set of
ILAs, A: axioms, ¢: propert

P i ¢: property

for each ts € T do

C < C A CreateStep(ts, I)
T’ + AssocFacetEvent(ts, A)
for each ts’ € T' do

C < C A CreateStep(ts’, I)

9: for each a — b € R do

10: C—CNAta <ty > Orders are on timestamps

11: C' < C A Instantiate Axioms(A)

122 C+CA-¢

13: if SMTCheck(C') = SAT then

14: return INVALID, GetModel(C)

15: else return VALID

> C is set of constraints

> Get facet-events

B AN AR

the set of steps (line 11), and add the negation of the property
(line 12). Finally, the set of constraints is checked by an SMT
solver. (Our prototype uses Z3 [27].) If the constraints are
satisfiable, we get a counterexample in the form of an event
trace; otherwise, the property is valid within the space allowed
by the program sketch. To verify unbounded correctness,
we can check whether given invariants are inductive and
use abstractions to model nondeterministic environments, as
discussed later in Section IV-B.

IV. VERIFICATION APPLICATIONS
A. Security Bug in a Firmware Load Protocol

1) System Overview: The SoC [18] used in this application
consists of a processor, a device, and a cryptographic
accelerator engine (CE). The processor runs a driver that
loads a firmware image onto the device. The CE is responsible
for authenticating the image before it can be used by the
device. The SoC has a system memory (SM) that all three
agents can access, and an isolated memory (IM) that can only
be written by the device but is readable by both the device
and the CE. The threat model assumes that the driver on the
processor can be compromised. The attacker’s goal is to fool
the device into running a malicious firmware image that does
not carry a correct signature.

2) ILAs and Instructions: The first step is to construct an
ILA for each of the agents: the processor, the device, and
the CE. The set of instructions and child instructions are
shown in Figure 6(a) (along with a legend). The processor
uses store operations to send commands to the memory-
mapped device or the accelerator interface, and can query the
status via reading through this interface. The ILA instructions
in the processor (device driver) are Send_Command_Reset,
Store_Firmware, of Send_Command_Load. The processor
also has a Receive_ Report instruction that, when trig-
gered by an interrupt, reads from the device’s status reg-
ister to learn the result of firmware image authentication.
The device ILA has three instructions: Reset, Load and
Handle_ CE_Response. The CE ILA has only one instruction
(Authentication), which handles the authentication request.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

No. (Child-) instructions in three ILAs Processor Device CE Processor Device CE Processor Device CE
1. Send Command: Reset
2. Reset 1L@1-2
3. Store Firmware to SM 3 03 P 2.@2 2. @3
4, Send Command: Load Firmware @ 3. @7—8
5. Load Firmware (child: 5a, 5b) 4. @4 Yo 4. @8—9 1.
5a. Copy Firmware from SM to IM 5. @5 L @10
5b. Send Authentication Request 53. @6 1. @11—~12, .
icati ild: 5a. @15—16
6. Authenpcanon (child: 6a, 6b) 3 307 | b @7 3. @12-16, @
6a. Verify Signature Ny e (Lock) N
6b. Send Response : 4.@8 = 6. @8 4. @16—174 | 5b. @16—~17 |
7. Handle Response (child: 7a-7c) 6a. 5. @9 6a. @9 "-.\\ Y @17
7a. Read Status Bit 6b. 532. @10 y
end Interrupt to Processor sb. @11 @ NI @
7c. If (status == PASS) 6b. @13
PC := IMAGE_ADDR A .
3 5a. @23—>26
8. Receive Report 7. @16 6a. @25
Lock Write Lock := “LOCK” 7a. @17 5. @33-35
E E represents an event 7b. @18 6b. @34—36
39
E::e;)sl'teas:]gts anevent, Tisthe Design A and Design B 7c. @19 7. @37
T1is the time of local facet update, have the same execution 7a. @38
E.@T17T2| 12isthe time of global facet update flow, except that Design B 7 3
gi:i:i:i:i:i:i:i:: The lock operation added in Design B has a child instruction @
b e .
Gray boxes participate in writing Lockin Step 6. 7c. @40
the malicious image
(a) (b) (c) (d)

Fig. 6.

(a) Instructions/child-instructions in the ILAs, plus legend. (b) Intended execution flow for Designs A and B, where a dashed arrow indicates an

agent triggering an instruction in another agent via instruction-decode conditions. (c¢) Malicious exploit for Design A under SC, with event timestamps (QT)
generated by the SMT solver. (d) Malicious exploit for Design B under TSO, with timestamps for local/global facet updates also generated by the SMT solver.

The intended execution flow of these instructions is shown
in Figure 6(b). First, the driver sends a Reset command to the
device by writing into the command register and the device
performs reset (Step 1 and 2). The driver stores the firmware
image in a dedicated region in SM (3) and invokes the device
(4). Upon receiving the Load Firmware command (5), the
device copies the firmware image into its IM (child-instruction
5a) and sends an authentication request to the CE (5b). The
CE checks the signature of the image in IM (6a), stores the
result into its register and signals the device of its completion
(6b). The device will read the verification result from the CE’s
address space (7a) and report the result to the driver (7b). If
the result indicates that the image is authenticated, the device
sets its own program counter to point to the firmware location
in IM and starts its execution from there (7c). Finally, the
processor handles the interrupt and knows that the firmware
image has been loaded (8).

We refer to the above implementation as Design A, which
is known to have a time-of-check to time-of-use (TOCTOU)
vulnerability. Prior work originally identified and presented a
solution to this vulnerability, namely Design B [18], where the
device protects IM contents with a lock that is accessible only
by the device and the CE. Once locked, the image stored in
IM cannot be changed. Our ILA model for Design B is similar
to Design A, except that the CE has an extra child-instruction
Lock in ILA instruction 6 which enables the lock.

3) Program Sketch: We created a program sketch based
on the instructions shown in Figure 6(a), where the solver
explores which instructions to include in the malicious exploit
by creating a hole for the decode condition of each instruction.
Further, the values and addresses of the stores by the driver

are left as holes in the program sketch.

4) Facets and Axioms: In this application, we consider two
possible MCMs: SC and TSO. We use facets and axioms
(shown in the Appendix) to model the MCMs.

5) The Property: The SoC should ensure the fol-
lowing safety property ¢: (DevPC = FwAddr) —
Check(IM[FwAddr]) # FAIL. It says that when the device’s
program counter points to the region holding the firmware
image, the image should not be malicious. Our verification
procedure aims to synthesize an exploit that violates this
property.

6) Results: Under the SC model, our verification procedure
successfully reproduced the known malicious exploit [18] for
Design A in 3.5 seconds, with a bound of 30 ILA instructions.
The malicious exploit is shown in Figure 6(c), where the
timestamps (eT) found by the SMT solver are shown for each
event. Note that the correct image is authenticated, but the
firmware overwrites it with a malicious image, which is then
executed. This is a TOCTOU vulnerability.

Design B is intended to fix the above issue and works
correctly under the SC model. However, under the TSO
model, our verification procedure found a malicious exploit
in 6.5 seconds, with a 32-instruction bound. To the best of
our knowledge, this TSO-based vulnerability was not known
before. The resulting trace is shown in Figure 6(d), where the
essential problem is around timestamp 22 to 24. Although the
CE updates the device’s lock register at time 22, the device
does not see this update until later. As shown, at time 23, the
device overwrites the firmware with a malicious image. This
bug can be fixed by adding a fence on the CE to ensure that the
device sees the lock before the CE proceeds to authenticate.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

B. Verifying Correctness of a GPU Implementation

Graphics Processing Units (GPUs) often use very weak
consistency models that allow for a large amount of buffering
and reordering of memory requests, to provide mitigation
of high memory latency. An operational model of a GPU
implementation is discussed by Wickerson et al. [19]. The im-
plementation is intended to be compliant with OpenCL [28] (a
variant of the heterogeneous-race-free (HRF) MCM [29]), with
an extension called remote scope promotion (RSP) proposed
by AMD. Under OpenCL, all programs must be free of data
races (i.e., two unsynchronized accesses to the same address
with at least one write); the behavior is undefined otherwise.
Synchronization can be achieved by an acquire-load reading
from a release-store with or promoted to a matched scope.

We aim to verify that the given hardware implementation
is correct with respect to a high-level specification model
that we build in ILA-MCM. We should mention that our
specification is actually more conservative than the language-
level OpenCL+RSP model described by Wickerson et al. —
developing an equivalent ILA-MCM model for the latter is
left to future work.

1) ILA-MCM Specification Model: This model comprises
the functions of store, load, and atomic increment operations,
plus the ordering relations they enforce. Each operation may
have additional attributes that affect the ordering relations: (a)
whether it is a release (for a store), an acquire (for a load),
neither, or both, (b) the scope of the synchronization, and (c)
whether it promotes the scope of a remote synchronization. We
model these operations using ILA instructions, where different
attributes lead to different instructions, e.g., store-relaxed and
store-release are modeled as two distinct instructions. They
have the same state updates, but the difference in their order-
ings is captured by the associated MCM axioms.

The system has a hierarchical structure comprising M
devices, each device with N workgroups, with a workgroup
having L threads. For a shared program variable, each thread
possesses a facet, and additionally each workgroup (and each
device) also has a facet. A store instruction will first update the
facet of its own thread (TH-facet update), then the facet of its
workgroup (WG-facet update) and the device facet (DV-facet
update). A load instruction will have a TH-facet-read event
(and potentially WG-facet-read and DV-facet-read events).

For each instruction, we use facet-axioms to model the
enforced ordering requirements. For example, for the store-
release (device scope, no remote promotion) instruction
storepv,n, one of its axioms is shown in Figure 7(a). It
says that for a storepy,n instruction s, for all the other
store instructions sy different from si, if they are on the same
workgroup and there is a happens-before relation on their WG-
facet updates, then their DV-facet update events also follow
a happens-before relation. For each instruction, there can be
multiple axioms specifying its ordering relations with different
types of instructions under different conditions.

2) SoC Implementation: The implementation model, from
Wickerson et al. [19], is fully operational (does not require
facets or axioms). It contains a number of GPUs, where each

Abstract

Axiom store DV_N WG REL Transition

forall sl:store DV N |

forall s2:STORE (not sl) |

(HB[s2.rfe.WG, sl.rfe.WG] Abstract
/\ SameWg[sl,s2]) Transition

=> HB[s2.rfe.DV, sl.rfe.DV]
(a) (b)

Fig. 7. (a) An axiom for instruction storepy,n (b) related program sketch

Sets of possible
environmental
transitions

GPU performs a series of operations to achieve the effect of an
instruction in the high-level specification. These operations are
modeled as child instructions, which make use of the physical
locks, FIFOs, and caches to guarantee correct data transfers
and orderings.

We model 13 child instructions. Some examples are LD
(load from L1 cache to register), ST (store from register to
L1 cache), FLUL1WG (flush the L1 cache in its workgroup),
INV.1WG (invalidate L1 cache of its workgroup). Inside a
GPU, there are also other environmental transitions, e.g., a
store may later trigger a cacheline flush. We model these
state changes by child instructions as well.

3) Verification: We verify correctness of the implementa-
tion by checking that: (1) the program variables are updated to
the same values as in the specification, and (2) the ordering of
the updates is correct. The first check corresponds to functional
equivalence checking between child-instructions on the GPU
and the instructions in an ILA-MCM model, which can be
handled using prior techniques [12]. Therefore, we focus here
on the second check, where we use our facet-axioms as
properties, and check if it is possible to synthesize a sequence
of child instructions whose execution can violate the property.
To ensure correctness using bounded traces, we need to further
use invariants and abstractions.

We perform verification as follows. First we choose an
instruction from the ILA-MCM specification model, collect
axioms that refer to this instruction, and verify these axioms
one by one. Since our facets and axioms are all instruction-
centric, this instruction-based decomposition of the overall
verification problem is directly enabled by our ILA-MCM
framework, thereby providing a potential scalability benefit
in comparison to handling all axioms monolithically.

An axiom may refer to other related instructions. For
example, in the axiom in Figure 7(a) for the storepv,n
instruction, there is a reference to another store instruction
(of any type). We build a program sketch accordingly, as
shown in Figure 7(b) for this example. Here, each of the two
white boxes (storepv,y and STORE) denotes the sequence of
child instructions that implement the high-level specification
instruction, respectively. Since GPU operations may trigger
environment transitions, we also add them in our program
sketch. Finally, we add abstract transitions before and between
the two sequences of child instructions. An abstract transition
is allowed to update the state to any value (i.e., it is a
havoc operation), which is constrained subsequently by given
invariants. The given invariants are checked separately on all
child instructions (some require checking on all pairs). An
example invariant is that the tail of a FIFO never passes the

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Problem:
Later WG-read-facet
can happen before
the earlier one

loadpy 1, [18]

Abstract Transition
[~ 7 Environmental ~ |
Transitions

|
|
[FETCHw [19] @2
|
|
|

INV,, WG @1
FETCH. [18] @3
____________ I| LDr1[18] @4

Abstract Transition

| et 2,00

Fig. 8. The counterexample found for loadpy,n, where the addresses,
timestamps and specific environmental transitions are generated by the solver

head, i.e., the FIFO does not underflow. In the future, we aim
to maintain a library of invariants and abstract transitions for
reuse. Further, the ILA-MCM verification procedure could be
integrated with a general-purpose theorem prover to formally
ensure their soundness and aid bookkeeping.

Although our ILA-MCM specifications are parametric, we
do not perform parametric verification here, since the GPU
implementation is fixed by a concrete system configuration
(M, N, L). We currently performed verification for M, N, L =
2and M,N,L = 3.

