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Abstract—Chord is a protocol that provides a scalable dis-
tributed hash table over an underlying peer-to-peer network.
Since it combines data structures, asynchronous communications,
concurrency, and fault tolerance, it features rich structural and
temporal properties that make it an interesting target for formal
specification and verification. Previous work has mainly focused
on automatic proofs of safety properties or manual proofs of
the full correctness of the protocol (a liveness property). In this
paper, we report on analyzing automatically the correctness of
Chord with the Electrum language (developed in former work)
on small instance of networks. In particular, we were able to
find various corner cases in previous work and showed that the
protocol was not correct as described there. We fixed all these
issues and provided a version of protocol for which we were not
able to find any counterexample using our method.

Index Terms—Chord protocol, distributed systems, formal
specification and verification, Electrum

I. INTRODUCTION

Peer-to-peer systems are distributed systems without hi-
erarchical organization or centralized control. They are an
alternative to the traditional client-server model and enjoy
interesting properties in terms of scalability, robustness and
cost. Chord [11]–[33] is a one of the most popular peer-to-
peer systems. It is a protocol and algorithm for a peer-to-peer
distributed hash table (DHT). A DHT stores key-value pairs by
assigning keys to different nodes (basically computers) in the
network. Chord addresses the efficient and robust localization
of data in such a network. When Chord was initially presented,
three main qualities were highlighted: its simplicity, its prov-
able performance and its provable correctness. Although the
first two claims are true, proving the Chord correctness turns
out to be a hard task, as showed by numerous works by P.
Zave [44]–[88].

In Chord, each node has an identifier and can reach other
nodes using pointers to other identifiers. The nodes and their
pointers form a topology which is essential to ensure the
correct localization of data in the network. Because of the
fact autonomous nodes may join or leave the network (or fail)
at any time, the topology is always evolving. A key aspect of
the Chord protocol consists in the definition of maintenance
operations that are in charge of repairing the network topology
so that the data stored in any node keeps being reachable from
any other node, despite failures, joins and departures.

Thus, the correctness of Chord deals with the network
topology. In fact, the nodes and their successor pointers have
to form a ring, so that each node is accessible from any
other node. Since nodes can join and leave the network, the
ring topology cannot always be ensured. That is why the
the correctness property of Chord is expressed as follows: if,
from a certain instant, there is no subsequent join, departure
or failure, then the network is ensured to recover a ring
topology eventually, and keep it. So, the correctness of Chord
is not only about the structure of the system, but also about
its temporal evolution: it is in fact a liveness property. This
twofold nature is one of the reasons for the hardness to prove
Chord correctness.

We recently developed Electrum [99], a specification lan-
guage based on First-Order Linear Temporal Logic, with
which both structural and temporal properties can easily be
defined and checked. The Electrum language is inspired by
Alloy [1010] for its structural concepts and by Linear Temporal
Logic [1111] for its temporal concepts.

In this article, we propose a formal description of the Chord
protocol in Electrum and focus on proving its correctness. We
show the following benefits of our approach:

• the Electrum ability to deal with structural aspects makes
the specification of the network topology straightforward;

• the Electrum ability to deal with temporal aspects fits with
the specification of the network evolution (throughout
the execution of the maintenance operations) and makes
the specification of the correctness property, which is a
liveness property, direct;

• the automatic verification of the full correctness property
is performed for the first time (only for a limited number
of nodes though)

• thanks to the quick feedback to the user, we have been
able to the detect several shortcomings and corner cases
in the previous formalization of the protocol, and to
clearly identify temporal hypotheses on the ordering of
the maintenance operations (fairness properties) that are
necessary to ensure the correctness.

The rest of this paper is structured as follows. In Sect. IIII
we briefly present the Chord protocol. In sect. IIIIII, we give
an overview of Electrum, and formalize Chord in sect. IVIV.
In Sect. VV, we evaluate the formal verification of our Chord
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model. In Sect. VIVI, we highlight important aspects of our study
and compare to related work. We then conclude in Sect. VIIVII.

II. THE CHORD PROTOCOL

Chord is a distributed lookup protocol which addresses
an essential issue of peer-to-peer applications: the efficient
localization of the network node that stores the desired data.
An important quality that probably explains the popularity
of Chord is its simplicity. Indeed, Chord makes no use of
synchronization or timing constraints on distributed nodes, and
each atomic operation involves a single node. As claimed by
the authors, this simplicity makes Chord easy to implement
and extend. Other interesting features of Chord are its provable
performance and its scalability. However, contrary to another
claim, proving the correctness of Chord. i.e., the reachability
of the data, is not an easy task.

