iSPY: Detecting IP Prefix Hijacking on My Own

Zheng Zhang, Ying Zhang, Y. Charlie Hu, Z. Morley Mao, Randy Bush (SIGCOMM 2008)

> April 23, 2010 Presented by Jaeyoun Kim

Table of Content

- 1. Introduction
- 2. BGP Prefix Hijacking
- 3. Key Observation
- 4. Design
- 5. Prefix-Owner-Centric Hijack Detection
- 6. Experiment
- 7. Discussion
- 8. Conclusion

1. Introduction – What's Prefix Hijacking?

- A special form of DoS Attack corrupting Internet routing tables
 - Bad BGP announcement Forwarding tables get polluted with bogus route
 - Malicious AS can send & receive traffic using addresses it does not own
 - Used for carrying out malicious activities
- Serious threat and hard to eliminate
 - Lack of authoritative info. on prefix ownership

3

Critical Requirements

- Prefix Hijack Detection System should satisfy all requirements
 - 1. Real-time
 - 2. Accurate
 - 3. Light-weight
 - 4. Easy to deploy
 - 5. Incentive to deploy
 - 6. Robust in Victim Notification

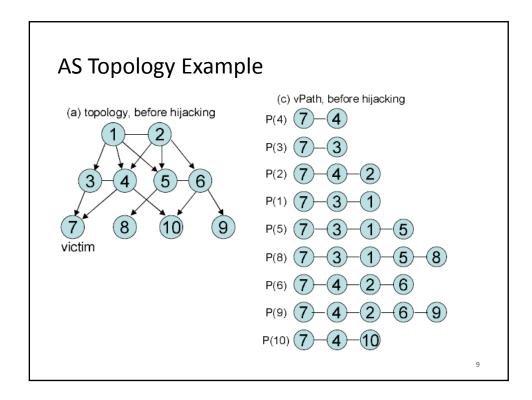
Existing Detection mechanisms

- Infrastructure-based detection
 - 1. Control-plane-based only
 - Easily deployable, yet needs live BGP feeds & fairly inaccurate
 - 2. <u>Control plane + Data plane</u> (joint analysis)
 - Real-time, yet needs live BGP feeds and has vantage point limitation
 - 3. Data plane only
 - Easily deployable, yet has vantage point limitation
 - None of them satisfy all critical requirements

į

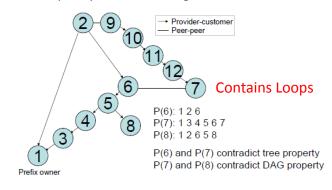
2. BGP Prefix Hijacking (3 main types)

- 1. Regular prefix hijacking
 - Attacker originates route to an existing IP prefix of the victim network (Partial pollution)
- 2. Subprefix hijacking
 - Steals subnet of existing prefix by announcing route for it (Most networks get polluted)
- 3. <u>Interception based hijacking</u>
 iSPY addresses the regular prefix hijacking


3. Key Observations

- Significant percentage of ASes get polluted
- Probes from prefix-owner are unreachable to many ASes
- Unique Unreachability Signature of Hijacking
 - Can distinguish it from other disruptive routing events such as link failure and congestion

7


3.1 Prefix Owner's View of Reachability

- <u>Capture it as a set of paths called vPath</u> (victim's path)
 - Set of AS-level *forward paths* from prefix owner to a specific AS on the Internet
 - traceroute replies will not reach the victim network (indirectly capture reachability)
- Networks with multiple prefixes
 - vPath to these prefixes may differ
 - Select any prefix and regard the path to it as path to destination AS

AS Topology Example (cont'd)

- <u>Cannot compress</u> vPath to <u>trees</u> or <u>Directed acyclic</u> <u>graphs</u>
 - Due to policy-based routing in the Internet

Prefix Owner's View of Reachability (cont'd)