4) Results: For the original GPU implementation verified
by Wickerson et al. [19], our verification failed with counterex-
amples for the following 5 instructions: loadpv,n, loadpv,r,
storepv,r, fetch_incpy,n, and fetch_incpy,r. Among
them, loadpv,n, fetch_ incpv,n, storepv,rg match with
the buggy scenarios discussed in the previous work [19].
Specifically, Figure 8 shows a buggy trace that we found for
instruction loadpv,n, Where the facet-read event of the later
non-atomic load instruction comes earlier than the facet-read
event of the load-acquire instruction. This violates the load-
acquire semantics. On the other hand, the counterexamples
for fetch_incpv,r and loadpy,r are false positives, since
these traces cannot be extended to litmus tests with a property
violation without having data races (prohibited by OpenCL).
Interestingly, the proposed changes by Wickerson et al. to the
compiler mappings of OpenCL+RSP operations strengthened
the ordering guarantees of the hardware operations to match
our ILA-MCM model. Under their new compiler mappings,
we successfully validated that the hardware implementation
is compliant with our ILA-MCM model. This validation was
completed in 14 minutes 9 seconds (for M, N,L = 3) on a
laptop with a 2.8GHz Core-i5 processor and 16GB memory.

V. RELATED WORK
A. Hardware Specification and Verification

A number of formal hardware abstractions have been de-
veloped that enable verification. Kami [30, 31] is a Cog-based
framework that supports hardware design and verification in
Bluespec. In comparison to Kami, ILA-MCM is an ISA-level
abstraction that provides the interface between hardware and
software. In addition to verifying hardware, it can also be used
for verifying correctness/security of software interacting with
accelerators, as demonstrated in our paper. Furthermore, it can
reason about a wide range of memory consistency behaviors,
including SC, TSO, and HRF. In contrast, currently Kami has

only been applied for SC. Finally, the ILA-MCM framework
targets automated reasoning using SMT solvers, in contrast to
interactive theorem-proving in Kami.

ISA-Formal [32, 33] has been developed to formally
model and verify ARM processors. As its name suggests, it
is an ISA-level model. However, it has not been applied to
accelerators or other heterogeneous SoC components. Further,
as far as we know, it has not been integrated with MCMs to
reason about multicore memory consistency.

B. MCM and Program Verification

We have already discussed prior MCM verification tools and
techniques. For reasoning about general concurrent programs,
there are many related efforts in weak consistency models [34—
36], logics [37, 38], and verification tools [39—41]. Here we
discuss details of specific related ideas.

1) Facets vs. ViCLs: In the Check tools [7-11], the Value
in Cache Lifetime (ViCL) abstraction has been proposed to
capture cache occupancy. Although both facets and ViCLs can
model multiple “live” data for the same memory location, they
are inherently different. First, facets are state variables that are
updated according to instructions in ILAs and MCM axioms;
they are not created or destroyed. In contrast, ViCLs have cre-
ation and expiration events in happens-before graphs. Second,
facets are more general than ViCLs and are not necessarily
tied to caches or other microarchitectural structures. Third,
facets enable integration of axiomatic MCMs with operational
instruction semantics, while the latter are ignored by ViCLs.

2) Facets vs. Views: In recent work [34, 40], a view
abstraction was proposed to model the C11 MCM. Our facets
are different from views as follows: (i) a view is a map
from locations to timestamps, whereas facets are auxiliary
state variables, (ii) the views assign explicit timestamps to
events, whereas facet-axioms associate events with symbolic
timestamps, whose values are not fixed but explored implicitly
during verification, (iii) unlike views, facets have been applied
in automated SMT-based reasoning.

VI. CONCLUSIONS

In this paper, we have presented the ILA-MCM framework,
which combines the benefits of operational ILA models with
axiomatic MCMs for reasoning about concurrent interactions
between heterogeneous components in an SoC. We have
introduced a novel facet abstraction that models consistency
effects on program-visible states, and use facet-axioms to
specify consistency ordering requirements. This provides a
constraint-based integration between operational ILA models
and axiomatic MCM specifications. Our SMT-based verifi-
cation procedure supports symbolic reasoning for expressive
properties involving both rich instruction semantics and or-
derings. We have demonstrated two verification applications
of our prototype ILA-MCM framework, where we reasoned
about an SoC firmware program and a GPU hardware imple-
mentation, respectively. Our support for expressive properties
allowed synthesizing a malicious exploit in the first case,
and our instruction-centric approach enabled compositional
verification in the second.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

20

(1]

[2]

(3]
(4]

(51

[6]

[7]

(8]

9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

REFERENCES

C. Pilato, Q. Xu, P. Mantovani, G. Di Guglielmo, and L. P.
Carloni, “On the Design of Scalable and Reusable Accelerators
for Big Data Applications,” in Proceedings of the ACM Interna-
tional Conference on Computing Frontiers, 2016, pp. 406—411.
I. Ohmura, G. Morimoto, Y. Ohno, A. Hasegawa, and M. Taiji,
“MDGRAPE-4: a Special-Purpose Computer System for Molec-
ular Dynamics Simulations,” Philosophical Transactions, Series
A, vol. 372, no. 2021, 2014.

J. Rott, “Intel Advanced Encryption Standard Instructions
(AES-NI),” Technical Report, Intel, 2012.

J. Alglave and M. Tautschnig, “Herding Cats: Modelling, Sim-
ulation, Testing, and Data-Mining for Weak Memory,” ACM
Transactions on Programming Languages and Systems, vol. 36,
no. 2, pp. 1-7, 2014.

J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides,
“Automatically Comparing Memory Consistency Models,” in
Proceedings of the Symposium on Principles of Programming
Languages (POPL), 2016.

J. Bornholt and E. Torlak, “Synthesizing Memory Models from
Framework Sketches and Litmus Tests,” in Proceedings of the
Conference on Programming Language Design and Implemen-
tation (PLDI), 2017, pp. 467-481.

D. Lustig, M. Pellauer, and M. Martonosi, “PipeCheck: Specify-
ing and Verifying Microarchitectural Enforcement of Memory
Consistency Models,” in Proceedings of the Annual Interna-
tional Symposium on Microarchitecture (MICRO), 2015, pp.
635-646.

Y. A. Manerkar, D. Lustig, M. Pellaver, and M. Martonosi,
“CCICheck: Using hb Graphs to Verify the Coherence-
Consistency Interface,” in Proceedings of the Annual Interna-
tional Symposium on Microarchitecture (MICRO), 2015, pp. 26—
37.

D. Lustig, G. Sethi, M. Martonosi, and A. Bhattacharjee,
“COATCheck : Verifying Memory Ordering at the Hardware-
OS Interface,” in Proceedings of the International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), no. 212, 2016, pp. 233-247.

C. Trippel, Y. A. Manerkar, D. Lustig, M. Pellauer, and
M. Martonosi, “TriCheck : Memory Model Verification at the
Trisection of Software, Hardware, and ISA,” in Proceedings of
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2017, pp.
119-133.

Y. A. Manerkar, D. Lustig, M. Martonosi, and M. Pellauer,
“RTLCheck : Verifying the Memory Consistency of RTL De-
signs,” in Proceedings of the Annual International Symposium
on Microarchitecture (MICRO), 2017, pp. 463—476.

B.-Y. Huang, H. Zhang, P. Subramanyan, Y. Vizel, A. Gupta,
and S. Malik, “Instruction-Level Abstraction (ILA): A Uniform
Specification for System-on-Chip (SoC) Verification,” 2018.
[Online]. Available: http://arxiv.org/abs/1801.01114

P. Subramanyan, Y. Vizel, S. Ray, and S. Malik, “Template-
based Synthesis of Instruction-Level Abstractions for SoC Ver-
ification,” in Proceedings of the Conference on Formal Methods
in Computer-Aided Design (FMCAD), 2017, pp. 160-167.

P. Subramanyan, B.-Y. Huang, Y. Vizel, A. Gupta, and
S. Malik, “Template-based Parameterized Synthesis of Uni-
form Instruction-Level Abstractions for SoC Verification,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, no. 99, 2017.

R. Alur, R. Bodik, G. Juniwal, M. M. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and
A. Udupa, “Syntax-guided synthesis,” in Formal Methods in
Computer-Aided Design (FMCAD), 2013, pp. 1-8.

L. Lamport, “Time, Clocks, and the Ordering of Events in

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

a Distributed System,” Communications of the ACM, vol. 21,
no. 7, pp. 558-565, 1978.

C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli,
“Satisfiability Modulo Theories,” Handbook of Satisfiability,
vol. 185, pp. 825-885, 2009.

S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor,
“Security of SoC Firmware Load Protocols,” in Proceedings
of the International Symposium on Hardware-Oriented Security
and Trust, 2014, pp. 70-75.

J. Wickerson, M. Batty, B. M. Beckmann, and A. F. Donaldson,
“Remote-Scope Promotion : Clarified , Rectified , and Verified,”
in Proceedings of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), 2015.

S. V. Adve and K. Gharachorloo, “Shared Memory Consistency
Models: A Tutorial,” Computer, vol. 29, no. 12, pp. 66-76,
1996.

L. Lamport, “How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Progranm,” IEEE Transactions
on Computers, no. 9, pp. 690-691, 1979.

Intel, “Intel® 64 and IA-32 Architectures Software Developers
Manual,” Volume 3A: System Programming Guide, Chapter 8:
Multiple-Processor Management, no. 253665-067US, 2018.

A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu,
“Programming by Sketching for Bit-Streaming Programs,” in
Proceedings of the Conference on Programming Language
Design and Implementation (PLDI), 2005, pp. 281-294.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and
V. Saraswat, “Combinatorial Sketching for Finite Programs,” in
Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2006, pp. 404-415.

J. Lee, D. A. Padua, and S. P. Midkiff, “Basic Compiler
Algorithms for Parallel Programs,” in Symposium on Principles
and Practice of Parallel Programming, 1999, pp. 1-12.

C. Wang, S. Kundu, R. Limaye, M. Ganai, and A. Gupta, “Sym-
bolic Predictive Analysis for Concurrent Programs,” Formal
Aspects of Computing, vol. 23, no. 6, pp. 781-805, 2011.

L. De Moura and N. Bjgrner, “Z3: An Efficient SMT Solver,” in
Proceedings of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS),
2008, pp. 337-340.

L. Howes and A. Munsh, “The OpenCL Specification,” 2015.
[Online]. Available: https://www.khronos.org/registry/OpenCL/
specs/opencl-2.0.pdf

D. R. Hower, B. A. Hechtman, B. M. Beckmann, B. R. Gaster,
M. D. Hill, S. K. Reinhardt, and D. A. Wood, “Heterogeneous-
Race-Free Memory Models,” in Proceedings of the Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014, pp. 427-
440.

J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and
Arvind, “Kami: a platform for high-level parametric hardware
specification and its modular verification,” Proceedings of the
ACM on Programming Languages (PACMPL), vol. 1, no. ICFP,
pp. 24:1-24:30, 2017.

M. Vijayaraghavan, A. Chlipala, Arvind, and N. Dave, “Modular
Deductive Verification of Multiprocessor Hardware Designs,” in
Proceedings of the International Conference on Computer Aided
Verification (CAV), 2015, pp. 109-127.

A. Reid, “Trustworthy Specifications of ARM®) v8-A and v8-M
System Level Architecture,” in Proceedings of the Conference
on Formal Methods in Computer-Aided Design (FMCAD),
2017, pp. 161-168.

A. Reid, R. Chen, A. Deligiannis, D. Gilday, D. Hoyes,
W. Keen, A. Pathirane, O. Shepherd, P. Vrabel, and A. Zaidi,
“End-to-End Verification of ARM® Processors with ISA-

Formal,” in Proceedings of the International Conference on
Computer Aided Verification (CAV), 2016, pp. 42-58.

[34] J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer,

“A Promising Semantics for Relaxed-Memory Concurrency,” in

Proceedings of the Symposium on Principles of Programming

Languages (POPL), 2017, pp. 175-189.

O. Lahav and D. Dreyer, “Repairing Sequential Consistency in

C/C++11,” in Proceedings of the Conference on Programming

Language Design and Implementation (PLDI), 2016.

O. Lahav, N. Giannarakis, and V. Vafeiadis, “Taming Release-

Acquire Consistency,” in Proceedings of the Symposium on

Principles of Programming Languages (POPL), 2016, pp. 649—

662.

[37] V. Vafeiadis and C. Narayan, “Relaxed Separation Logic: A

Program Logic for C11 Concurrency,” in Proceedings of the

ACM SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications (OOPSLA),

2013, pp. 867-884.

A. Turon, V. Vafeiadis, and D. Dreyer, “GPS: Navigating

Weak Memory with Ghosts, Protocols, and Separation,” in

Proceedings of the International Conference on Object Oriented

Programming Systems Languages & Applications (OOPSLA),

2014, pp. 691-707.

[39] R. Jung, D. Swasey, F. Sieczkowski, K. Svendsen, A. Turon,
L. Birkedal, and D. Dreyer, “Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning,” in Proceedings
of the Symposium on Principles of Programming Languages
(POPL), 2015, pp. 637-650.

[40] J.-O. Kaiser, H.-H. Dang, D. Dreyer, and O. Lahav, “Strong
Logic for Weak Memory : Reasoning About Release-Acquire
Consistency in Iris,” in Proceedings of the European Conference
on Object-Oriented Programming (ECOOP), 2017, pp. 1-17.