A. The Network Structure

In a Chord network, each node has an identifier (the m-bit
hash of its IP address). Pairs of keys and associated data are
stored in nodes. Every node has a successor list of pointers
to other nodes. We refer to the first element of this list as the
successor. The goal of having a list of successors instead of a
single one is to be robust to the failures: if a node leaves the
network, its predecessor still has successors in the network.
Besides, each node also has a pointer to its predecessor. This
is useful in the execution of the Chord maintenance operations.

When a network is structured as a ring according to the
relation induced by the successor pointers and when the order
of identifiers complies with the order of the successor pointers,
then each node is accessible from any other node, i.e. any data
is accessible from any node. We say that such a network is in
an ideal state.

Since nodes can join and leave the network at any time, the
ring structure cannot be continuously ensured. For instance,
nodes joining a ring create an appendage. The maintenance
operations aim to recover a ring structure eventually, despite
the fact nodes join and leave the network.

B. Network Properties

The authors of Chord have provided explicit properties of
the network that ensure correct data delivery [22]. They define
in particular the ideal state of a network, which we have
introduced informally in the previous section, and a temporary
imperfect state, which we call a valid state following [44].
As our study only deals with the correctness of the protocol,
we do not present the quantitative and probabilistic properties
mentioned in the original Chord articles.

Let us first present some notations and preliminary def-
initions. In the following, we will denote the successor
(resp. predecessor) of a node n by n.SUCCESSOR (resp.
n.PREDECESSOR). A Chord network is locally consistent if,
for any node n, we have (n.SUCCESSOR).PREDECESSOR = n.
A Chord network is globally consistent if, for each node
n1, there is no node n2 in the same ring as n1 such that
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Fig. 1. A Chord network in an ideal state (successor pointers are shown as
a bold arrows, predecessor pointers as dashed arrows and key/node mappings
as dotted arrows).

n1 < n2 < n1.SUCCESSOR. A Chord network is loopy if it is
locally consistent but globally inconsistent.

Definition 1: A Chord network is in an ideal state if:
• ring: the successor relation forms a single ring of nodes

(every node is in the ring);
• non-loopiness: the ring is locally and globally consistent;
• successor list validity: the successor list (of size k) of

each node n contains the first k nodes that follow n in
the ring.

Fig. 1Fig. 1 shows a Chord network in an ideal state, with nine
nodes and storing six key-data pairs (we only represent the
keys). Each key is stored in the node with the least identifier
among the nodes having a greater identifier than the key. For
example, key K10 is stored in node N14.

As explained above, joins and fails of nodes force the
network in a non-ideal state. But the maintenance operations
of Chord aim at recovering from such non-ideal states.

In order to characterize these non-ideal states, we introduce
the notion of valid states (following [22] and [44]) which allow
some nodes not to be in the ring, but in appendages of the
ring. For a node n in the ring, there may be a tree of nodes
rooted at n, consisting of nodes that have recently joined the
network and are not yet in the ring. We refer to this tree as
n’s appendage and denote it An.

Definition 2: A Chord network is in a valid state if:
• connectivity: a subset of nodes form a ring following the

successor relation (there is only one such ring), the rest
of the nodes are part of appendages, which are connected
to the ring;

• non-loopiness:
– the ring is non-loopy;
– and for every node n′ in an appendage An, the path

of successors from n′ to n is increasing (in the sense
of the identifier order).

• successor list validity:
– if n is in the ring, then n.SUCCESSOR is the first

live ring node following n (according to the identifier
order);
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Fig. 2. A Chord network in a valid state.

– if n′ is in appendage An, then n is the first live ring
node following n′ (according to the identifier order);

– if the successor list of n.SUCCESSOR skips over a live
node n′, then n′ is not in n successor list.

Fig. 2Fig. 2 shows a Chord network in a validstate.
From these two definitions, the correctness of the Chord

protocol can be expressed as follows.
Correctness of the Chord protocol: Starting from a network
that is initially valid, in any execution state, if there are no
subsequent join or fail events, then the network will eventually
become ideal and remain ideal.