- Case of Potential Route Asymmetry
 - Destination AS can be reachable even if certain ASes along the forward path to it are polluted
 - [a,b,c,d,e]: polluted c & d returns "*", finally reach e
 - [a, b, #, e] : AS-level path may contain # (uncertain part of AS path)
- Monitoring Reachability to <u>Transit ASes Only</u>
 - Cost of obtaining paths to many ASes is high
 - All attacks are still covered because hijack from a stub AS has to pollute its provider transit AS(es)

1

3.2 Hijack Detection Problem

- Potential Hijack Detection
 - Take periodic snapshots of vPath
 - Compare new snapshot(T_{new}) with old snapshot(T_{old}) to check for unreachability
 - Possible hijacking when Told has full reachability and Tnew has partial reachability
- Problem
 - Partial reachability (T_{new}) could be <u>due to other</u> <u>routing anomalies</u>
 - Need to <u>analyze the unique characteristics of the gap</u> between T_{new} and T_{old}

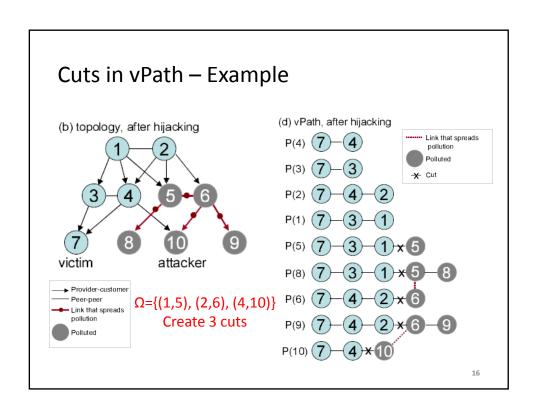
Four Cases - Definition of cuts

Old Path $P(d) = \{s, u_1, u_2, ..., u_n, d\}$ New Path $P'(d) = \{s, v_1, v_2, ..., v_n, d\}$

- 1. P(d) remains complete no cut
- 2. P(d) becomes partial in Tnew
 - ui: Last AS in P(d) for which traceroute obatined a reply
 - (u_i, u_i+1) is a cut
- 3. P(d) changes to P'(d) in T_{new}, and P'(d) is complete no cut

1

Four Cases - Definition of cuts (Cont'd)


- 4. P(d) changes to P'(d) in Tnew, and P'(d) is partial
 - v_i: Last AS in P'(d) for which traceroute obtained a reply
 - $-(v_i, v_i+1)$ is a cut if v_i appears in P(d)
 - $-(v_i, *)$ is a cut if v_i does not appear in P(d)

Four Cases - Definition of cuts (Cont'd)

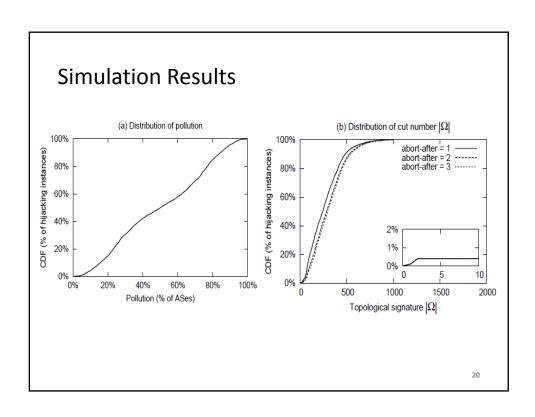
- Denote set of distinct cuts as Ω
- Definition of cuts can handle the cases of uncertain subpaths "#"

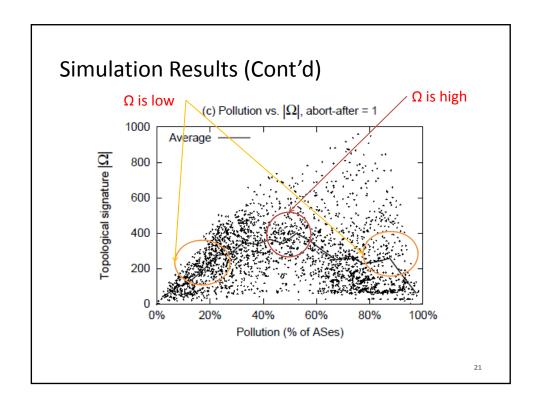
Table 2: Examples of cuts under the cut definition.