[41] A. J. Summers and P. Miiller, “Automating Deductive Veri-
fication for Weak-Memory Programs,” in Proceedings of the
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2018, pp. 190—
209.

[35]

[36]

(38]

APPENDIX
FACET-AXIOMS FOR SC AND TSO

The facet-axioms for SC and TSO are shown in Figure 9 and
Figure 10, respectively. In the SC model, all facet read/write
events are synchronous with the instructions (lines 7-10 in
Figure 9), while in TSO model, the two write-facet events of a
store instruction follow the program order of the stores (lines
7-13 in Figure 10). Read-facet events are still synchronous
(lines 14-15). Fences ensure that previous writes are globally
visible at that point, and read-modify-write (RMW) is atomic
in the sense that its read and write facets are not breakable

21

(lines 17-21). We define additional functions to specify the
corresponding read-from, from-read, and coherence-order rela-
tions based on happens-before (HB) relations over facet events,
e.g., lines 13-15 in Figure 9 and lines 23-31 in Figure 10.
These functions are defined for use in the first axiom in both
models.

Axiom RF CO_FR
forall r:READ | exists w:WRITE |
SameAddress[w,r] /\ SameDatal[w,r]/\ w.decode /\
RF[w,r] /\(forall w2:WRITE (not w) |
(SameAddress[w,w2] /\ w2.decode)=>
Co[w2,w] \/ FR[r,w2])
Axiom SC_WriteFacetOrder
forall w:WRITE | Sync|[w , w.wfe.global]
9 Axiom SC_ReadFacetOrder

00N UE WN P

10 forall r: READ | Sync|[r , r.rfe.global]

11

12 Define RF[w,r] := HB[w.wfe.global , r.rfe.global]

13 Define FR[r,w] := HB[r.rfe.global , w.wfe.global]

14 Define CO[wl,w2] := HB[wl.wfe.global , w2.wfe.global]
Fig. 9. Facet-Axioms for SC

1 Axiom RF CO FR

2 forall r:READ | exists w:WRITE |

3 SameAddress [w,r] /\ SameDatal[w,r]/\ w.decode /\

4 RF[w,r] /\(forall w2:WRITE (not w) |

5 (SameAddress[w,w2] /\ w2.decode)=>

6 CO[w2,w] \/ FR[r,w2])

7 Axiom TSO WriteFacetOrder

8 forall w:WRITE | HB[w , w.wfe.local] /\

9 HB[w.wfe.local , w.wfe.global]

10 Axiom TSO_Store

11 forall wl:WRITE | forall w2: WRITE (not wl) |

12 PO[wl, w2] => HB[wl.wfe.local, w2.wfe.local]

13 /\ HB[wl.wfe.global, w2.wfe.global]

14 Axiom TSO ReadFacetOrder

15 forall r:READ | Sync[r , r.rfe.local]

16

17 Axiom TSO Fence

18 forall f:FENCE | forall w: WRITE | PO[w,f] =>

19 HB[w.wfe.global, f]

20 Axiom TSO_ RMW

21 forall i:RMW |

22 Sync[i.rfe.local, i.wfe.local, i.wfe.globall]

23 Define RF[w,r] :=

24 SameCore[w,r] => HB[w.wfe.local , r.rfe.local] /\

25 ~SameCore[w,r] => HB[w.wfe.global, r.rfe.local]

26 Define FR[r,w] :=

27 SameCore[w,r] => HB[r.rfe.local , w.wfe.local] /\

28 ~SameCore[w,r] => HB[r.rfe.local, w.wfe.global]

29 Define CO[wl,w2] :=

30 SameCore[wl,w2] => HB[wl.wfe.local, w2.wfe.local] /\

31 ~SameCore[wl,w2] => HB[wl.wfe.global, w2.wfe.global]

Fig. 10. Facet-Axioms for TSO

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

22

BMC with Memory Models as Modules

Florian Furbach
TU Braunschweig
Germany
f.furbach@cs.tu-bs.de

Herndn Ponce-de-Ledn
fortiss GmbH
Germany
ponce @fortiss.org

Abstract—This paper reports progress in verification tool engi-
neering for weak memory models. We present two bounded model
checking tools for concurrent programs. Their distinguishing
feature is modularity: Besides a program, they expect as input a
module describing the hardware architecture for which the pro-
gram should be verified. DARTAGNAN verifies state reachability
under the given memory model using a novel SMT encoding.
PORTHOS checks state equivalence under two given memory
models using a guided search strategy. We have performed
experiments to compare our tools against other memory model-
aware verifiers and find them very competitive, despite the
modularity offered by our approach.

Keywords: Memory models, CAT, concurrent programs,
bounded model checking, SMT encodings.

I. INTRODUCTION

The semantics of concurrent programs depends on the
memory model of the underlying hardware architecture. This
has recently seen considerable interest [2], [6], [11], [15],
[16], [21], [23], [27], [28], [46], [48]. A key insight is that,
for verification purposes, the semantics is best formulated in
an axiomatic style. The memory model is given in terms
of assertions that constrain a set of candidate executions.
A considerable achievement in this line of research is a
specification language, CAT [7], [9], [15], in which basically
all memory models of interest can be expressed. CAT is made
for rapid prototyping. New models are easy to write so that the
developer is able to quickly, yet precisely, assess the behavior
of the program of interest on the corresponding hardware.

While CAT is successful as a modeling language, the tool
support is lagging behind. Memory model-aware verification
tools are still being developed for specific memory models.
NIDHUGG [2], [6] implements stateless model checking for
TSO, POWER, and a version of ARM. CBMC [11] is a
bounded model checker for TSO. The RCMC tool [32] targets
the C11 programming language. Other verification problems
(e.g. fence insertion to restore sequential consistency) are tack-
led by MEMORAX [3], [4], [5], OFFENCE [13], FENDER [33],
and DFENCE [35]. These tools support TSO and similar
models, such as PSO or RMO, but cannot handle POWER
or ARM.

What is missing are verification tools that are modular in
the following sense: Besides the program, they should take
a memory model as an input and then perform the analysis
relative to that model. The HERD tool [15] accompanying
CAT satisfies this requirement. Unfortunately, it is designed
for litmus tests and limited to small programs.

University of Helsinki, Aalto University, and HIIT

Keijo Heljanko Roland Meyer
TU Braunschweig
Germany

roland.meyer @tu-bs.de

Finland
keijo.heljanko @iki.fi

thread ¢ty
x.store(rx, 1)

thread t;
y.store(rx, 1)

thread it
ry =x.load (rx);
ro =vy.load (rx)

thread i3
r3 =y.load (rx);
ry = x.load(rx)

Fig. 1: Program IRIW.

We set out to address the need for modular verification
and developed two tools. DARTAGNAN is a safety verification
engine that checks reachability of a (bad) state. It is modular
and can handle memory models written in the core subset of
the CAT language (see Fig. 4). PORTHOS employs this engine
as a back-end and checks equivalence of the reachable states
under two given memory models.

The following example illustrates how the hardware archi-
tecture influences the semantics of a concurrent program in
subtle ways and motivates the verification problems. Consider
the program IRIW given in Fig. 1 which is written in C11.
Variables are initially set to 0. The memory order tag rx
(for relaxed) indicates that an operation provides minimal
guarantees w.r.t. the ordering of memory accesses. On X86-
TSO [42], each thread has a store buffer of pending stores.
When a store is propagated from a buffer to the memory, it
becomes visible to all threads simultaneously. POWER, on the
other hand, does not guarantee that stores become visible to
all threads at the same point in time. With these architectures
in mind, consider the following execution: Thread to reads
z = 1,y = 0 and t3 reads z = 0, y = 1. Since under
TSO every execution has a unique global view of all store
operations, this execution is impossible and a state with
r1 = 1,70 = 0 and r3 = 1,74 = 0 is not reachable. Under
POWER, this is possible. The program thus behaves differently
under the two memory models.

DARTAGNAN helps programmers find bugs due to unexpected
executions. It checks whether a specified (undesirable) state
can be reached in the program — relative to a given mem-
ory model. Reachability is analyzed with an efficient SMT-
based bounded model checking algorithm [17], [24]. The tool
computes an acyclic unwinding of the program and translates
it, together with the module of the memory model and the
specification of the state, into an SMT query. If the query is

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

satisfiable, the state is reachable. Otherwise it is not.

The challenge is to deal with modularity. It requires us to
give an efficient encoding of all operations defined by CAT.
Notably, we have to compute — in SMT — least fixpoints.
They are used in prominent memory models like POWER and
ARM [15]. A naive approach would implement the Kleene
iteration in SAT by introducing copies of the variables for
each iteration step. In [40], we showed that such an explicit
iteration can be avoided by moving to an encoding based on
SAT + integer difference logic.

In this paper, we present another improvement to the
fixpoint encoding. For reachability, we show it is sound to
encode any fixpoint, not necessarily the least one. This is the
first technical contribution and implies the encoding from [40]
can be simplified. DARTAGNAN implements the idea.

PORTHOS supports programmers in porting code from one
architecture (for which it has been thoroughly validated) to
another. The portability problem asks whether no new (poten-
tially unsafe) states are introduced and whether all reachable
states can still be reached (no functionality has been lost).
PORTHOS checks this equivalence for two memory models
that are given as modules. If equivalence does not hold, it
reports a counterexample execution leading to a reachable state
allowed by only one architecture. Equivalence checking is use-
ful when programming performance-critical code for different
architectures. Operating System kernel developers and library
designers can use equivalence checks to understand whether
a programming idiom, an algorithm, or a data structure that
is known to work under one memory model can also be used
under another.

Note that the assembly versions of the program will be
different for the two architectures of interest. We address this
by incorporating compiler mappings into our analysis. We
return to this when we have our assembly language at hand.

State equivalence is checked in the form of inclusions in
both directions. Due to the alternation of quantifiers, inclusion
is notoriously difficult to check [49]: For every state reachable
in one architecture we have to find an execution in the
other that leads to the same state. In [40], we solved the
trace inclusion problem and showed that it is easier to solve
(in terms of complexity) than state inclusion. Despite that
theoretical result, this paper shows that state inclusion can be
solved practically using a guided search strategy.

The idea is to be pessimistic and try to disprove the
inclusion. The analysis looks for a state that is reachable in
one but not in the other model (like the one in the IRIW
example above). To find states that may disprove the inclusion,
PORTHOS invokes an oracle function. This oracle proposes
a series of candidate states for which it gives the following
guarantees.

(Progress) The series does not contain the same state twice.

(Soundness) If the oracle has no more states to propose,

then the inclusion indeed holds.
Progress is certainly desirable and soundness is indispensable
for verification. The interesting thing to note is that soundness

23

leaves it to the oracle to terminate early if it finds out, by
whatever reasoning, that the inclusion holds.

Our second technical contribution is the implementation
of an oracle in SMT which makes progress, is sound, and
may terminate early. The idea is to look for so-called delta
executions: Executions that are inconsistent with one memory
model but consistent with the other. Finding a delta execution
corresponds to solving the trace inclusion problem. As we
showed in [40], this does not require a quantifier alternation
and can be done by suitably extending the reachability proce-
dure of DARTAGNAN. A state resulting from a delta execution
is clearly a candidate to violate the inclusion. Moreover, if
there are no more states resulting from delta executions, the
oracle can conclude that the inclusion holds — even if not all
reachable states have been considered.

We evaluated the performance of both DARTAGNAN and
PORTHOS on a benchmark suite of mutual exclusion algo-
rithms and compared it against several other memory model-
aware verification tools. Experiments show that our tools scale
significantly better for larger programs.

Contributions: We report progress in memory modular ver-
ification in the form of new encoding techniques and oracle
heuristics with SMT queries. In particular:

o We present two bounded model checkers for concurrent
programs. Both tools are modular: They expect memory
models as inputs rather than implementing the analysis
for a fixed memory model.

o« DARTAGNAN is a reachability checker. It simplifies our
previous encoding by admitting arbitrary fixpoints. Its
current implementation is an order of magnitude faster
than the earlier prototype from [40]. It can be used as a
back-end engine for other memory model-aware tools.

o PORTHOS is a portability checker. It implements a new
method for checking state inclusion. The algorithm is
an oracle-guided search that employs DARTAGNAN as a
back-end. The oracle is driven by delta executions. In our
experiments it requires only few iterations.

¢ We perform an exhaustive evaluation of DARTAGNAN and
PORTHOS w.r.t. other memory model-aware tools, often
observing significant speed ups. This shows the benefits
of an SMT-based approach.

Outline: The remainder of the paper is structured as follows.
In Section II we describe the user interface of the tools.
Section III discusses the BMC for reachability. The guided
search for inclusion is described in Section IV. Section V
gives the experimental results. The related work is discussed
in Section VL.

II. USER INTERFACE

We present our tools from a user’s perspective. We examine
the verification problems they solve together with the required
inputs and their formats. Two verification tasks are supported:
Reachability and state equivalence. The solid lines in Fig. 2

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

24

USER

.....
.
.

.
-
~.