C. Chord Events

The operations of the Chord protocol consist of four events
(join, fail, stabilize and rectify) each of which changes
the state of at most one node. A join operation occurs when
a node joins the network. We then refer to this node as a
member, or a live node. When a node joins the network, it
contacts a network member and takes the successor list of
this member as its own successor list. It also considers this
member as its predecessor. Diagrams (a) and (b) in Fig. 3Fig. 3
show successor and predecessor pointers in a network where
node 6 joins by contacting node 8.
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Fig. 3. Chord Events: predecessor pointers are shown as dashed arrows and
successor pointers as solid arrows

A join event may break the ideal property of the network.
In order to recover, every node performs a stabilize op-

eration periodically. When a member stabilizes, it contacts
its successor and asks it about its predecessor identifier. If
the predecessor identifier is a better candidate for being its
successor than its current successor (according to the identifier
order) then it takes this predecessor as its new successor. In
diagram (c) of Fig. 3Fig. 3, node 6 stabilizes and takes node 8
as its new successor. The contact a node establishes with its
successor during stabilization is also an opportunity to update
its full successor list with information from its successor.

After stabilization, the stabilized node notifies its succes-
sor about its identity. The notified member then executes
a rectify operation. A notified member must adopt the
notifying member as its new predecessor if the notifying
member is closer to itself than its current predecessor, or if
its current predecessor is dead (see below). Diagram (d) in
Fig. 3Fig. 3 shows a rectify operation made by node 8 after the
notification by node 6.

Finally, a node can leave the network in case of a fail
operation. Such a node is no longer a member and is referred
to as a dead node. It obviously does not inform any other
node about its departure and still appears in the successor list
of other nodes.

a) Operating assumptions: Chord relies on an important
assumption, which states that each member always has at least
one live successor. In practice, this depends on the size of
the successor list, and on the ratio between the occurrence
of maintenance operations and the occurrence of failures. For
instance, let us suppose that a given live node n has a successor
list of size 3, and that all three successors of n fail before any
stabilisation and rectification occur, then the network is no
longer in a valid state (the ring structure is broken) and the
protocol is not able to recover from such a situation.

Another assumption is the perfect communication between a
node and its successor, in the sense that each node necessarily
answers a query in bounded time. This allows for perfect
detection of failures (a successor that does not answer a query
before a deadline is considered dead).

III. ELECTRUM IN A NUTSHELL

Electrum [99] is a dynamic extension of Alloy [1010] based
upon Linear Temporal Logic (LTL). It preserves the flexibility
of Alloy while easing the specification of behavioral properties
and enabling verification on traces with a bounded or an
unbounded number of states.

In Electrum, as in classic class-based modelling, structure
is introduced through the declaration of signatures, which
denote sets of indivisible, immutable and uninterpreted atoms;
and fields (between signatures) that denote flat n-ary relations
between sets. Signatures and fields may be constrained by
simple multiplicity constraints.

Unlike in Alloy however, fields and signatures may either
be declared as static (by default) or variable: the former hold
the same valuation throughout a given time trace, while the
latter are mutable and hence may see their valuation change
at every step of a trace.



If needed, more constraints may be imposed on a specifica-
tion as facts, which are just axioms (i.e. statements that every
instance of the specification conforms to).

Constraints (formulas) are expressed in a logic comprising
both connectives (and quantifiers) of First-Order Logic (FOL)
and LTL, with relational expressions as a term language.
The latter are built by composing signatures and fields with
common set-theoretic operators and relational operators such
as the join � of two relations or the transitive closure ^ of a
relation. Moreover, every relational expression may be primed,
referring thus to its valuation in the succeeding state. For
ease of specification, parameterized, named expressions and
constraints may also be introduced as functions and (resp.)
predicates.

Analysis instructions consist of run and check commands
restricted by scopes that determine the maximum number
of atoms that will be considered for every signature. A run

instructs the Analyzer to search for an instance (a model, in
the logical sense) satisfying a given predicate; while a check
instructs the Analyzer to prove a given assertion (introduced
with the assert keyword) valid in the given scope.

Electrum Analyzer11, an extension of Alloy Analyzer, offers
two alternative model-checking techniques: the first imple-
ments bounded model-checking (BMC) [1212], [1313] over Alloy
itself, thus bounding the number of states in a trace (this
is expressed with a bound over a fake Time signature). The
second one relies on the compilation to the NuSMV [1414] and
nuXmv [1515] model-checkers, relying on unbounded model-
checking (UMC) algorithms.

IV. FORMALIZATION OF THE PROTOCOL

We now present the main aspects of the formalization of the
Chord protocol22, taking inspiration in both the presentation of
Chord in [22], referred to as PODC in the rest of this section,
and in P. Zave’s recent work [44].

