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OBSERVATION

In IC3 based algorithms, order of pushing lemmas has significant effect on performance

RESEARCH CHALLENGE

Finding a good ordering heuristic : static, dynamic, ML based?

SAFETY

Given an initial state Init and a transition relation Tr, check whether
all reachable states satisfy property P
e.g. : adding up numbers

Init : count = 0
sum = 0

Tr : count++
sum+=count
if(count==10)

count=0
sum=0

P : sum ≤ 45

To prove safety, many algorithms construct an inductive invariant Inv
such that Init⇒ Inv Inv ∧ Tr ⇒ Inv Inv ⇒ P

sum = count ∗ (count + 1) ∗ 0.5 ∧ count ≥ 0 ∧ count < 10

INCREMENTAL PROOFS

IC3 based Model Checking algorithms construct Inv incrementally

•Prove P at some bound
• Conjoin several lemmas to prove the property

sum = count ∗ (count + 1) ∗ 0.5 ∧ count < 10 proves P at a bound
•Add supporting lemmas to push the lemmas to higher frames

adding count ≥ 0 makes it inductive

SUPPORT SET

Set of lemmas required to push a lemma to the next higher frame
SS(sum = count ∗ (count + 1) ∗ 0.5) :

{ sum = count ∗ (count + 1) ∗ 0.5,
count ≥ 0 }

Consider pushing 2 lemmas C1 and C2 ( C1 in two different orders
• C1 first then C2 : 2 different proofs, wasted effort
• C2 first then C1 : since C2⇒ C1 We get C1 for free after the first
proof

Pushing count ≥ 0 makes count ≥ 0∧sum = count∗(count+1)∗0.5
an inductive invariant
Without count ≥ 0, sum = count ∗ (count + 1) ∗ 0.5 would have to
be pushed to all bounds
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Figure 1: AVY with 2 different static orderings. Along each axis is the time (in seconds)
the solver spent on pushing. Order of pushing has a lot of impact on pushing time.

WHICH LEMMA TO PUSH FIRST ?

Prioritize lemmas with
•high utility
• low effort to push

UTILITY OF A LEMMA

Define
•Utility(P ) =1
•Utility(L) = Σ{l|L∈SS(l)}Utility(l)
Dynamic : can change every time a lemma is pushed

EFFORT TO PUSH

Pushing lemmas from frame to frame is a repetition of previous proofs
at higher bounds
Estimate the effort required from past experiences of pushing the lemma

UTILITY AND SUPPORT SETS

Different ways of computing support sets ⇒ different utility values
Consider pushing the lemma count ≤ 10 in two different ways
1) count ≤ 10 ∧ count 6= 10 ∧ Tr ⇒ count′ ≤ 10

SS = {count 6= 10, count ≤ 10}
2) count ≤ 10 ∧ Tr ∧ count′ ≤ 10 ∧ Tr ⇒ count′′ ≤ 10

SS = {count ≤ 10, count′ ≤ 10}
By leveraging k-induction, the number of distinct lemmas in the support
set can be minimized
Greedily minimize support set 6⇒ minimal aggregate push effort

Aiming for lemma re-use is better
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