.
A

thread {o thread # let com = rf | fr | co
y.store(rx, 1) x.store(rx, 1) acyclic (poloc | com)
a=x.load(rx); b=y.load(rx); let com = (rf | fr | co) let dp = addr | data
acyclic (poloc | com) let rdw = poloc & (fre;rfe)
existsa:0/\b:0 let com-tso = (rfe | co | fr) let detour = poloc & (coe;rfe)
| let po-tso = ((po \ WxM) | mfence) let ii0 = dp | rfi | rdw
let ghb-tso = o-tso com-tso i =
Unroll g ‘p ‘ P o]l ler ic0 =0
acyclic ghb-tso let ci0 = ctrlisync | detour
let ccO0 = dp | poloc | ctrl | (addr;po)
COMPILER MAPPING tet xec if = 110 | et | (Gejed) (i1
—= . - and ic = ic0 | ii | cc | (icjcc) | (iijic)
A and ci = ci0 | (ci;ii) | (ccjci)
. T T and cc = cc0 | ci | (cijic) | (ccjce)
Ty T 1‘; - 111 - let ppo = (R«W & ic) | (R+R & 1ii)
MoV [yl, $1 MOV [x], $1 ctw A let fence = (R#M & lwsync) | (WxW & lwsync) | sync
MOV EAX, [x] MOV EBX, [y] or Y o let hb = ppo | fence | rfe
lwz 11, % lwz 1, vy i i
-~" acyclic hb
exists EAX = 0 AEBX = 0 A 1 = (f fe; £ ;hl
exists 01 =0AL:ry =0 et propbase (fence | (rfe;fence));hbx
N let prop = (W«W & propbase)| (comx;propbasex;sync;hb*)

v X

acyclic co | prop
irreflexive fre;prop;hbx

Fig. 2: DARTAGNAN (full arrows) and PORTHOS (full and dotted arrows) from the user’s perspective.

illustrate the artifacts that are required for or produced by
DARTAGNAN for checking reachability. The complete figure
refers to testing for state equivalence with PORTHOS.

Verification Tasks: DARTAGNAN expects a program P
annotated with a reachability condition S, a memory model
M of the target architecture, and an unrolling bound % for
the bounded model checking. It recursively unwinds all loops
in P up to the bound k. The unwound program and the
reachability condition are then mapped to the assembly dialect
of the target architecture (we elaborate on compiler mappings
below). The resulting acyclic and annotated assembly program
is handed over to the analysis. In Fig. 2, program P is a
simplified mutex algorithm which is mapped to X86 (Pfs,)
using the compiler mapping in Table I. DARTAGNAN then
verifies whether EAX = 0 A EBX = 0 is reachable when
running Pfg, under TSO. The definition of reachability will
be given when we define memory models. In Fig. 2, we verify
the mutex algorithm by checking whether both threads can
read value 0 and thus enter their critical sections. Under TSO,
this is possible.

For checking equivalence, PORTHOS expects as input the
program P, two memory models Mg and My, and an
unrolling bound k. The tool checks whether the reachable
states under M are the same as under M g. This analysis is
performed on the unrolled and mapped programs. In Fig. 2,
we check if the states reachable by Pk . - under POWER are
the same as the ones reachable by Pl under TSO (which
is the case). We process state equivalence queries with two
inclusion checks. These queries compare the reachable states
of two assembly versions of the same program running under
different memory models.

Programs: Both DARTAGNAN and PORTHOS take as input
programs written in a Cl1-like language with support for
Cl11-atomics. Its grammar is given in Fig. 3. Programs consist
of a finite number of threads. Each thread contains a sequence
of operations such as while and if statements, computations
on local variables, and accesses to the shared memory. We
currently support Boolean and integer variables in the guards
and expressions.

(prog) := program (thrd)*
(thrd) ::= thread (tid) (inst)™
(inst) ::= (var) < (exp) | {inst); (inst)

| (var) = Load({memy), (atom))

| (mem) = store({var), (atom))

| while (pred) (inst)

| if (pred) then (inst) else (inst)
(atom) ::= sc| rel |acg | con | rx

Fig. 3: Programming language.

Load and store operations are annotated by memory or-
der tags that define their ordering guarantees. The sc tag
guarantees a sequentially consistent semantics for the access;
rel/acq and rel/con implement the message-passing id-
iom; the rx (relaxed) tag maps directly to hardware accesses
giving minimal guarantees on how those accesses are per-
formed. Weaker guarantees yield higher performance but they
usually allow additional program behavior that is hard to
predict.

Although the input program is written in a C11-like lan-
guage, the analysis is performed at the assembly level. The

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Cl1 X86 POWER ARMV7

Load rx MOV Iwz Idr

Load con | MOV Iwz; Iwsync Idr; dmb ish

Load acqg | MOV Iwz; lwsync Idr; dmb ish

Load sc MOV sync; lwz; lwsync | 1dr; dmb ish

Store rx | MOV Stw str

Store rel | MOV Iwsync; stw dmb ish; str

Store sc MOV; mfence | sync; stw dmb ish; str; dmb ish

TABLE I. Compiler mappings for X86, POWER and ARMv7.

program is converted to hardware specific assembly code
according to a given compiler mapping. The compiler mapping
replaces load and store operations with their corresponding
assembly memory accesses and adds fences to enforce the
ordering guarantees provided by the memory model tag. Each
compiler uses its own mapping. Our tools currently implement
the mappings given in Table I, which are the ones used by
the LLVM 4.0 compiler [38]. Other mappings, like the one
from [1], can be easily added. For the method presented in
Section IV to work, the only requirement is that the mapping
of each atomic operation contains a single memory access.

It is worth noting that we assume the compiler does not
perform any optimization; the program to be verified has
already been optimized. Compiler optimizations under weak
memory models are an active topic of research [34], [37], [47],
[49], but they are out of the scope of this paper.

Memory Models: Informally, a memory model defines when
store operations executed by one thread become visible to
other threads. This means a memory model determines the
semantics of a program on a hardware architecture. The se-
mantics is defined in terms of so-called executions. It contains
those executions that are (in a precise sense) consistent with
the memory model [7], [36]. We elaborate on the notion of
executions and how they define reachability. Afterwards we
introduce memory models and consistency.

An execution (X, 7f, co) consists of memory events exe-
cuted by the program of interest and relations between these
events [7], [49]. Set X states which events have been executed
in each thread. This forms the control flow of the program.
The reads-from relation rf specifies from which store each
load gets its value. The coherence order co is the order in
which stores to a variable take effect.

A state consists of the values of local and global variables.
A state reached by a given execution is defined as follows. The
value of a global variable is given by the last store operation
according to the co relation. The value of a local variable
depends on the last executed event (according to the control
flow) loading to the local variable.

Memory models define a consistency predicate on execu-
tions. The semantics of a program on that memory model is
then given by the executions of the program that satisfy the
predicate [7], [11], [36]. We use the language CAT [9] to
define memory models, the core of which is shown in Fig. 4.
There are functional programming features in CAT that we do
not support since they are not needed to define the hardware

25

(MCM) ::= (assert) | (rel) | (MCM) N {(MCM)
(assert) = acyclic((r)) | irreflexive({r)) | empty({r))
)u |
|

<7’>1¢=<>\< {r) [{r)y 0 (r) [{r) \ (r)
) L | | (s ()
(b) :=po | rf|colad|dd|cd| sthd | sloc
| mfence | sync | lwsync | isync | isb | ish
| id({set)) | (set) x
=E|W|R

= (name) := (r)

(set) | (name)
(set)
(rel)

Fig. 4: The CAT language [9].

architectures of interest. In CAT, memory models define
relations over the events in executions. The program order
po and relations rf and co from above are common to all
memory models, and typically referred to as base relations.
Base relations also include, e.g., address, data and control
dependences. Further so-called derived relations are defined
using operations on relations such as transitive closure, union,
intersection, and composition.

Importantly, CAT allows to define derived relations as
least solutions to a system of equations. The semantics of
such recursive definitions is well defined only if they behave
monotonously [9]. Almost all of CAT is already monotonous,
the only non-monotonous construct is the right hand side of the
“\”-operator. We disallow recursive definitions in the right side
of it to ensure well defined semantics in a syntactic manner.

To define the notion of consistency for executions, a mem-
ory model requires a number of assertions to hold over
its relations. These assertions are acyclicity, irreflexivity and
emptiness guarantees. An execution is defined to be consistent
with the memory model if it satisfies all assertions.

III. CHECKING REACHABILITY

DARTAGNAN encodes the reachability problem into an SMT
formula which is constructed as follows. Formulas ¢cp and
¢pr encode the control flow and data flow of the program.
The memory model dependent condition ¢ ensures that the
executions are consistent with the given model. Finally, ¢g is
satisfied only if the final state reached by the program satisfies
the predicate S. The overall BMC encoding is:

dcr NODF NP A @s.

Each loop in the program is unrolled up to a user defined
depth k. The program is compiled using a given mapping and
then converted into its single static assignment (SSA) form.
This results in a directed acyclic graph presenting all possible
control flows of the program up to the unrolling depth. As the
program is now acyclic and in the SSA form, each statement
and variable assignment can be executed at most once.

The main idea of the BMC encoding is to guess an
execution, which consists of executed events and the rf and

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

26

co relations. Guessing the executed events fully specifies the
control flow of the candidate execution, while guessing rf
and co specifies the data-flow of the candidate execution. It is
easy to see that this is basically the encoding of the weakest
possible memory model expressible in CAT. All widely used
models are additional restrictions of this.

The part of the encoding that is not dependent on the
memory model is very similar to established BMC encodings
of concurrent programs [25]. We recently introduced in [40]
the encodings for the memory model specific parts, especially
the ones for recursively defined relations with least fixpoint
semantics (needed for POWER and ARM).

Encoding Control and Data Flow: Recall that the basic idea
for the control flow is to guess the set of executed events. We
encode this with a Boolean variable for each event, which is
satisfied if the event is executed. We ensure that every load
gets its value from one store on the same variable and that
the stores to a variable form a total order in co. Relations
are encoded as follows. For any pair of events ej,es € E
and relation » C E x E we use a Boolean variable r(e;,e2)
representing the fact that e; — eo holds.

The rest of the encoding ensures that the guessed executed
events are a valid control flow path through each one of
the threads, and that data-flow follows the reads-from and
coherence order relations in the shared variables. The encoding
also checks that all executed guards are satisfied, and that all
executed data manipulation statements are correctly evaluated.
The data flow encoding additionally relates the final state
of the unrolled compiled program to the original program,
allowing the state predicate formula ¢g to be expressed in
terms of the variables of the original unrolled program before
the SSA conversion. Thus, we ensure candidate executions that
obey both the control flow and the data flow of the programs.
The details of the encodings can be found in [39].

Encoding Memory Models: A memory model defined in
the CAT language (see Fig. 4) is a constraint system over
so-called derived relations together with some assertions. The
language defines a number of base relations. Their encodings
can be obtained directly from the source code of the program
(e.g., the program order po), from statements corresponding to
the synchronization primitives of the used architecture (e.g.,
memory fences mfence on TSO) or they are part of the
execution (the 7f and co relations). Derived relations are built
from relations using operators such as union, intersection,
difference, composition, transitive closure, etc. We similarly
use new Boolean variables to represent the derived relations.
Most of the operators can be encoded in SMT in a fairly
straightforward manner.

An execution is consistent with a memory model if all its
assertions are satisfied. We encode acyclicity of a relation in
a compact way using IDL by ensuring that a relation implies
a partial ordering. We assign each event a numerical variable
and require that if an event e is related to ¢’ then the numerical
value assigned to ¢ is less than the value assigned to ¢’.

Encoding Recursive Relations: CAT additionally supports
recursive definitions. The semantics of such recursively de-
fined relations are the least fixpoint solution to this system of
monotone equations on relations. We argue that for reachabil-
ity, it is sufficient to encode any fixpoint, not necessarily the
least one. The assertions of the memory model (acyclicity,
irreflexivity and emptiness) are monotone in the following
sense: If a relation fulfills an assertion, all of its subsets will
also fulfill the assertion. The CAT operators on relations are
also monotone (except set difference which is not applied
to recursive relations): Consider r := (r;7) U 1, where the
operator ";" represents relation composition. If relation rq is
enlarged or reduced, then so is 7.

These observations allow us to apply the Knaster-Tarski
Theorem [44]. This is a key contribution of the paper; we
use it to simplify the SMT encoding of CAT models. We can
freely pick any fixpoint that satisfies all the assertions, as it
always contains the least fixpoint, which also satisfies all the
assertions. It removes the need to encode the least fixpoints of
the CAT language exactly. We call this the relaxed encoding.
The encoding of r is simply:

r(el,eg) = r; r(el,eg) \Y ro(el,eg).

We argue that for reachability queries, this encoding is still
correct. Assume a least fixpoint encoding of a reachability
query has a satisfying assignment. Naturally, the least fixpoint
also satisfies the relaxed encoding as it is a fixpoint. If the least
fixpoint encoding is unsatisfiable, every execution violates
some assertion. Any violated acyclicity assertion implies a
cycle. Since larger fixpoints only add dependencies to rela-
tions, the cycle remains for all larger fixpoints. The assertion
remains violated with the relaxed encoding. Hence, the relaxed
encoding is also unsatisfiable. Similar reasoning also holds for
irreflexivity and emptiness violations.

IV. CHECKING INCLUSION

We show how to efficiently check state inclusion. The
inclusion requires that for all states reachable in the target
memory model M there has to be an execution in the source
memory model Mg reaching the same state. Such a V3-
alternation of quantifiers is notoriously difficult to handle for
verification tools [49]. A naive approach would iterate over
all reachable states. We propose to use an oracle guiding the
search by providing relevant candidate states. We present an
implementation of the oracle that iterates over far fewer states
but preserves completeness. The key observation is that new
states always correspond to new executions. Therefore we only
need to consider states coming from executions consistent with
the target but inconsistent with the source memory model.