A. Data Structures

The main concept in our model is that of a node, which
corresponds to a Chord node identifier (we conflate Chord
nodes, their IP address, and their identifier). As explained
before, node (identifiers) are ordered totally.

Recall that a node also maintain a list of successors: its
purpose is to recover from failures, and its length defines a
threshold for fault tolerance for Chord. To ensure that each
node always remains connected to the network after a failure,
the minimum length of this list is 2. For the sake of readability,
we only show a model with successor list of size 2. Actually,
we “unfold” this list and represent it as the datum of two fields
fst (“first”) and snd (“second”). We made this choice because
using lists here would make the use of explicit quantification
over all possible lists necessary, a fact that is easily overlooked
and that, more importantly, is costly in terms of space.

Finally, to ensure maintenance operations, each node also
holds a pointer prdc to its predecessor in the network. These

1Cf. https://haslab.github.io/Electrumhttps://haslab.github.io/Electrum.
2The full model is available at https://doi.org/10.5281/zenodo.1322052https://doi.org/10.5281/zenodo.1322052.

three fields may mutate, depending on various events hap-
pening in the network, hence they are marked as variable.
Technically, each of this field denotes a partial function from
nodes to nodes, which is specified using the lone multiplicity
(meaning “0 or 1”):

open util/ordering[Node] // total ordering on nodes
sig Node {
var fst, snd, prdc: lone Node,
var todo: Status → Node }

The todo field, also present in the declaration, represents
pending operations that the node will have to perform over
another node (hence this field denotes a ternary relation):
its use will be detailed later. There are two kinds of such
operations, described by a so-called status (its formalization
is a way of saying that it is an enumeration):

abstract sig Status {}
one sig Stabilizing, Rectifying extends Status {}

A node is a member of the Chord network if its successor
pointers effectively point to some nodes (i.e. the pointers are
not null). This is neatly expressed by introducing a variable
subset signature that takes its elements among nodes but the
valuation of which may change at every instant33:

var sig members in Node {}
fact membersDef {
always members = {n: Node | some n � fst && some n � snd}}

Now, at every instant, the successor of a node is the first
living node among its successors. We specify this as a partial
function succ which states that the successor of a node is its
fst field if this field is a member, and its snd field otherwise.

fun succ: Node → lone Node {
{ m1, m2: members | m1 � fst in members ⇒ m2 = m1 � fst

else m2 = m1 � snd } }

Using this definition, we can define ring members as mem-
bers belonging to the cycle maintained by Chord. This is once
again expressed as a variable subset signature, the elements
of which are those that can all reach themselves through the
transitive closure (^) of succ:

var sig ring in members {}
fact ringDef {
always ring = { m : members | m in m � ^succ } }

Finally, the set of appendages can simply be defined as
those members that are not ring members:

fun appendages: set Node { members − ring }

B. Network Properties

As nodes are arranged into a cyclic network, their ordering
must take into account the fact that the successor of the largest
node identifier is the smallest one. Besides, we will often need
to compare nodes by checking whether one node is between
two others. This is reflected by the following definitions:

3always is the classic G (or �) connective of LTL; some applied to an
expression means “not null”; and � is the relational join akin, here, to function
application

https://haslab.github.io/Electrum
https://doi.org/10.5281/zenodo.1322052


fun nextNode: Node → Node {
{ n, m: Node | no next[n]

implies m = first else m = next[n] } }
pred between [n1, nb, n2: Node] { // ’lt’ is ’<’
lt[n1, n2] implies (lt[n1, nb] and lt[nb, n2])
else (lt[n1, nb] or lt[nb, n2]) }

In Sect. IISect. II, we defined the key properties of Chord networks,
called Valid and Ideal. The former is the conjunction of five
properties: (1) there is at least one ring; (2) there is at most
one ring; (3) any appendage node can reach a ring member by
following successor pointers; (4) non-loopiness: there cannot
be a ring member between a ring member and its successor;
(5) successor list validity: the first successor of any member is
between the member itself and the member’s second successor.

pred valid { atLeastOneRing and atMostOneRing and
orderedRing and connectedAppendages and
orderedSuccessors }

pred atLeastOneRing { some ring }
pred atMostOneRing { all m1, m2: ring | m1 in m2 � ^succ }
pred connectedAppendages {
all m1: appendages | some m2: ring | m2 in m1 � ^succ }

pred orderedRing { // = non−loopy
all disj m1, m2, mb: ring |
// ’disj’ = ’all different’
m2 = m1 � succ implies not between[m1, mb, m2] }

pred orderedSuccessors { // successor list validity
all m: members | between[m, m � fst, m � snd] }

