
Rely-Guarantee Reasoning for Automated Bound Analysis
of Concurrent Shared-Memory Programs [3]

Thomas Pani* †, Georg Weissenbacher*, Florian Zuleger*
* TU Wien, † Wolfgang Pauli Institute

Rely-Guarantee Reasoning for Automated Bound Analysis
of Concurrent Shared-Memory Programs [3]

Thomas Pani* †, Georg Weissenbacher*, Florian Zuleger*
* TU Wien, † Wolfgang Pauli Institute

Bound analysis
is a static program analysis that determines
upper bounds on a program’s resource usage.

•Many approaches for sequential, impera-
tive programs [GZ’10, ADFG’10, AAGP’11,
FH’14, BEFFG’16, CHRS’17, SZV’17, …].
•We lift bound analysis to concurrent (pa-
rameterized) shared-memory programs.

Resource usage

•Costmodel assigns each instruction a cost
(CPU time, memory, network, …).
• Here: each control-flow edge has constant
cost (back edges: runtime complexity).

Non-blocking algorithms
Use strong synchronization primitives like compare-and-
swap (CAS) to circumvent shortcomings of lock-based
concurrency: deadlocks, priority inversion, …Prominently
used in lock-free data structures:
• Treiber’s stack, Michael-Scott queue (Java:
ConcurrentLinkedQueue), DGLM queue, …

Treiber’s stack: push()
n := new Node;
do { o := TOP; n.next = o; }
while (!CAS(TOP, o, n))

⊥
TOP

Thread 1

Thread 2

Implementation pattern for
non-blocking algorithms
1. Read the global state .
2. Locally prepare update.
3. Synchronize on global state to make local update
globally visible:

(a) If the global state has not changed since (1),
apply the update.

(b) Otherwise, repeat from (1).

Runtime complexity

• Depends on interference by other threads, i.e.,
the number of concurrently running threads N .

Analysis of non-blocking
algorithms
Manual liveness / bound analysis is hard:
1. Amount of interference affects a
thread’s complexity:
• to infer resource bounds on a sin-
gle thread: reason about unbounded
number of threads N .

2. Fine-grained concurrency:
interference may occur anywhere.

Problem statement
Given an abstract data type with operations op1, …, opM:
• Build a general data type client P = op1() [] . . . [] opM().
• Compose N concurrent copies of P : P1 ∥ · · · ∥ PN .
• For all N > 0, compute bounds on P1 when executed
concurrently with P2 ∥ · · · ∥ PN .

Unbounded number of threads? Abstract!
Extend rely-guarantee reasoning [1].

Rely-guarantee is too coarse
for bound analysis
RG abstracts
• thread IDs
• the order of environment actions
•how often environment actions are executed

Our abstraction
R,G are sets of pairs of a transition relationRi and
a bound expression bi: {(R1, b1), . . . , (Rm, bm)}.
bi bounds how often Ri can be executed.

Inference rules
Natural extension of Jones’ rules:

R +G1 ⊢ {S1} P1 {S ′
1}

R +G2 ⊢ {S2} P2 {S ′
2} PƺǋR,G1 +G2 ⊢ {S1 ∧ S2} P1 ∥ P2 {S ′

1 ∧ S ′
2}

+ defined on compatible transition relations:

{(R1, b1), . . . , (Rm, bm)} + {(R1, c1), . . . , (Rm, cm)}
def
=

{(R1, b1 + c1), . . . , (Rm, bm + cm)}

RG bound analysis algorithm
Main idea: Reduce RG bound analysis to se-
quential bound analysis. Iteratively refine envi-
ronment bounds from local bounds.

program P invariant analysis

invariant Inv environment actions Ainitial rely
R = (∞, . . . ,∞)

R, ? ⊢ {Inv}P {true}
over actions A

instrument Inv,R to enforce bounds

program Instr(R) ∥ P

seq. bound analyzer

correct by construction G

by symm., obtain refinedR′ from G

R′ ⊊ R?

return G

letR = R′

no

yes

Case studies
• Implemented RG bound analysis in our tool
CǈƺƼǁǆƺǇ [2].
• First to automatically infer linear complexity
of well-known concurrent data structures:
–Treiber’s stack, MS queue, DGLM queue

Rely-guarantee (RG) reasoning [1]
Introduced by Jones for safety.
Judgements:

R,G are transition relations.

Meaning

If
• the initial state satisfies P , and
• every global state change by another thread is inR
then
• every global state change by C is in G , and
• every final state satisfies Q.

Ongoing & Future Work
Extensions to the bound analysis

• Algorithmswhere complexity depends on the shape
of the data structure (e.g., iterating a list)

Extensions to support other algorithms / protocols
• Distributed algorithms, cache coherence protocols
•Wait-free data structures (guarantee starvation-
freedom)
• Data structures where complexity depends on
stored data values (sets or counters)
• Other shapes, such as doubly-linked lists or trees

Practical improvements
• Optimize implementation in CǈƺƼǁǆƺǇ

References
[1] C. B. Jones. “Specification and Design of (Parallel) Programs”. In: IFIP Congress. 1983.
[2] Coachman. https://github.com/thpani/coachman.
[3] T. Pani, G. Weissenbacher, and F. Zuleger. “Rely-Guarantee Reasoning for Automated Bound Anal-
ysis of Lock-Free Algorithms”. In: FMCAD 2018. pani@forsyte.at

Main contributions
1. First extension of RG reasoning to bound analysis.
2. Reduce b.a. of concurrent programs to b.a. of sequen-
tial programs.

3. Automatically infer linear complexity of well-known
concurrent data structures.