The main procedure is described by Algorithm 1. It takes
as input a program, two memory models Mg, Mr!, and a
bound k. The program is first unrolled up to the bound %k and
converted to to the acyclic assembly programs Pg and Pk

IThe latter is needed to implement a concrete oracle. However in Algo-
rithm 1 we consider the oracle a black box object.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Algorithm 1 Incremental SMT Solving for State Inclusion

1: procedure PORTHOS(Program P, MCM Mg, M, Int k)
2 ¢RCHF¢C’F(P§)/\¢DF(P§)/\¢MS(P§)

3 while ORACLE().hasState() do

4: s < ORACLE().getState()

5 if Pren A @5 is UNSAT then

6 return false

7 return true

using the mappings from Table I. The procedure might perform
several reachability queries for M g. Therefore, we construct
a formula defining its consistent executions in Line 2. The
formulas ¢cr, ¢pr and ¢, are the ones from Section III.

The algorithm then enters a loop iterating over a sequence
of states which can be thought of as candidates for violating
inclusion. These candidate states are provided by an oracle, a
black box providing two functions. Function hasState() returns
a Boolean judging whether there is still a candidate state to
consider. If so, function gerState() provides the candidate. The
oracle has to meet the following specification.

(O1) If hasState() returns false, then state inclusion holds.

(02) If hasState() returns true, an invocation of gerState()
returns a state.

(O3) Function getState() never returns the same state twice.

(O4) Every state returned by getState() is reachable in M.

When the oracle provides a new candidate, the algorithm
checks whether it is reachable in Mg. If the state is not
reachable, state inclusion does not hold and the procedure
returns false at Line 6. If it is reachable, the check is repeated
with a different state. If every state provided by the oracle is
reachable under Mg, state inclusion holds by (O1) and the
procedure returns true at Line 7.

A correct but naive implementation of an oracle would list
all states reachable under M. A more efficient exploration
is guaranteed by the following idea.

An Oracle for Efficient Exploration: We present an oracle
that lists good candidates likely to violate state inclusion.
Moreover, the oracle may be able to guarantee state inclusion
early. Finally, the computation of candidate states itself is
based on SMT-solving and quite efficient. The idea is to find
all executions consistent with M but not Mg, and extract
their reachable states. This guarantees (O1) and (O4): When
hasState() returns false, all states that may violate inclusion
have been considered and thus state inclusion holds. Our
implementation encodes the oracle as follows:

bora = PEo(PS, Pr) A dcr(Pr) A ¢pr(PE) A g (PF)
A bcr(PS) A dpr(PE) A d-ns (P§).

Function hasState() denotes whether the formula ¢og, is
satisfiable. In this case, gerState() extracts a state s from a
satisfying assignment and returns it. This guarantees (02). To
ensure (O3), the same state is not returned twice, the formula
is iteratively updated to ¢ogra := Pora A —Ps.

27

The formula ¢g, relates the executions of both assembly
programs by ensuring that they represent the same execution
of P*. This formula will be explained below. The next three
formulas encode consistent executions in My as defined
in Section III. The remaining formulas encode executions
inconsistent with Mg.

We encode acyclicity violations by guessing a cycle. For
every event e, a Boolean variable C, (e) represents its presence
in the cycle. We ensure that every event in the cycle has an
incoming and an outgoing edge in the cycle. A more detailed
description of the cycle encoding is given in [40].

Encoding Least Fixpoints: When using the relaxed encod-
ing in the oracle, a larger fixpoint could be chosen with more
dependencies between events and thus new cycles could be
created. This implies that the oracle could propose additional
candidate states and more iterations might be required. For
this reason, we encode exact least fixpoints for PORTHOS.

Least fixpoints of recursively defined relations can be com-
puted with the standard Kleene iteration [43], which starts
from the empty relation and iterates until the least fixpoint
is reached. A naive encoding approach would implement the
Kleene iteration in SAT by introducing a Boolean variable
for each pair of events and each iteration step. This naive
encoding is too inefficient, as the number of iterations needed
is basically the joint size of the involved relations.

We recently proposed in [40] a much more efficient SMT-
encoding that uses Integer Difference Logic [26]. Instead of
having a Boolean variable for each iteration step, it only uses
one Boolean variable r(ej,es) (representing if the relation
holds) and one numerical variable ®Z . representing the
iteration in which the pair was added to the relation. Given
a relation r := (r;7) U, for events ey, es we construct the
formula:

r(eh 62) A (r; r(eh 62) A ((I)(E,l,EQ > (I)éi,rez))
V (ro(er,e2) A (®g, ., > P20 .))).

The first part of the disjunction specifies that (e1,e2) can be
added to r if the pair belongs to r;7 (i.e. variable r; r(eq, es)
is true) and it was added to r; 7 at some previous iteration step
(ie. ¢, ., > ®¢i%,). The second part is analogous.

Note that this only encodes at most the least fixpoint: A
satisfying assignment could also set a value for ®; . that
is too small and thus not add the pair. We combine the
formula above with the relaxed encoding to get exactly the

least fixpoint.

Encoding Common Executions: We look for an execution
consistent with M and inconsistent with Mg. However,
we execute two different assembly programs P% and Pyr.
This means we need a way to compare their executions.
Intuitively, two executions are equivalent if they represent the
same execution of the program P¥. Since the compilation
scheme of Table I implements each atomic memory operation
using a single low-level memory access, a one-to-one mapping
7 : Er — Eg between the events of P5 and PF can be

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

28

Benchmark #Executions TSO Cl1 #Executions POWER ARM

TSO/C11 HERD NIDHUGG | CBMC | DARTAGNAN | RCMC | POWER/ARM HERD NIDHUGG | DARTAGNAN HERD NIDHUGG | DARTAGNAN
PARKER 11 0.08 0.01 0.29 0.76 0.08 14 0.07 0.01 1.32 0.08 0.02 1.29
DEKKER 24 T/O 0.02 0.48 4.29 0.05 24 T/O 0.05 34.86 T/O 0.04 36.88
PETERSON 24 4.98 0.03 0.32 0.94 0.07 24 4.89 0.04 429 4.85 0.03 4.13
BURNS 47 | 284.90 0.02 0.29 1.10 0.04 47 | 31633 0.03 4.10 | 289.66 0.04 4.05
BAKERY 12492 T/0 2.60 0.41 4.64 0.07 84760 T/O 141.56 40.06 T/0 140.25 41.83
LAMPORT - T/0 T/O 0.38 4.56 T/O - T/O T/O 72.03 T/O T/O 70.64
SZYMANSKI 4227148 T/0 966.71 0.84 18.98 | 409.79 T/O T/O 259.56 T/O T/O 241.34

TABLE II. Reachability of mutual exclusion algorithm under TSO, C11, POWER, and ARM.

defined. Given two events eg and e representing instructions
accessing memory in the assembly programs, 7(er) es
holds if they both represent the same high-level instruction.
Note that such a mapping 7 can always be defined as long
as the compiler implements atomic memory operations with
a single memory access. The following encoding relates the
executions of both assembly programs:

¢EQ: /\ €€XT<:>7T(6)EXS
ecEr
AN /\ rf(el,eg) 54 rf(’]’(’(@l),’ﬂ'(ez))
e1,e2€ET
AN N coler,e2) & co(m(er), m(e2)).
e1,e2€ET

V. EXPERIMENTAL EVALUATION

We implemented the algorithms from Sections III and IV
in the DARTAGNAN and PORTHOS tools which use Z3 [29]
as the backend SMT solver. Both tools are available from:

https://github.com/hernanponcedeleon/Dat3M.

The tools include the following memory models: SC, TSO,
PSO, RMO, ALPHA, POWER, and ARM (v7). Others can be
defined in the CAT language.

We compare their performance against several memory
model-aware tools. HERD [12] is a tool designed for litmus
tests (small programs). It takes CAT files as an input (and
thus supports all memory models used in this section). It
enumerates all candidate executions and then filters those
accepted by the memory model. NIDHUGG [2], [6] performs
stateless model checking. It supports TSO, POWER and a
simplified version of ARM. CBMC [11] is a Bounded Model
Checker with an encoding similar to ours, but it cannot handle
recursive definitions efficiently and only supports TSO. For
the sake of completeness, we also report results on reachability
for C11 using the RCMC tool [32]. This is the memory model
of a programming language instead of a hardware architecture
and introduces new types of events. Therefore we cannot
directly apply our approach to C11. However, the number of
executions on C11 coincides with TSO for all programs and
we expect our encoding to perform similar to the TSO case.

The tools listed above are designed to test reachability.
They allow to reason about one memory model at a time
and therefore cannot directly be used to test state inclusion.
However, HERD returns information about all final states. We
check state inclusion with HERD by computing the reachable

states separately for both models (i.e. we run the tool twice)
and comparing them afterwards.

Our benchmark suite consists of mutual exclusion algo-
rithms. We unrolled loops twice (K = 2) which is sufficient
to show that our approach scales better than the other tools
for programs with several executions. Programs contains either
two or three threads. However their size is reported in terms
of the number of consistent executions since the performance
of the tools strongly depends on this. The execution times are
given in seconds. We set a timeout of 1800 secs for each call
to the tools (3600 secs for HERD in the case of inclusion since
the tool is run twice). For entries marked as T/O, the timeout
was reached.

We performed two sets of experiments: (i) Reachability
under TSO, C11, POWER and ARM,; and (ii) the inclusions
TSO C SC, POWER C TSO, and ARM C TSO. Inclusion
in the other direction (necessary for equivalence) holds by the
definition of the memory models. E.g., every state reachable
under TSO is also reachable under the weaker models POWER
and ARM.

The results on reachability are given in Table II. We present
the analysis for unreachable states since it forces all tools
to perform a complete exploration and provides the worst
case scenario. For TSO, the best results are obtained by
NIDHUGG in benchmarks with small number of executions and
by CBMC as soon as this number grows. Even though CBMC
outperforms DARTAGNAN for TSO, our tool can be at least
two orders of magnitude faster than stateless model checking
techniques when the number of executions is in the order of
millions. See, e.g., LAMPORT which DARTAGNAN solves in
less than 5 secs while NIDHUGG and RCMC timeout. For
both POWER and ARM, NIDHUGG again outperforms all
tools when the number of executions is small. However for
benchmarks with a big number of executions (above 80K),
DARTAGNAN performs better. For the LAMPORT and SZY-
MANSKI benchmarks, our tool outperforms NIDHUGG by at
least one order of magnitude. Table II suggests that approaches
based on SAT/SMT encodings have a lot of potential for large
programs. DARTAGNAN can currently handle four million
executions in less than 20 secs while NIDHUGG and RCMC
need 15 and 6 minutes respectively.

The results on state inclusion are given in Table III. The
SAT column reports whether a counterexample to inclusion
was found (¢) or not (X). When HERD returns a result, we
report on the number of delta executions (A). This corresponds
to an upper bound on the maximal number of iterations

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Benchmark TS0 € SC

SAT | HERD | PORTHOS | A [IT S.U.
PARKER %4 0.15 0.70 3 1 0.21
DEKKER 4 T/O 12.31 - 1 | >292.44
PETERSON v 9.96 1.31 12 1 7.60
BURNS v 610.65 2.00 | 53 1 305.32
BAKERY 4 T/O 10.78 - 2 | >333.95
LAMPORT v T/O 10.64 - 3 | >338.34
SZYMANSKI 4 T/O 101.32 - 1 >35.53
Benchmark POWER € TSO

SAT | HERD | PORTHOS | A [IT S.U.
PARKER 4 0.15 2.46 3 2 0.06
DEKKER X T/O 108.89 - 0 >33.06
PETERSON X 9.94 6.33 0 0 1.57
BURNS X 578.55 6.12 | 18 1 94.53
BAKERY X T/O 836.44 - | 43 >4.30
LAMPORT - T/O T/O - - -
SZYMANSKI X T/O 940.75 - 0 >3.82
Benchmark ARM € TSO

SAT HERD PORTHOS | A IT S.U.
PARKER ['4 0.15 1.90 3 1 0.07
DEKKER X T/O 134.43 - 0 >26.77
PETERSON X 10.28 6.51 0 0 1.57
BURNS X 546.90 7.89 | 18 1 69.31
BAKERY - T/O T/O - - -
LAMPORT - T/O T/O - - -
SZYMANSKI X T/O 850.44 - 0 >4.23

TABLE III. State inclusion of mutual exclusion algorithms.

PORTHOS might perform. As it can be seen from Table II,
in general this number is several orders of magnitude smaller
than the total number of executions. The cases reporting zero
iterations correspond to the set of executions coinciding for
both memory models. For most of the cases, PORTHOS is at
least one order of magnitude faster than HERD. For TSO, the
speed-up (S.U. column) can be up-to two orders of magnitude.

VI. RELATED WORK

The influence of memory models on the semantics of con-
current programs has been studied at least since 2007. Initially,
hardware architectures have been addressed [7], [15], [22],
[31], [36], [41], [42], followed by programming languages,
in particular CI11 and C++11 [18], [19], [34]. Recently,
an axiomatic memory model for the Linux kernel has been
introduced [14]. These semantic studies form the basis for the
development of verification tools.