An ideal network is a valid one s.t. (1) every member is
in the ring (i.e. there are no appendages); (2) the fst and
prdc functions are mutual inverses (local consistency) (3) the
successor list of any member of the network contains the first
2 nodes that follow it in the network.

pred ideal {
valid and no appendages and fst = ∼prdc
// ’∼’ means ’transpose’
all m: members { m � snd + m � fst in members

m � snd = m � fst � fst } }

C. Chord Events

1) An Action Layer: To model Chord events, we rely on
an experimental action layer recently added to Electrum [1616]
that makes specification of transition systems much leaner.
Actions are introduced by the keyword act and may take
arguments. Their body is a conjunction of constraints referring
to the current instant or the one following it immediately. The
set of possible traces is automatically defined; notice that it
implements (as of writing this article) an interleaving model
of time: at every instant, exactly one action happens. Finally,
an action comes with a modifies clause that contains the
names of variable signatures and fields that the action may
modify: an implicit fact then states that all other ones remain
invariant under this action (this is usually called the action
frame condition).

2) Communication Model: Following [44], our operations
are atomic actions that may read and modify variables on at
most two nodes. Compared to an asynchronous model, this is
a shared-state abstraction that, in particular, hides the fact that

nodes communicate through queued messages. Notice finally
that the PODC paper states that communication is assumed to
be reliable.

3) Events: The join action modifies fst, snd and prdc
fields, and members and ring variable signatures. Under a join
action, the joining node new must not be a member already. In
PODC, the informal description of this event states that new
contacts any node of the network and then makes a query to
find a node m such that new is between m and its first successor.
In our model, we abstract this query, assuming there is an
oracle to determine this m. This abstraction does not affect the
correctness of the protocol. Indeed, seeking the best position
for the incoming node is an implementation and performance
detail. Then new gets its pointers fst and snd from m and takes
the latter as its predecessor44.

act join [new: Node]
modifies fst, snd, prdc, members, ring {
new not in members
some m: members {
between[m, new, m � fst] and fst’ = fst ++ new→m � fst
snd’ = snd ++ new→m � snd and prdc’ = prdc ++ new→m}}

Failures (or leavings) may happen too. When a member
fails, it should empty all its fields. Besides, we take as an
hypothesis that a node failure should not happen if it would
leave another member with absolutely no live successors,
meaning we forbid too many failures from happening on the
same node to the point where it would completely break
the network (this models the PODC failure assumptions: the
protocol is indeed not able to fix networks split in several
components that are mutually unreachable). Here, as there
are only two successors per node, this requirement is easily
modelled by stating that any node which points at the failing
node using the succ relation keeps at least one of its two
successors live when the failure happens.

Stabilization consists in fixing the first successor of a node.
As in [44], stabilization is split here into two actions, depending
on whether the concerned node has pending operations to do.
This is shown in its todo field. We remark that, contrary to
P. Zave, we may store several pending operations for a given
node (otherwise, the field could be overwritten, which leads
to a benign bug that we found during our analyses).

When there is not any pending operation for this node m
(stabilizeFromFst action), it may contact its first successor.
If the latter is dead (not a member), then m should update its
fst field with its snd successor. The latter must also, in that
case, be updated: to maintain the atomicity of the action, m
should not contact any other node to get a new value for its
snd. The solution here is just to take the immediate successor
in the ring ordering. If it corresponds to no node, it will be
fixed later by other events.

Otherwise, if the fst is a member, its value does not have to
change but we update the snd as a small optimization. Besides,

4In the formalization, e.g. in the fourth line, fst’ represents the value of
fst in the next instant; new→m � fst is the pairing of new and m � fst; and
++ stands for the relational override. All in all, the line says that fst’ is the
current fst except in new where fst’ will yield m � fst.



we check if fst’s predecessor is not null and is better than
m’s first successor: if that is the case, the second form of
stabilization (stabilizeFromFstPrdc) should be programmed;
otherwise, m asks its first successor to program a future rec-
tification with itself, meaning the first successor must ensure
that m is its predecessor.

act stabilizeFromFst[m: Node]
modifies fst, snd, todo, members, ring {
m in members
no m � todo � Node // no pending operation
m � fst not in members implies {
todo’ = todo and fst’ = fst ++ m→m � snd
snd’ = snd ++ m→nextNode[m � snd] }

else {
fst’ = fst and snd’ = snd ++ m→m � fst � fst
(some m � fst � prdc and between[m, m � fst � prdc, m � fst])
implies todo’ = todo + m→Stabilizing→m � fst � prdc
else todo’ = todo + m � fst→Rectifying→m } }