Cut		Current path $P'(d)$					
Cut		abcd	ab#d	ab#			
Previous	abcd	no cut	no cut	bc			
path $P(d)$	ab#d	no cut	no cut	b#			

3.3 Unreachability Signature of Hijacking

- Size of Ω
 - Almost Always Large during ongoing prefix hijack, typically small otherwise
- Rationale
 - Internet topology is not a tree
 - Many peering & multi-homed links
 - Pollution spreads far and victim network sees many cuts
 - Conventional disruptive Routing Events (Link failure, congestion)
 - small cuts, mostly near victim AS


1


3.4 Simulation Validation

- Methodology
 - Simulate 2,450 hijacking instances
 - Algorithm on data from RouteViews from 100 vantage points
 - AS relationship obtained by running Gao's algorithm
 - ASes classified into 5: tier-1, tier-2 transit, tier-2 stub, tier-3+ transit, tier-3+ stub, based on type and number of providers

Simulation Validation (Cont'd)

- Procedure
 - Compute the forward path P(d) old vPath
 - Simulate false origin prefix hijacking
 - Compute the forward path P'(d) new vPath
 - Simulate uncertain non-trailing subpath (#) by aborting traceroute after a *fixed number(abort-after)* of consecutive unreachable hops
 - Calculate the cuts Ω using P(d) and P'(d)
- Limitation
 - Detection delay (due to snapshot durations / start time of hijack and probing rounds)

Simulation Results (Cont'd)

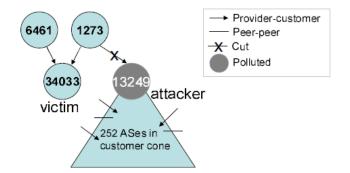

• When Ω is small, Ω varies little under different traceroute configuration (abort-after)

Table 3: The percentage of small $|\Omega|$ instances.

The percentage of small [15] instances.								
Victim	Total	Small $ \Omega $ instances						
category	instances	$ \Omega \leq 5$	$ \Omega \le 10$	$ \Omega \le 20$				
Tier-1	490	3 (0.61%)	3 (0.61%)	4 (0.82%)				
Tier-2 transit	490	1 (0.20%)	1 (0.20%)	1 (0.20%)				
Tier-2 stub	490	4 (0.82%)	4 (0.82%)	5 (1.02%)				
Tier-3+ transit	490	3 (0.61%)	3 (0.61%)	4 (0.82%)				
Tier-3+ stub	490	0 (0.00%)	0 (0.00%)	0 (0.00%)				
Any	2450	11 (0.45%)	11 (0.45%)	14 (0.57%)				

An example hijacking instance with small $|\Omega|$

- AS 13249 hijacks AS 34033
 - Pollution is restricted to the attackers' customer cone
 - Only 144 ASes are polluted
- The inverse case also has a small # of cuts

Analyzing Hijacking Instances with Small cuts

- Two Key Rare Conditions for a small cuts
 - 1. None of attacker's provider(s) is polluted
 - Not likely for randomly picked victim & attacker pairs
 - To satisfy, the victim must also be same provider's customer
 - 2. Attacker's customers rely heavily on attacker's transit service
 - Not likely unless the customer cone is small

3.5 Detecting Known Hijacking Events

Table 4: Cuts in historical hijacking events.

