

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver	TCP Receiver action
Arrival of in-order segment with expected seq #. All data up to expected seq # already ACKed	Delayed ACK. Wait up to 500ms for next segment. If no next segment, send ACK
Arrival of in-order segment with expected seq #. One other segment has ACK pending	Immediately send single cumulative ACK, ACKing both in-order segments
Arrival of out-of-order segment higher-than-expect seq. # . Gap detected	Immediately send <i>duplicate ACK</i> , indicating seq. # of next expected byte
Arrival of segment that partially or completely fills gap	Immediate send ACK, provided that segment starts at lower end of gap
	TCP Congestion Control (Simon Lam)

<u>Modeling TCP Throughput: A Simple</u> <u>Model and its Empirical Validation,</u> <u>Proc. ACM SIGCOMM, 1998</u>

> Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose

- More accurate steady-state throughput formula as a function of loss rate and RTT by also accounting for TO behavior of a TCP connection
- Formula applicable over a wider range of loss rates
- Explicit statements of assumptions and approximations used in derivation of throughput formula
- Formula to include the impact of a small rwnd

TCP Congestion Control (Simon Lam) 39

$$Display the equation of the$$

Approximate solution for	r Q (cont.)
$A(w,k) = \frac{(1-p)^{k} p}{1-(1-p)^{w}}$	<- penultimate round of w packets, first k packets ack'd given there is a loss
$C(k,m) = (1-p)^m p, m \le k-1$ $C(k,m) = (1-p)^m, m = k$	<- for last round, k packets sent, m packets ack'd in sequence
$\hat{Q}(w) = 1$ if $w \le 3$ = $\sum_{k=0}^{2} A(w,k) + \sum_{k=3}^{w} A(w,k) \sum_{m=0}^{2} C(k,m)$ if $w \ge 4$	<- at most 2 dupACKs <- probability of fewer than 3 packets sent successfully in penultimate round or less than 3 acks in last round TCP Congestion Control (Simon Lam) 53

Approximate solution for Q (cont.)

After algebraic manipulations, we have

$$\hat{Q}(w) = \min\left(1, \frac{(1 - (1 - p)^3)(1 + (1 - p)^3(1 - (1 - p)^{w - 3}))}{1 - (1 - p)^w}\right)$$

Observe (for example, using L'Hopital's rule) that

$$\lim_{p\to 0} \hat{Q}(w) = \frac{3}{w}$$

Numerically we find that a very good approximation of \hat{Q} is

$$\hat{Q}(w) \approx \min(1, \frac{3}{w})$$

Q is $E[\hat{Q}(w)]$

But we don't know the probability distribution of W_i

Approximation $Q \simeq \hat{Q}(E[W]) \simeq \min(1, \frac{3}{E[W]}) \simeq \min(1, 3\sqrt{\frac{3bp}{8}})$ TCP Congestion Control (Simon Lam) 54

-	am		<u> </u>	_			<u> </u>	-	0			uc	
Sender	Receiver	Packets	Loss	TD	T_0	T_1	T_2	T_3	T_4	T_5	RTT	Time	
		Sent	Indic.							or more		Out	- Seturated TCD
manic	alps	54402	722	19	611	67	15	6	2	2	0.207	2.505	D Saturated ICF
manic	baskerville	58120	735	306	411	17	1	0	0	0	0.243	2.495	sender
manic	ganef	58924	743	272	444	22	4	1	0	0	0.226	2.405	
manic	mafalda	56283	494	2	474	17	1	0	0	0	0.233	2.146	□ p computed
manic	maria	68752	649	1	604	35	8	1	0	0	0.180	2.416	from dividing
manic	spiff	117992	784	47	702	34	1	0	0	0	0.211	2.274	rom aiviaing
manic	sutton	81123	1638	988	597	41	7	3	1	1	0.204	2.459	total no of loss
manic	tove	7938	264	1	190	37	18	8	3	7	0.275	3.597	in all a shi and have
void	alps	37137	838	7	588	164	56	17	4	2	0.162	0.489	indications by
void	baskerville	32042	853	339	430	67	12	5	0	0	0.482	1.094	total number of
void	ganef	60770	1112	414	582	79	20	9	4	2	0.254	0.637	
void	maria	93005	1651	33	1344	197	54	15	5	3	0.152	0.417	packets sent
void	spiff	65536	671	72	539	56	4	0	0	0	0.415	0.749	
void	sutton	78246	1928	840	863	152	45	18	9	1	0.211	0.601	$\square RII and I_O$
void	tove	8265	856	5	444	209	100	51	27	12	0.272	1.356	values are
babel	alps	13460	1466	0	1068	247	8/	33	18	8	0.194	1.359	values alle
babel	baskerville	62237	1/55	197	146/	/0	10	5	0	0	0.253	0.429	averaged over
babel	ganet	800/0	2125	398	1080	58	2	1	0	0	0.201	0.306	entine 1-hour
babel	spin	J/08/ 02406	2220	405	939	157	20	/	1	0	0.331	0.955	enni e 1-noui
babal	sutton	82044	2520	083	1448	142	17	9	4	1	0.210	0.703	trace
mif	alma	03944	762	1	577	118	1/	16	0	3	0.194	7.370	
pir	aips	44901	1246	15	1044	104	40	21	0		0.220	0.700	
pir	magine	44891	1340	13	044	160	105	21	10	ر م	0.229	0.700	

Sender	Receiver	Packets	Loss	TD	T_0	T_1	T_2	T_3	T_4	T_5	RTT	Time		
		Sent	Indic.							or larger		Out		
manic	ada	531533	6432	4320	2010	93	7	2	0	0	0.1419	2.2231		
manic	afer	255674	4577	2584	1898	83	10	1	1	0	0.1804	2.3009		
manic	al	264002	4720	2841	1804	70	5	0	0	0	0.1885	2.3542		
manic	alps	667296	3797	841	2866	85	5	0	0	0	0.1125	1.9151		
manic	baskerville	89244	1638	627	955	42	11	2	1	0	0.4735	3.2269		
manic	ganef	160152	2470	1048	1308	89	18	б	1	0	0.2150	2.6078		
manic	mafalda	171308	1332	9	1269	48	5	1	0	0	0.2501	2.5127		
manic	maria	316498	2476	5	2362	99	8	2	0	0	0.1166	1.8798		
manic	modi4	282547	6072	3976	1988	99	8	1	0	0	0.1749	2.2604		
manic	pong	358535	4239	2328	1830	74	7	0	0	0	0.1769	2.1371		
manic	spiff	298465	2035	159	1781	75	14	4	2	0	0.2539	2.4545		
manic	sutton	348926	6024	3694	2238	87	5	0	0	0	0.1683	2.1852		
manic	tove	262365	2603	6	2422	135	30	8	2	0	0.1153	1.9551		
Eac 100	:h row) seco	rep nds i	res in d	ent ura	s re tior	esu n fo	lt: or	s c sc	of Im	100 [.] e S-	trac D pa	es e Iir	ach o	f
			mul	ativ	10 0	Ne	r 1	0) 1	trace	5			