The second form of stabilization (stabilizeFromFstPrdc)
may happen when a stabilization operation is pending: this
is the case when a better candidate has been found for m � fst
(during an stabilizeFromFst event). The first thing to do is to
check whether the candidate would indeed, still, make a better
fst. Besides, if the candidate is not even a member anymore,
the operation must be cancelled. Otherwise, the fst field must
be updated with the candidate (and the snd field is updated as
well, with the candidate’s fst field). Finally, this candidate is
also told to rectify its predecessor later with m itself.

act stabilizeFromFstPrdc [m, newFst: Node]
modifies fst, snd, todo, members, ring {
m in members and between[m, newFst, m � fst]
m→Stabilizing→newFst in todo
newFst not in members implies {
todo’ = todo − m→Stabilizing→newFst
fst’ = fst and snd’ = snd }

else {
fst’ = fst ++ m→newFst
snd’ = snd ++ m→ newFst � fst
todo’ = todo − (m→Stabilizing→newFst)

+ (newFst→Rectifying→m) } }

Finally, the rectify action aims at fixing a node m’s pre-
decessor: it may only happen if a rectification has been
programmed. There are then three possibilities: (1) if m’s
predecessor is null or if the new candidate is better, then the
predecessor should be updated to the candidate; (2) otherwise,
if the current predecessor is not a member, the update is done
too; (3) otherwise, m’s predecessor is left as is.

D. Traces

As explained at the beginning of this section, the shape of
traces is automatically set by the Electrum action layer. At any
instant, exactly one event happens.

A Chord network must run indefinitely. Nevertheless when
the network becomes ideal, if there are no more join and fail,
the network will deadlock. To avoid this concern, we also add
a skip action, which is a silent action that leaves everything
unchanged and does nothing.

act skip {} // does nothing, modifies nothing

Notice that we also impose that, in every trace, there are
always at least three live nodes: this is due to the fact that
the network should always have a size strictly greater than the
size of successor lists.

E. Initial State

Concerning the initial state, we specify that the ring is the
ideal state (and no node has pending operations and non-
member nodes do not have a predecessor).

fact init { no nonMembers � prdc and no todo and ideal }

Notice that it is stronger than the original claim made in the
PODC paper (proved wrong in [66]). [44] exhibits an invariant
stronger than validity. Although Electrum alleviates us from
expressing such an invariant, we still need to ensure that the
initial state satisfies it. Saying that the network starts in an
ideal state avoids formulating that property explicitly: it is in
our view not that strong an hypothesis as a Chord network
may start with a very small size.

F. Correctness

1) Basic Properties: Using the Electrum Analyzer, we
checked that the specification is consistent (i.e. it admits a
model, in the logical sense) and that all branches of all actions
are realizable.

2) Correctness Statement: The correctness property for the
Chord protocol is a liveness property. The translation from
the PODC paper is straightforward thanks to LTL: it states
that if there are, eventually, never any join or fail events, then,
eventually, the network will become ideal and remain so (recall
the inital state is set in Sect. IV-ESect. IV-E). This is expressed by an
Electrum assertion:

assert correctness {
(eventually always not (join or fail))
implies eventually always ideal }

3) Fairness: Checking this assertion with the Electrum
Analyzer yields a counterexample that manifests itself as the
endless repetition of the skip action in some non-ideal state.
This is to be expected as the correctness property is a liveness
property: any action that may cause starvation to the ones
meant to fix the network will be a problem. Classically, the
solution is to add fairness constraints on the said actions. Here
we use strong fairness constraints, saying for instance that if
the guard of rectify is infinitely often satisfied, then the effect
of rectify will be satisfied infinitely often:

pred rectifyEnabled[m, n: Node] {
m in members and m→Rectifying→n in todo }

fact fairness {
all n, m : Node |
(always eventually rectifyEnabled[n,m])
implies (always eventually rectify[n,m]) }

We added such constraints for all stabilization and rec-
tification actions. Doing so excludes the kind of starvation
described above. Actually, it corresponds to a requirement in
the PODC paper that says that nodes should perform these
actions “periodically”.