As of today, none of the following tools (except HERD) con-
sider the description of the memory model as an input. They
all implement (at best few) concrete models. NITPICK [20],
SATCHECK [30], NEMOSFINDER [50], and MEMSAT [45]
use SMT solvers. CBMC had been extended to support TSO
and POWER [11] but POWER is no longer supported. CPP-
MEM [19] and HERD enumerate all executions, making them
less scalable. More efficient but technically involved and hard
to generalize are Stateless Model Checkers, available for TSO,
PSO, POWER, ARM [2], [6] and C11 [32]. TRENCHER [21]
looks for trace inclusion bugs between SC and TSO; it under-
approximates state inclusion. It can also synthesize fences to
enforce SC behaviors. MEMORAX shares this functionality
and is complete for reachability under TSO [3], [4], [5]. Trace

29

inclusion can be enforced not only for TSO but also for weaker
memory models. The OFFENCE tool [13] does this, although
it is limited to restoring SC behaviors of litmus tests. Another
fence insertion tool is MUSKETEER [10]. It scales to large
programs, but is also restricted to ensuring SC. The FENDER
and DFENCE tools [33], [35] use fence insertion to guarantee
safety properties. They support TSO, PSO, and RMO.

A modular proof technique has been introduced recently [8].
It uses invariants to verify programs under a model given
in CAT. Another tool based on CAT synthesizes programs
differentiating two memory models [49]. However, this tool
is of interest to memory model designers and not made for
verification.

PORTHOS was originally designed to check trace inclusion.
In [40], we showed that state inclusion has a higher complexity
than trace inclusion. As a consequence, there is no polynomial
encoding that reduces inclusion to a single SAT query. How-
ever, the experiments in Section V show that our oracle-based
heuristic still performs well in programs where an exhaustive
state exploration does not scale.

VII. CONCLUSION AND OUTLOOK

We have presented DARTAGNAN and PORTHOS, two mod-
ular Bounded Model Checkers for concurrent programs. The
tools can check reachability and state equivalence under any
(pair of) memory model(s) defined in the CAT language. Our
method reduces reachability to satisfiability of a SMT formula
using novel encoding techniques. Equivalence is tested using
a guided search. We propose to use an oracle to find relevant
candidate states, and show how to implement an efficient
oracle based on SMT queries. We have performed experiments
to compare our tools to several memory model-aware tools,
and find them at least one order of magnitude faster for large
programs.

We are currently developing methods to synthesize memory
models from reachability results using our encoding tech-
niques. The techniques include compact representations of
relations by predicates as well as approximations of operations
that are not precise but still sound.

Other verification tasks, such as synthesizing programs to
compare memory models, could in principle also be solved by
reducing them to SMT queries. We would like to explore this
in the future.

Modern compilers perform various optimizations when
mapping high-level code to assembly instructions. We plan to
investigate whether such compiler mappings can be extracted
from the compilation process, at least approximately.

Acknowledgements: We thank Natalia Gavrilenko for con-
structive feedback on the manuscript and the tool implemen-
tation.

REFERENCES

[1] C/C++11 mappings to processors. https://www.cl.cam.ac.uk/~pes20/cpp/
cppOxmappings.html. Accessed: 23.04.2018.

[2] Parosh A. Abdulla, Stavros Aronis, Mohamed Faouzi Atig, Bengt
Jonsson, Carl Leonardsson, and Konstantinos F. Sagonas. Stateless
model checking for TSO and PSO. In TACAS, volume 9035 of LNCS,
pages 353-367. Springer, 2015.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

30

[3]

(4]

(51

(6]

(7]
(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Automatic fence insertion in integer
programs via predicate abstraction. In SAS, volume 7460 of LNCS, pages
164—-180. Springer, 2012.

Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Counter-example guided fence in-
sertion under TSO. In TACAS, volume 7214 of LNCS, pages 204-219.
Springer, 2012.

Parosh A. Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl
Leonardsson, and Ahmed Rezine. Memorax, a precise and sound tool
for automatic fence insertion under TSO. In TACAS, volume 7795 of
LNCS, pages 530-536. Springer, 2013.

Parosh A. Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and Carl
Leonardsson. Stateless model checking for POWER. In CAV, volume
9780 of LNCS, pages 134—156. Springer, 2016.

Jade Alglave. A Shared Memory Poetics. These de doctorat, L'université
Paris Denis Diderot, 2010.

Jade Alglave. Simulation and invariance for weak consistency. In SAS,
pages 3-22, 2016.

Jade Alglave, Patrick Cousot, and Luc Maranget. Syntax and semantics
of the weak consistency model specification language CAT. CoRR,
abs/1608.07531, 2016.

Jade Alglave, Daniel Kroening, Vincent Nimal, and Daniel Poetzl. Don’t
sit on the fence - A static analysis approach to automatic fence insertion.
In CAV, volume 8559 of LNCS, pages 508-524. Springer, 2014.

Jade Alglave, Daniel Kroening, and Michael Tautschnig. Partial orders
for efficient bounded model checking of concurrent software. In CAV,
volume 8044 of LNCS, pages 141-157. Springer, 2013.

Jade Alglave and Luc Maranget. The diy7 tool suite. http://diy.inria.fr/.
Jade Alglave and Luc Maranget. Stability in weak memory models. In
CAV, volume 6806 of LNCS, pages 50-66. Springer, 2011.

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and
Alan S. Stern. Frightening small children and disconcerting grown-ups:
Concurrency in the linux kernel. In ASPLOS, pages 405-418. ACM,
2018.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory. ACM
Trans. Program. Lang. Syst., 36(2):7:1-7:74, 2014.

Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt, and
Madanlal Musuvathi. On the verification problem for weak memory
models. In POPL, pages 7-18. ACM, 2010.

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare
Tinelli. Satisfiability modulo theories. In Handbook of Satisfiability,
volume 185 of Frontiers in Artificial Intelligence and Applications, pages
825-885. IOS Press, 2009.

Mark Batty, Alastair F. Donaldson, and John Wickerson. Overhauling
SC atomics in C11 and OpenCL. In POPL, pages 634-648. ACM, 2016.
Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. In POPL, pages 55-66. ACM, 2011.
Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and
Susmit Sarkar. Nitpicking C++ concurrency. In PPDP, pages 113-124,
2011.

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and
enforcing robustness against TSO. In ESOP, volume 7792 of LNCS,
pages 533-553. Springer, 2013.

Sebastian Burckhardt, Rajeev Alur, and Milo M. K. Martin. CheckFence:
Checking consistency of concurrent data types on relaxed memory
models. In PLDI, pages 12-21. ACM, 2007.

Sebastian Burckhardt and Madanlal Musuvathi. Effective program
verification for relaxed memory models. In CAV, volume 5123 of LNCS,
pages 107-120. Springer, 2008.

Edmund M. Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal Methods
in System Design, 19(1):7-34, 2001.

Hélene Collavizza and Michel Rueher. Exploration of the capabilities
of constraint programming for software verification. In TACAS, volume
3920 of LNCS, pages 182—196. Springer, 2006.

Scott Cotton, Eugene Asarin, Oded Maler, and Peter Niebert. Some
progress in satisfiability checking for difference logic. In FORMATS,
volume 3253 of LNCS, pages 263-276. Springer, 2004.

Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav.
Predicate abstraction for relaxed memory models. In SAS, volume 7935
of LNCS, pages 84—104. Springer, 2013.

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Andrei M. Dan, Yuri Meshman, Martin T. Vechev, and Eran Yahav.
Effective abstractions for verification under relaxed memory models. In
VMCAI, volume 8931 of LNCS, pages 449—466. Springer, 2015.
Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver.
In TACAS, volume 4963 of LNCS, pages 337-340. Springer, 2008.
Brian Demsky and Patrick Lam. Satcheck: Sat-directed stateless model
checking for sc and tso. In OOPSLA, pages 20-36, 2015.

Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit Sarkar, Ali
Sezgin, Luc Maranget, Will Deacon, and Peter Sewell. Modelling the
ARMVS8 architecture, operationally: Concurrency and ISA. In POPL,
pages 608-621. ACM, 2016.

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and Viktor
Vafeiadis. Effective stateless model checking for C/C++ concurrency.
PACMPL, 2(POPL):17:1-17:32, 2018.

Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic
inference of memory fences. SIGACT News, 43(2):108-123, 2012.

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek
Dreyer. Repairing sequential consistency in C/C++11. In PLDI, pages
618-632. ACM, 2017.

Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and
Eran Yahav. Dynamic synthesis for relaxed memory models. In PLDI,
pages 429—440. ACM, 2012.

Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memarian,
Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin, Peter
Sewell, and Derek Williams. An axiomatic memory model for POWER
multiprocessors. In CAV, volume 7358 of LNCS, pages 495-512.
Springer, 2012.

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer,
and Margaret Martonosi. Counterexamples and proof loophole for the
C/C++ to POWER and armv7 trailing-sync compiler mappings. CoRR,
abs/1611.01507, 2016.

Robin Morisset and Francesco Zappa Nardelli. Partially redundant fence
elimination for x86, ARM, and Power processors. In CC, pages 1-10.
ACM, 2017.

Hernén Ponce de Ledn, Florian Furbach, Keijo Heljanko, and Roland
Meyer. Portability analysis for axiomatic memory models. PORTHOS:
One tool for all models. CoRR, abs/1702.06704, 2017. Extended version
of [40].

Hernén Ponce de Ledn, Florian Furbach, Keijo Heljanko, and Roland
Meyer. Portability analysis for weak memory models. PORTHOS: One
tool for all models. In SAS, volume 10422 of Lecture Notes in Computer
Science, pages 299-320. Springer, 2017.

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek
Williams. Understanding POWER multiprocessors. In PLDI, pages
175-186. ACM, 2011.

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens,
Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave.
The semantics of x86-CC multiprocessor machine code. In POPL, pages
379-391. ACM, 2009.

Viggo Stoltenberg-Hansen, Edward R. Griffor, and Ingrid Lindstrom.
Mathematical Theory of Domains. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1994.

Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5(2):285-309, 1955.

Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: Checking
axiomatic specifications of memory models. In PLDI, pages 341-350.
ACM, 2010.

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating
weak memory with ghosts, protocols, and separation. In OOPSLA, pages
691-707. ACM, 2014.

Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Moris-
set, and Francesco Zappa Nardelli. Common compiler optimisations are
invalid in the C11 memory model and what we can do about it. In
POPL, pages 209-220. ACM, 2015.

Viktor Vafeiadis and Chinmay Narayan. Relaxed separation logic: A
program logic for C11 concurrency. In OOPSLA, pages 867-884. ACM,
2013.

John Wickerson, Mark Batty, Tyler Sorensen, and George A. Constan-
tinides. Automatically comparing memory consistency models. In
POPL, pages 190-204. ACM, 2017.

Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind.
Nemos: A framework for axiomatic and executable specifications of
memory consistency models. In /PDPS. IEEE Computer Society, 2004.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

31

Complete Test Sets And Their Approximations

Eugene Goldberg
eu.goldberg @ gmail.com

Abstract—We use testing to check if a combinational circuit
N always evaluates to 0 (written as N = 0). We call a set of
tests proving N = 0 a complete test set (CTS). The conventional
point of view is that to prove N = 0 one has to generate a trivial
CTS. It consists of all 2/*! input assignments where X is the
set of input variables of N. We use the notion of a Stable Set
of Assignments (SSA) to show that one can build a non-trivial
CTS consisting of less than 21X tests. Given an unsatisfiable
CNF formula H (W), an SSA of H is a set of assignments to 1V
that proves unsatisfiability of H. A trivial SSA is the set of all
2IWI assignments to V. Importantly, real-life formulas can have
non-trivial SSAs that are much smaller than 2/, In general,
construction of even non-trivial CTSs is inefficient. We describe
a much more efficient approach where tests are extracted from
an SSA built for a projection of N on a subset of its variables.
These tests can be viewed as an approximation of a CTS for
N. We describe potential applications of our approach. We show
experimentally that it can be used to facilitate hitting corner
cases and expose bugs in sequential circuits overlooked due to
checking “misdefined” properties.

I. INTRODUCTION

Testing is an important part of verification flows. For that
reason, any progress in understanding testing and improving
its quality is of great importance. In this paper, we consider
the following problem. Given a single-output combinational
circuit N, find a set of input assignments (tests) proving that
N evaluates to 0 for every test (written as N = 0) or find
a counterexample. We will call a set of input assignments
proving N = 0 a complete test set (CTS)'!. We will call the
set of all possible tests a trivial CTS. Typically, one assumes
that proving N = 0 involves derivation of the trivial CTS,
which is infeasible in practice. Thus, testing is used only for
finding an input assignment refuting N = 0. We present an
approach for building a non-trivial CTS consisting only of a
subset of all possible tests?. In general, finding even a non-
trivial CTS for a large circuit is impractical. We describe a
much more efficient approach where an approximation of a
CTS is generated.

The circuit N above usually describes a property ¢ of a
multi-output combinational circuit M, the latter being the real
object of testing. For instance, £ may state that M never
produces some output assignments. To differentiate CTSs and
their approximations from conventional test sets verifying M
“as a whole”, we will refer to the former as property-checking
test sets. Let = := {&1,...,&} be the set of properties of M

ITerm CTS is sometimes used to say that a test set invokes every event
specified by a coverage metric. Our application of this term is quite different.
2In the case of black-box testing, i.e. when only the number of input
variables of N is known, to prove N = 0 one indeed has to enumerate
all possible input assignments. In this paper, we consider white-box testing.

formulated by a designer. Assume that every property of =
holds and 7; is a test set generated to check property &; € =.
There are at least two reasons why applying 7; to M makes
sense. First, if = is incomplete®, a test of T can expose a
bug breaking a property of M that is not in =. Second, if
property &; is defined incorrectly, a test of T; may expose a
bug breaking the correct version of &;. On the other hand, if M
produces proper output assignments for all tests of T3 U- - -UTy,
one gets extra guarantee that M is correct. In Section VI, we
list some other applications of property-checking test sets such
as increasing the probability of hitting corner cases and testing
properties of sequential circuits.

