
Prioritizing Lemma Pushing
Hari Govind V K1, Arie Gurfinkel1, Yakir Vizel2 and Vijay Ganesh1
1Department of Electical and Computer Enginerring, University of Waterloo

2Technion - Israel Institute of Technology

OBSERVATION

In IC3 based algorithms, order of pushing lemmas has significant effect on performance

RESEARCH CHALLENGE

Finding a good ordering heuristic : static, dynamic, ML based?

SAFETY

Given an initial state Init and a transition relation Tr, check whether
all reachable states satisfy property P
e.g. : adding up numbers

Init : count = 0
sum = 0

Tr : count++
sum+=count
if(count==10)

count=0
sum=0

P : sum ≤ 45

To prove safety, many algorithms construct an inductive invariant Inv
such that Init⇒ Inv Inv ∧ Tr ⇒ Inv Inv ⇒ P

sum = count ∗ (count + 1) ∗ 0.5 ∧ count ≥ 0 ∧ count < 10

INCREMENTAL PROOFS

IC3 based Model Checking algorithms construct Inv incrementally

•Prove P at some bound
• Conjoin several lemmas to prove the property

sum = count ∗ (count + 1) ∗ 0.5 ∧ count < 10 proves P at a bound
•Add supporting lemmas to push the lemmas to higher frames

adding count ≥ 0 makes it inductive

SUPPORT SET

Set of lemmas required to push a lemma to the next higher frame
SS(sum = count ∗ (count + 1) ∗ 0.5) :

{ sum = count ∗ (count + 1) ∗ 0.5,
count ≥ 0 }

Consider pushing 2 lemmas C1 and C2 (C1 in two different orders
• C1 first then C2 : 2 different proofs, wasted effort
• C2 first then C1 : since C2⇒ C1 We get C1 for free after the first
proof

Pushing count ≥ 0 makes count ≥ 0∧sum = count∗(count+1)∗0.5
an inductive invariant
Without count ≥ 0, sum = count ∗ (count + 1) ∗ 0.5 would have to
be pushed to all bounds

0 200 400 600 800
order1 : time to push

0

200

400

600

800

or
de

r2
 :

tim
e

to
 p

us
h

pushing times with different lemma push orders

Figure 1: AVY with 2 different static orderings. Along each axis is the time (in seconds)
the solver spent on pushing. Order of pushing has a lot of impact on pushing time.

WHICH LEMMA TO PUSH FIRST ?

Prioritize lemmas with
•high utility
• low effort to push

UTILITY OF A LEMMA

Define
•Utility(P) =1
•Utility(L) = Σ{l|L∈SS(l)}Utility(l)
Dynamic : can change every time a lemma is pushed

EFFORT TO PUSH

Pushing lemmas from frame to frame is a repetition of previous proofs
at higher bounds
Estimate the effort required from past experiences of pushing the lemma

UTILITY AND SUPPORT SETS

Different ways of computing support sets ⇒ different utility values
Consider pushing the lemma count ≤ 10 in two different ways
1) count ≤ 10 ∧ count 6= 10 ∧ Tr ⇒ count′ ≤ 10

SS = {count 6= 10, count ≤ 10}
2) count ≤ 10 ∧ Tr ∧ count′ ≤ 10 ∧ Tr ⇒ count′′ ≤ 10

SS = {count ≤ 10, count′ ≤ 10}
By leveraging k-induction, the number of distinct lemmas in the support
set can be minimized
Greedily minimize support set 6⇒ minimal aggregate push effort

Aiming for lemma re-use is better

REFERENCES

•Aaron R. Bradley SAT-based model checking without unrolling. In VMCAI 2011
•Ryan Berryhill, Alexander Ivrii, Neil Veira, Andreas G. Veneris Learning support sets in IC3 and Quip: The good, the bad, and the ugly. In FMCAD 2017
•Yakir Vizel, Arie Gurfinkel Interpolating Property Directed Reachability. In CAV 2014
•Arie Gurfinkel, Alexander Ivrii Pushing to the Top. In FMCAD 2015 hgvedira@uwaterloo.ca