4) Corner Cases: During our analysis of correctness, we
were able to find a few benign corner cases in P. Zave’s
model. They were all found in a matter of seconds, simply by
checking the correctness property (the ease of finding them
comes in our view from the fact that the use of the LTL
layer of Electrum helps circumvent the risk of overlooking
some verifications to be done). This led to make a few simple
fixes w.r.t. her model (e.g. using a todo field to gather several
pending operations instead of only one).

5) Liveness Bug: However, the correctness property is still
wrong: checking the assertion in the Electrum Analyzer yields
a trace with six time instants, the last one looping back in its
predecessor (we recall that traces are infinite and represented
as finite traces with a back loop from the last state to a former
one). We present in Fig. 4Fig. 4 these last two steps only. In the first
one, a stabilizeFromFst[Node$3] event is performed: Node$3
contacts it immediate successor (which is in the ring) and
learns from it that Node$0 may be a better first successor. Then
it programs a stabilizeFromFstPrdc action for itself and this
new candidate.

In the following instant, the said action is performed but, as
Node$0 happens not be a member, the stabilization operation
is cancelled. A rectification on Node$1 would be needed
here, for it to take Node$3 as its predecessor, but a thorough
analysis show that there is no way to trigger it by any of the
stabilization actions.

6) Fixed Model: We fix this by adding another rectifica-
tion action that is not triggered by other actions but done
“periodically” by the nodes themselves (i.e. we also add
a strong fairness constraint for this new action; note that
such an operation was actually present in the original Chord
papers). As nodes cannot guess who they should take as a new
predecessor, they should just set their predecessor pointer to
null if it points to a non member. The bet here is that, by
other operations, the said node will eventually find a correct
predecessor.

act rectifyNull[m: Node] modifies prdc, members, ring {
m in members
m � prdc not in members
implies prdc’ = prdc − m→m � prdc else prdc’ = prdc }

Checking the correctness assertion, once this has been
added, yields no counter-example anymore.

V. EVALUATION OF RESULTS

This section presents the evaluation of various properties as
well as that of the final correctness property with the Electrum
Analyzer. The verification is performed on a GNU/Linux-
based work station featuring an Intel Xeon E5-2699 providing
512 GB RAM (time-out was set to 5 h.).

Depending on the analyses to perform, we relied on the
bounded and unbounded model-checking techniques (BMC
and UMC) provided by the tool: the former relying on either
a translation to BMC over Minisat (performed by an Electrum
extension of Alloy’s Kodkod pivot solver) or to the BMC mode
of nuXmv (check_ltlspec_bmc_inc algorithm); and the latter
through the ultimate compilation to the nuXmv model checker

Fig. 4. Counterexample to correctness (loop part). Step 1 of the
loop: a stabilizeFromFst[Node$3] is done; step 2 of the loop: a
stabilizeFromFstPrdc[Node$3, Node$0], then loop back to step 1.

TABLE I
TIME (S.) FOR CORRECTNESS ANALYSES (BUGGY AND FIXED CASES).

Prop. Scope M 10 M 15 XB 10 XB 15 XU

buggy 4 5 5 9 9 36

fixed 4 69 1 316 21 260 558

fixed 5 1 060 t/o 549 t/o t/o
fixed 6 11 506 t/o 6 930 t/o t/o
fixed 7 t/o t/o t/o t/o t/o

running the check_ltlspec_klive procedure [1515]. As it is
usually far more efficient, we always favored using the BMC
technique when we were expecting to end up with an instance
or a counter-example to a given property.

Although we do not report in detail on all properties due
to lack of space, we first checked that our model is consistent
(i.e. it admits an instance) and that all action branches are
realizable. All these analyses ended positively in at most 10 s.
using the BMC mode of the Electrum Analyzer.

We present in Table ITable I the results for finding the liveness
bug of Sect. IV-F5Sect. IV-F5 and to check the correctness property for
the fixed model (time in seconds; “t/o” means “time-out”; M
is for BMC over Minisat, XB is for nuXmv in BMC mode,
and XU is for nuXmv in UMC mode; for bounded modes, we
considered bounds of 10 and 15 states).

As can be seen, correctness can be checked by the bounded
analyzer for networks with 4-6 nodes and a time bound of 10
(4 nodes for a time bound of 15), while the unbounded Elec-
trum analyzer yields a result for networks with 4 members only
(taking into consideration that a basic ring already contains at
least three nodes). This limitation in the size of the network
with nuXmv is compensated by the fact that verification is
exhaustive. For equal network sizes, the bounded version of
Electrum Analyzer is faster than the unbounded one, as can
be expected for valid properties. Finally, in bounded mode,
nuXmv is faster than the Electrum implementation of BMC
over Minisat, for the fixed model.