Let N(X,Y,2) be a single-output combinational circuit
where X and Y specify the sets of input and internal variables
of N respectively and z specifies the output variable of V. Let
Fn(X,Y, z) be a formula defining the functionality of N (see
Section III). We will denote the set of variables of circuit N
(respectively formula H) as Vars(N) (respectively Vars(H)).
Every assignment* to Vars(Fy) satisfying Fiy corresponds to
a consistent assignment’ to Vars(IN) and vice versa. Then the
problem of proving N = 0 reduces to showing that formula
Fx A z is unsatisfiable. From now on, we assume that all
formulas mentioned in this paper are propositional. Besides,
we will assume that every formula is represented in CNF i.e.
as a conjunction of disjunctions of literals.

Our approach is based on the notion of a Stable Set of
Assignments (SSA) introduced in [9]. Given formula H (W),
an SSA of H is a set P of assignments to variables of W
that have two properties. First, every assignment of P falsifies
H. Second, P is a transitive closure of some neighborhood
relation between assignments (see Section II). The fact that H
has an SSA means that the former is unsatisfiable. Otherwise,
an assignment satisfying H is generated when building its
SSA. If H is unsatisfiable, the set of all 2/ assignments is
always an SSA of H . We will refer to it as trivial. Importantly,
a real-life formula H can have a lot of SSAs whose size is
much less than 2/, We will refer to them as non-trivial. As
we show in Section II, the fact that P is an SSA of H is a
structural property of the latter. That is this property cannot
be expressed in terms of the truth table of H (as opposed to
a semantic property of H). For that reason, if P is an SSA

3That is M can be incorrect even if all properties of = hold.

4By an assignment to a set of variables V', we mean a full assignment
where every variable of V' is assigned a value.

5 An assignment to a gate G of N is called consistent if the value assigned to
the output variable of G is implied by values assigned to its input variables.
An assignment to variables of N is called consistent if it is consistent for
every gate of N.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

32

for H, it may not be an SSA for another formula H' logically
equivalent to H. So, a structural property is formula-specific.

We show that a CTS for N can be easily extracted from
an SSA of formula Fy A z. This makes a non-trivial CTS
a structural property of circuit N that cannot be expressed in
terms of its truth table. Building an SSA for a large formula is
inefficient. So, we present a procedure constructing a simpler
formula H (V') implied by Fx Az (where V' C Vars(Fy A z))
and building an SSA of H. The existence of such an SSA
means that H (and hence Fy A 2) is unsatisfiable. So, N =0
holds. Formula H is obtained from Fy A z by a resolution-
based procedure where no resolutions on variables of V' are
allowed. So H preserves some structure of Fy A z. A test set
extracted from an SSA of H can be viewed as a way to verify
a “projection” of NV on variables of V. On the other hand, one
can consider this set as an approximation of a CTS for N. We
will refer to the procedure above as SeSt (“Se-mantics and St-
ructure”). SeSt combines semantic and structural derivations,
hence the name. The semantic part of SeSt is® to derive H.
Its structural part consists of constructing an SSA of H thus
proving H unsatisfiable.

The contribution of this paper is as follows. First, we
introduce the notion of non-trivial CTSs (Section III). Second,
we present a method for efficient construction of property-
checking tests that are approximations of CTSs (Sections IV
and V). Third, we describe applications of such tests (Sec-
tion VI). Fourth, we experimentally show the efficiency and
effectiveness of property-checking tests (Section VII).

II. STABLE SET OF ASSIGNMENTS
A. Definitions

We will refer to a disjunction of literals as a clause. Let
P be an assignment to a set of variables V. Let p falsify
a clause C. Denote by Nbhd(p, C) the set of assignments
to V satisfying C' that are at Hamming distance 1 from p.
(Here Nbhd stands for “Neighborhood”). Thus, the number of
assignments in Nbhd(p, C) is equal to that of literals in C'. Let
¢ be another assignment to V' (that may be equal to p). Denote
by Nbhd(q, p, C) the subset of Nbhd(p,C) consisting only
of assignments that are farther from ¢ than p'is (in terms of
the Hamming distance).

Example 1: Let V. = {vy,vs,v3,v4} and p=0110. We
assume that the values are listed in p’ in the order the cor-
responding variables are numbered i.e. v1 =0, vo = 1,v3 =
l,ugs = 0. Let C = vy V v3. (Note that p falsifies C.)
Then Nbhd(p, C)={p1, P2} where p; = 1110 and p>=0100.
Let ¢ = 0000. Note that p5 is closer to ¢ than p is. So
Nbhd (G, 7, C)={1).

Definition 1: Let H be a formula’ specified by a set of
clauses {C1,...,Cr}. Let P = {p1,...,Pm} be a set of
assignments to Vars(H) such that every p; € P falsifies H.

Implication Fy A z — H is a semantic property of Fy A z. To verify
this property it suffices to know the truth table of Fiy A z.

TWe use the set of clauses {C1,..
of a CNF formula C1 A -+ A Ck.

.,Cr} as an alternative representation

Let @ denote a mapping P — H where ®(p;) is a clause C
of H falsified by p;. We will call ® an AC-mapping where
“AC” stands for “Assignment-to-Clause”.

Definition 2: Let H be a formula specified by a set of
clauses {C1,...,Ci}. Let P = {pi,...,pm} be a set of
assignments to Vars(H). P is called a Stable Set of Assign-
ments® (SSA) of H with center p,;; € P if there is an AC-
mapping ® such that for every p; € P, Nbohd(Dinit, pi, C) C
P holds where C = ®(5;).

Example 2: Let H consist of four clauses: C; = v Vva Vs,
Cy =711, C3 =0y, Cy =v3. Let P = {ﬁl,ﬁg,ﬁg,]ﬁ} where
P = 000, gy = 100, 5 = 010, 7y = 001. Let ® be an
AC-mapping specified as ®(p;) = C;,i = 1,...,4. Since
p; falsifies C;, ¢ = 1,...,4, @ is a correct AC-mapping.
P is an SSA of H with respect to ® and center pi,;=pi.
Indeed, Nbhd(Pinit, p1,C1)={P2, D3, Pa} where C1 = ®(p})
and Nbhd(Dingt, Pi, Ci) = 0, where C; = ®(p;), i = 2,3,4.
ThllS, thd(ﬁ,mit,ﬁ;, (I)(ﬁ;)) - P, 1= 1, AN 74.

B. SSAs and satisfiability of a formula

Proposition 1: Formula H is unsatisfiable iff it has an SSA.
The proof is given in [11]. A similar proposition is proved

in [9] for “uncentered” SSAs (see Footnote 8).
The set of all assignments

BuildPath(H, ®, Dinit, 5){ to Vars(H) forms the trivial

Ijath = nal uncentered SSA of H. Ex-
1;71._3:11”"” ample 2 shows a non-trivial

SSA. The fact that formula H
has a non-trivial SSA P is
its structural property. That is
one cannot check whether P
is an SSA of H if only the
truth table of H is known. In
particular, P may not be an
SSA of a formula H' logically

while (p; # 8) {
Path := Extend(Path,p;)
C = o(p;)
v := FindVar(C, p;, 5)
Dit+1 := FlipVar(pi, v)
i:=i+1}
10 return(Path) }
Fig. 1. BuildPath procedure

o0 NN AU AW N =

equivalent to H.

The relation between SSAs and satisfiability can be ex-
plained as follows. Suppose that formula H is satisfiable.
Let pinic be an arbitrary assignment to Vars(H) and § be
a satisfying assignment that is the closest to ;,;; in terms of
the Hamming distance. Let P be the set of all assignments to
Vars(H) that falsify H and ® be an AC-mapping from P to
H. Then § can be reached from pj,;; by procedure BuildPath
shown in Figure 1. It generates a sequence of assignments
D1, - .., P; where py = Dinie and p;=s. First, BuildPath checks
if current assignment p; equals §. If so, then § has been
reached. Otherwise, BuildPath uses clause C = ®(p;) to
generate next assignment. Since § satisfies C, there is a
variable v € Vars(C) that is assigned differently in p; and
§. BuildPath generates a new assignment p; 1 obtained from
p; by flipping the value of v.

8In [9], the notion of “uncentered” SSAs was introduced. The definition
of an uncentered SSA is similar to Definition 2. The only difference is that
one requires that for every p; € P, Nbhd(p;,C) C P holds instead of
Nbhd (Pingt, Pi, C) C P. The advantage of centered SSAs is that they are
usually much smaller than uncentered SSAs.

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

BuildPath reaches § in k
steps where k& is the Ham-
ming distance between P,
and §. Importantly, Build-
Path reaches § for any AC-
mapping. Let P be an SSA
of H with respect to cen-
ter Pin;: and AC-mapping ®.
Then if BuildPath starts with
Pinit and uses ® as an AC-
mapping, it can reach only
assignments of P. Since ev-
ery assignment of P falsifies
H, no satisfying assignment
can be reached.

A procedure for generation of SSAs called BuildSSA is
shown in Figure 2. It accepts formula H and outputs either
a satisfying assignment or an SSA of H, center p;,;; and
AC-mapping ®. BuildSSA maintains two sets of assignments
denoted as E and (). Set E contains the examined assignments
i.e. those whose neighborhood is already explored. Set @
specifies assignments that are queued to be examined. @ is
initialized with an assignment py,,;; and F is originally empty.
BuildSSA updates E and () in a while loop. First, BuildSSA
picks an assignment p of () and checks if it satisfies H. If so,
p is returned as a satisfying assignment. Otherwise, BuildSSA
removes p from) and picks a clause C' of H falsified by
p. The assignments of Nbhd(Pini,p,C) that are not in E
are added to (). After that, p'is added to E as an examined
assignment, pair (p,C) is added to ® and a new iteration
begins. If @ is empty, £ is an SSA with center pj,;; and
AC-mapping P.

BuildSSA(H){

1 E=0;9:=0

2 Pinit := PickInitAssgn(H)
3 Q = {ﬁinit}

4 while (Q # 0) {

5 P := PickAssgn(Q)

s Q=Q\ ()

7 if (SatAssgn(p, H))

8 return(p, nil, nil, nil)

9 C := PickFisCls(H, p)

10 R = thd(ﬁlmt,ﬁ,C)\E
11 Q:=QUR

12 E:=FEU{p}

1B P:=0oU{(p,C)}}

14 return(nil, E, Pinit,) }

Fig. 2. BuildSSA procedure

III. COMPLETE TEST SETS

Let N(X,Y,z) be a
single-output combinational
circuit where X and Y
specify the input and internal
variables of N respectively
and z specifies the output
variable of N. Let N consist
of gates Gi,...,Gg. Then
N can be represented as
Fn = Fg, N -+ N Fg,
where Fg,,i=1,...,kisa
CNF formula specifying the
consistent assignments
X% of gate G,;. Proving
N = 0 reduces to showing
that formula Fy A z is
unsatisfiable.

Example 3: Circuit N shown in Figure 3 represents equiv-
alence checking of expressions (z1 V z3) A 3 and (x1 A
x3) V (z2 A x3) specified by gates G1,G2 and G3,Gy4, G5
respectively. Formula Fy is equal to Fg, A--- A Fg, where,
for instance, Fg, = C1 ANCa AN C5, C1 = 21 V 22 V T,

X1

Fig. 3.
N(X7 Y7 Z)

Example of circuit

33

Co = 71 V y1, C3 = Ty V y1. Every assignment satisfying
F, corresponds to a consistent assignment to gate G; and
vice versa. For instance, (z1 = 0,22 = 0,y; = 0) sat-
isfies Fz, and is a consistent assignment to G since the
latter is an OR gate. Formula Fy A z is unsatisfiable since
(Il V Ig) AN Trs3 = (Il A 1‘3) V (172 A CC3). ThllS, N =0.

Let £ be a test i.e. an assignment to X. The set of
assignments to Vars(IV) sharing the same assignment & to X
forms a cube of 2/Y1*1 assignments. (Recall that Vars(N) =
XUYU{z}). Denote this set as Cube(Z). Only one assignment
of Cube(Z) specifies the correct execution trace produced
by N under Z. All other assignments can be viewed as
“erroneous” traces under test .

Definition 3: Let T be a set of tests {Zy,...,Z;} where
k < 21X1. We will say that T is a Complete Test Set (CTS)
for N if Cube(Z1) U --- U Cube(¥)) contains an SSA for
formula Fiy A z.

SeSt(G, V)]

1 H:=0
2 foreach (C € G)

If T satisfies Definition 3,
set Cube(Z1)U- - -U Cube(Zy,)
“contains” a proof that N = 0

3 if (Vars(C) C V) and so T can be viewed as
4 H:= HuU{C} complete. If k = 21XI, T is
2 Wh(l’}_)?, Igt)r:ui) B{uz‘ldSS A(H) tg’e tri\iial CTS. In this case,
7 if (P nil) wbe(Z1) U -+ U Cube(Ty)
8 return(nil, H, P) contains the trivial SSA con-
9 (C,5):= GenCls(G,V,v) sisting of all assignments to

10 if (5# 7(131) - Vars(Fn A z). Given an SSA
11 return(s, nil, ni :
2 Hio= HU{C)} P of Fy A z, one can easily

generate a CTS by extracting
all different assignments to X
that are present in the assignments of P.

Example 4: Formula Fy Az of Example 3 has an SSA of 21
assignments to Vars(FxAz). They have only 5 different as-
signments to X = {x1,z2,25}. The set {101,100,011,010,000}
of those assignmentsis a CTS for N.

