Finding Critical Clauses in SMTbased Hardware Verification

Makai Mann, Clark Barrett

Stanford University

Hardware Verification

- Still faces scaling issues, particularly for data-path properties
- Satisfiability Modulo Theories (SMT) can reason at a higher level of abstraction
 - Lazy approaches usually not competitive with SAT (yet)
 - But there's hope

Evidence of Hope

- Checking data integrity of FIFO implementation
 - No packet is dropped
 - No packets are swapped
- Compare to SAT-based, unnamed, commercial model checker
- Helping both solvers
 - Lemmas
 - Encoding Tricks
 - Huge speed-up for lazy SMT

Three Approaches for Identifying Critical Clauses

Modular Techniques

- Identify invariants known at designtime
- Minimize inference solver has to do
- Particularly useful for transformations

Statistical Techniques

- "Offline" learning learn from previous unroll in BMC
- "Online" learning learn good splitting literals
- Early-stage research in SAT-based BMC, learning from resolution proofs

Transition Relation Techniques

Clause lifting in BMC

 Reduce redundant path explorations

- Reachability algorithms
 - Using SMT
 - Guide SMT BMC

Thank you!

Poster on Thursday