VI. DISCUSSION

In this section, we would like to stress some important
aspects of this work.

First, we modelled the Chord protocol in a very straightfor-
ward way thanks to the ease of use of Electrum. Compared
with previous work, first-order relational logic, temporal logic
and the action setting (with automatic handling of frame con-
ditions and interleaving), combined with the push-button ap-
proach and visual feedback of the Electrum Analyzer, allowed
us to quickly implement and test various approaches. Our
model is inspired by important work of P. Zave, in particular
its last incarnation [44], in that it essentially implements the
same algorithm. But, we argue that our model is simpler, in
particular because we do not have to deal with the details of
state representation and because expressing complex temporal
formulas over infinite traces is immediate.

Compared to P. Zave’s analysis with SPIN [55], our mod-
elling is also more straightforward as the author had to resort
to various C programs to handle the graph notions present in
Chord as well as visualization.

Second, due to this very reliance on LTL, we did not have
to look for an inductive invariant to study the protocol. The
search for the said invariant has been very arduous [44]–[88],
but also illuminating: an invariant is not only a means of
verification but also a way to understand a protocol better and
to provide indications to developers. Notice also that Zave’s
invariant can actually be checked in Electrum exactly as in
Alloy, with performances in the same order of magnitude. For
these reasons, we think that Electrum may be used in early
analysis and provide some help into finding the said invariant.

Third, we were able to find some corner cases in the Alloy
model as well as the manual proof of [44] that were confirmed
by P. Zave. In particular, the claimed invariant is indeed one
but it is not strong enough to prove the protocol correctness.
Fortunately, these issues were rather easy to fix.

Fourth, it is sometimes claimed that liveness “in the ab-
stract” is not that important as what one really longs for is
bounded liveness, which is actually a safety property. Our
work confirms that straightforward temporal specification in
LTL and pure liveness analysis are useful to find various issues
(including a too weak invariant).

Finally, although limited to very small networks, our analy-
sis is, up to our knowledge, the first “push-button” analysis of
the actual correctness property of Chord, which is a liveness
property.

We have insisted in this paper on P. Zave’s work as this has
been an important one but also because it served as a basis to
lots of other works. However, the main recent work [1717] relies
on manual proofs in Coq and proves a safety property over
Raft. [1818] features an interesting mostly-automated approach
but also focuses on an invariant proof. More recent work by
the same authors [1919] addresses liveness properties (for other
protocols) but still with manual interaction.

In another line of work, [2020] relied on π-calculus and for a
bisimulation proof of the correctness of a very simple version
of Chord (without failures). The proof was purely manual.

Besides, other distributed system protocols have been for-
mally studied using “high-level” specification languages. For
instance, Pastry was analyzed using TLA+ [2121] and other work
used Event-B [2222] to partly verify other protocols. However,
these studies are limited to the verification of safety properties.

VII. CONCLUSION

This work presented the specification and verification of
the Chord distributed protocol. We highlighted the usefulness
of a lightweight modeling method that allows modeling and
verifying dynamic systems with rich structural properties, as
exemplified by Electrum (in particular with its action layer).
Electrum allowed a simple and straightforward modeling of
both structural and temporal properties of Chord, with a rather
high abstraction level and without losing the key concepts of
the protocol.

The analysis of the Chord model with the Electrum An-
alyzer is fully automated (on a bounded domain), which
implies that the cost of entry is rather lower than many other
formal methods. This analysis allowed us to find a few minor
issues in the most important previous work (in which we took
inspiration) and to show that the invariant there is not strong
enough. We were able to fix all issues. Up to our knowledge,
this is the first work analyzing the correctness of Chord, a
liveness property, in a “push-button” way.

As of now, this analysis is admittedly limited in the size of
networks, in particular for unbounded model checking. This
was expected to us as one of the reasons to study Chord,
for us, was to get a challenging test bed for our unbounded
model-checking back-end. On the other hand, even with small
networks and bounded model-checking, we were able to find
various shortcomings in previous work, which confirms the
interest on working even with small instances.

In the future, we will work both on improving Electrum and
its analysis tools, and on the Chord protocol. For the former
aspect, we will investigate smarter verification techniques, both
on the bounded and unbounded sides (the latter is in particular,
as of now, implemented in a naive way). For the latter aspect,
we will investigate imperfect detection of failures.
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