Definition 3 is meant for circuits that are not “too redun-
dant”. Highly-redundant circuits are discussed in [12], [11].

Fig. 4. SeSt procedure

IV. SeSt PROCEDURE
A. Motivation

Building an SSA for a large formula is inefficient. So,
constructing a CTS of N from an SSA of Fiy Az is impractical.
To address this problem, we introduce a procedure called SeSt
(a short for “Semantics and Structure”). Given formula Fy A z
and a set of variables V' C Vars(Fy A z), SeSt generates a
simpler formula H (V') implied by Fy A z at the same time
trying to build an SSA for H. If SeSt succeeds in constructing
such an SSA, formula H is unsatisfiable and so is Fy Az. Then
a set of tests 7" is extracted from this SSA. As we show in
Subsection V-A, one can view 7" as an approximation of a CTS
for N (if X C V) or an “approximation of approximation” of
aCTS Gf X g V).

Example 5: Consider the circuit N of Figure 3 where X =
{x1,22,23}. Assume that V = X. Application of SeSt to
FN Nz produces H(X) = (fl \/fg) A (fg \/fg) /\(Il \/Ig) /\1‘3.
SeSt also generates an SSA of H of four assignments to X:

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

34

{000, 001,011,101} with center p;,;;=000. (We omit the AC-
mapping here.) These assignments form an approximation of
a CTS for N.

B. Description of SeSt

The pseudocode of SeSt is
shown in Figure 4. SeSt accepts
formula G (in our case, G :=
Fn A z) and a set of variables
V C Vars(G). SeSt outputs an
assignment satisfying G or for-
mula H (V') implied by G and an
SSA of H. Initially, H consists
of the clauses of G depending
only on variables of V' (if any).
Then a while loop is performed. First, SeSt tries to build an
SSA for the current formula H by calling BuildSSA (line 6). If
H is unsatisfiable, BuildSSA computes an SSA P returned by
SeSt along with H (line 8). Otherwise, BuildSSA returns an
assignment ¢ satisfying H. In this case, SeSt calls procedure
GenCls to build a clause C falsified by ¢/. Clause C' is obtained
by resolving clauses of G on variables of Vars(G)\V. (Hence
C' is implied by G.) If ¥ can be extended to an assignment §
satisfying GG, SeSt terminates (lines 10-11). Otherwise, C' is
added to H and a new iteration begins.

Procedure GenCls is shown in Figure 5. First, GenCls
generates formula G obtained from G by discarding clauses
satisfied by ¢’ and removing literals falsified by . Then GenCls
checks if there is an assignment § satisfying Gz. If so, SU ¥
is returned as an assignment satisfying GG. Otherwise, a proof
R of unsatisfiability of G is produced. Then GenCls forms a
set V/ C V. A variable w is in V' iff a clause of G is used
in proof R and its parent clause from G has a literal of w
falsified by v. Finally, clause C is generated as a disjunction
of literals of V' falsified by ¥. By construction, clause C' is
implied by G and falsified by v.

GenCls(G, V,0){

1 Gy := GenForm(F,v
2 (8, R) := ChkSat(Gy)

3 if (5 % nil)

4 return(nil, SU 7)

5 V' := Analyze(R, Gy, G)
6

7

=

C = FormCls(V',v)
return(C', nil)

Fig. 5. GenCls procedure

V. BUILDING APPROXIMATIONS OF CTS
A. Two kinds of approximations of CTSs

As before, let H(V') denote a formula implied by Fy Az that
is generated by SeSt and P denote an SSA for H. Projections
of NV can be of two kinds depending on whether X C V
holds. Let X C V be true and T be the test set consisting of
all different assignments to X present in the assignments of
P. Using the reasoning of Section III one can show that T is
a CTS for projection of N on V. Since H(V) is essentially
an abstraction of Fy A z, one can view 1" an approximation of
a CTS for N. For that reason, we will refer to 17" as a CTS?
of N where superscript “a” stands for “approximation”.

Now assume X C V is not true. Generation of a test
set T' from P for this case is described in the next section.
Let us relate this case to that of X C V. Assume for
the sake of simplicity that V' N X = (. Let us consider
computing a test set T” for a projection of N on set V' where
V' = XUV. Let P’ be an SSA for formula H'(V") generated
by SeSt. Every assignment of P’ can be represented as (Z,0)

where ¥ and ¥ are assignments to X and V respectively.
The assignments (Z, V), (Z2,7),... of P’ sharing the same
U specify all tests of 7" corresponding to ¥. On the other
hand, since VN X = (), to generate T' one has to a) use
some heuristic for generating a test corresponding to ¢ and b)
guess how many tests corresponding to ¢ one should generate.
Thus, T' is an approximation of 7" that is itself a CTS® i.e. an
approximation of a CTS. So, we will refer to T as CTS??.

B. Construction of CTS™

Consider extraction of a
test set 1" from SSA P of
formula H(V) when X ¢
V. Since V, in general, con-
tains internal variables® of N,
translation of P to a test set
T needs a special procedure
GenTests shown in Figure 6.
As we mentioned in Subsec-

GenTests(Fn,X,P,tr1,tr2){
1 7:=0

2 for each v € P {

3 §:= SatAssgn(Fn,v)

4 if F#nil) {

5 AddTest(T, 5, X)

6 for (i = 150 < trizi++)
7 §:=SatAssgn(Fn, V)
8 AddTest(T, s, X)}

9 else

10 for (i = 03 < trazit+) tion V-A, building a test &
11 FY := Relaz(Fn) corresponding to an assign-
12 §:= SatAssgn(Fy,v) ment ¢ of P requires some
13 if (5= nal) continue heyrigtic. In GenTests, we use
14 AddTest(T, s, X)}}

the following idea. One can
view building an SSA (see
Fig. 2) as a try to reach a
satisfying assignment, if any. So, intuitively, every assignment
of a good SSA falsifies a very small number of clauses of G.
For that reason, when building a test Z corresponding to ¥/, we
look for an assignment to Vars(Fy A z) that contains Z and
¥ and falsifies as few clauses of Fy A z as possible.

Parameters ¢r; and try control the number of tests generated
for one assignment of P (tr here stands for “tries”). For every
v € P, GenTests checks if formula F is satisfiable under
assignment 7 i.e. if there exists a test under which N assigns
v to V. If so, GenTests calls procedure AddTest that forms a
new test by extracting the values assigned to X in § and adds
it to T'. (Note that the only clause of Fy A z falsified by § is
the unit clause z.) Then GenTests runs a for loop (lines 6-8)
to generate {r;—1 more tests producing the same assignment
¥. We assume that the SAT-solver invoked in line 7 generates
different satisfying assignments in different calls.

If Fy is unsatisfiable under ¢, GenTests runs another for
loop of tro iterations (lines 10-14). In every iteration, GenTests
relaxes Fy by removing the clauses specifying a small random
subset of gates. If the relaxed version of F)y has a satisfying
assignment § (line 12), a test is extracted from s and added
to 7. Note that § falsifies only a small number of clauses of
Fn A z, namely, a subset of clauses removed to relax Fy and
possibly the unit clause z.

15 return(T)}
Fig. 6. GenTests procedure

C. Finding a set of variables to project on

°If the special case V' C X holds, every assignment of P can be easily
turned into a test by assigning values to variables of X \ V' (e.g. randomly).

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

Intuitively, a good choice
of the set V' to project N on
is a (small) coherent subset
of variables of N reflecting
its structure and/or seman-
tics. One obvious choice of
V is the set X of input vari-
ables of NN. In this section,
we describe generation of a
set V' whose variables form
an internal cut of N denoted
as Cut. Procedure GenCut for
generation of set Cut consist-
ing of Size gates is shown
in Figure 7. Set V is formed
from output variables of the
cut gates.

The current cut is specified by Gts U Inps. Set Gts is
initialized with the output gate G,y of circuit N and Inps
is originally empty. GenCut computes the depth of every gate
of Gts. The depth of G,,; is set to 0. Set Gts is processed
in a while loop (lines 5-15). In every iteration, a gate of the
smallest depth is picked from Gts. Then GenCut removes gate
G from Gts and examines the fan-in gates of G (lines 9-15).
Let G’ be a fan-in gate of G that has not been seen yet and is
not a primary input of N. Then the depth of G’ is set to that
of G plus 1 and G’ is added to Gts. If G’ is a primary input
of N it is added to Inps.

GenCut(N, Size){

1 Gout := OutGate(N)

2 Gts := {Gout}

3 Dpth(Gout) :=0

4 Inps =1

5 while (|GtsUInps| < Size) {
6 G:=MinDepth(Gts,Dpth)
7 Gits:= Gts \ {G}

8 Seen(@) := true

9 foreach G’ € FanIn(G){
10 if (Seen(G")) continue
11 if (G' € Inputs(N)) {
12 Inps = Inps U {G'}
13 continue }

14 Dpth(G'):= Dpth(G)+1
15 Gts := Gts U{G'}}}

16 return(Gts U Inps)}

Fig. 7. GenCut procedure

VI. APPLICATIONS OF PROPERTY-CHECKING TESTS

Given a multi-output circuit M, traditional testing is used to
verify M “as a whole”. In this paper, we describe generation
of a test set meant for checking a particular property of M
specified by a single-output circuit N. In this section, we
present some applications of property-checking test sets.

A. Verification of corner cases

Let K be a single-output subcircuit
of circuit M as shown in Figure 8.
For the sake of simplicity, here, we
consider the case where the set X
of input variables of K is a subset
of the set X of input variables of
M. (The technique below can also be
applied when input variables of K are
internal variables of M.) Suppose K
evaluates, say, to value 0 much more
frequently then to 1. Then one can
view an input assignment of M for
which K evaluates to 1 as specifying a “corner case” i.e. a
rare event. Hitting such a corner case by a random test can be
very hard. This issue can be addressed by using a coverage
metric that requires setting the value of K to both 0 and 1.
(The task of finding a test for which K evaluates to 1 can be
solved, for instance, by a SAT-solver.) The problem however
is that hitting a corner case only once may be insufficient.

Fig. 8. Subcircuit K of
circuit M

35

One can increase the frequency of hitting the corner case
above as follows. Let N be a miter of circuits K’ and K"
(see Figure 9) i.e. a circuit that evaluates to 1 iff K’ and K"
are functionally inequivalent. Let K’ and K" be two copies of
circuit 5. So N = 0 holds. Let test set Tk be extracted from
an SSA built for a projection of N onaset V C Vars(N). Set
Tk can be viewed as a result of “squeezing” the truth table of
K. Since this truth table is dominated by input assignments
for which K evaluates to O, this part of the truth table is
reduced the most. So, one can expect that the ratio of tests
of Tk for which K evaluates to 1 is higher than in the truth
table of K. In Subsection VII-B, we substantiate this intuition
experimentally. One can easily extend an assignment ¥x of
Tk to an assignment Z to X e.g. by randomly assigning values
to the variables of X \ X.

B. Testing sequential circuits

There are a few ways to apply property-checking tests meant
for combinational circuits to verification of sequential circuits.
Here is one of them based on bounded model checking [2].
Let M be a sequential circuit and £ be a property of M. Let
Ni(X,Y, z) be a circuit such that Ny, = 0 holds iff ¢ is true
for k time frames. Circuit Ny is obtained by unrolling M k
times and adding logic specifying property £. Set X consists
of the subset X’ specifying the state variables of M in the
first time frame and subset X" specifying the combinational
input variables of M in k time frames.

Having constructed Ny, one
can build CTSs, CTS%s and
CTS*s for testing property & of
M. The only difference here from
the problem we have considered
so far is as follows. Circuit M
starts in a state satisfying some
formula I(X') that specifies the
initial states. So, one needs to
X | check if Ny = 0 holds only for
the assignments to X satisfying
I(X’"). A test here is an assign-

Fig. 9. The miter of circuits K’
and K"

ment (ﬂl,x_;’l, e ,x7’k) where
7 1 1s an initial state and x_;’i, 1 <4 < k is an assignment
to the combinational input variables of ¢-th time frame. Given
a test, one can easily compute the corresponding sequence
of states (;E”l, e 7a§7k) of M. In Subsection VII-C, we give
examples of building CTS*s for testing sequential circuits.

C. Exposing bugs overlooked due to misdefining properties

One can use property-checking tests to mitigate the problem
of incomplete specifications. By running tests generated for
an incomplete set of properties of M, one can expose bugs
overlooked due to missing some properties. An important
special case of this problem is as follows. Let £ be a property
of M that holds. Assume that the correctness of M requires
proving a slightly different property &’ that does not hold. By
running a test set 7" built for property &, one may expose a bug
overlooked in formal verification due to proving ¢ instead of

ISBN: 978-0-9835678-8-2. Copyright owned jointly by the authors and FMCAD, Inc.

36

¢, In Subsection VII-C, we illustrate this idea experimentally.
Note that the problem above has nothing to do with the
complexity of proving &’ false. The designer simply does not
know that there is a problem and so can overlook a bug even
if proving &’ false is very easy.

VII. EXPERIMENTS

In this section, we describe experiments with property-
checking tests (PCT) generated by procedure GenPCT shown
in Figure 10. GenPCT accepts a single-output circuit N
and outputs a set of tests 7. (For the sake of simplicity,
we assume here that N = 0 holds.) GenPCT starts with
generating formula Fy A z. Then it builds a set of variables
V C Vars(Fy A z). Parameter rype specifies whether Gen-
PCT is supposed to gene