Table 4. Cuts in instorted injacking events.									
Victim prefix	Victim prefix owner		Attacker	Pollu.	$ \Omega $				
				(%)					
64.233.161.0/24	Google	15169	Cogent	31.6	492				
63.165.71.0/24	Folksamerica	26913	ConEd.	65.7	458				
64.132.55.0/24	OverseasMedia	33477	ConEd.	33.1	176				
65.115.240.0/24	ViewTrade	23004	ConEd.	49.4	369				
65.209.93.0/24	LavaTrading	35967	ConEd.	16.4	221				
66.194.137.0/24	MacKayShields	31860	ConEd.	32.3	261				
66.207.32.0/20	ADI	23011	ConEd.	83.0	594				
69.64.209.0/24	TheStreet.Com	14732	ConEd.	78.0	658				
160.79.45.0/24	RhodesASN	33313	ConEd.	27.5	380				
192.251.16.0/24	T&TForex	20179	ConEd.	14.7	170				
198.15.10.0/24	TigerFund	5703	ConEd.	86.0	707				
204.13.72.0/24	FTENNY	33584	ConEd.	34.6	205				
216.223.46.0/24	SDSNY	12265	ConEd.	77.6	606				

- All highjacks: $\Omega > 170$
 - though the pollution varies from 14.7% to 86%

2

4. Design – Probing Module Components

- 1. Probing only transit Ases
 - Reduce the probing cost (23,191 ASes \rightarrow 3,742 ASes)
- 2. Live IPs
 - Collect probing candidate IPs from several sources
- 3. Resolving IP-level paths to AS-level paths
 - Generate IP-to-AS mapping using BGP routing tables
 - Collapse consecutive hops mapped to the same AS
 - Unresolved hops collapsed to symbol '#'
- 4. <u>Increasing the efficiency & Robustness of Traceroute</u>
 - Modify Paris-traceroute to perform IP-to-AS translation on the fly

Evaluation – No Prefix Hijacking

Table 5: Efficiency of ISPY's probing module.

		Five sample sources (by location)				Overall (108 sources)			
		UK	Pitts,US	LA,US	Norway	Japan	min	max	median
1	Avg hops per traceroute	16.6	13.5	17.2	16.7	16.1	10.7	19.9	15.5
2	Probing traffic per round (MB)	1.7	1.4	1.8	1.7	1.7	1.1	2.1	1.6
3	Time per traceroute (sec)	11.3	10.9	11.7	11.0	11.4	9.6	19.5	11.4
4	Probing time per round (min)	17	17	19	17	17	15	29	18
⑤	Bandwidth (KB/s)	1.7	1.4	1.6	1.7	1.6	0.8	2.2	1.5

- 108 PlanetLab nodes (each node probes the 3470 transit Ases)
- ① determine the efficiency of the whole probing round
- 2 traceroute + ICMP ping + TCP ping
- ③ 9.6s ~ 19.5s
- 4 Short turn around time: iSPY can obtain the up-to-date vPath
- **5** Low bandwidth Light-weight

2

Evaluation - Coverage

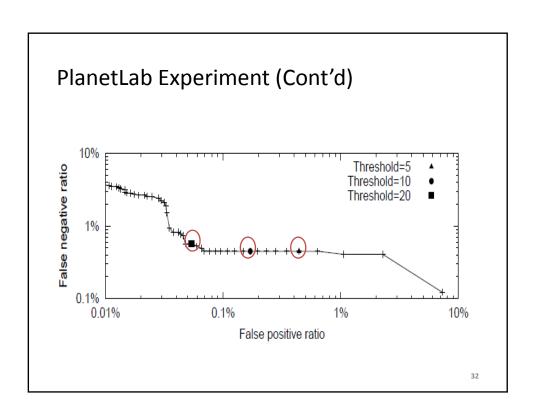
	Transit ASes		
	Number	Percent	
Traceroute stat			
Probed	3470	100.0%	
Reached	3170	91.4%	
AS-path completely resolved	2663	76.7%	
AS-path incompletely resolved	807	23.3%	
Has at least 1 unmapped IP hop	155	4.5%	
Has at least 1 unmapped * hop	680	19.6%	
Complementary ping stat			
Probed	300	8.6%	
Reached	261	(7.5%)	
Complementary TCP stat			
Probed	39	1.1%	
Reached	37	(1.1%)	
Traceroute + ping + TCP stat			
Reached	3468	99.9%	
AS-path completely resolved	2663	76.7%	

- 99% ASes are reached
- 76.7% AS-path completely resolved
 - Due to unmapped hops (*s)

Evaluation – Coverage (Cont'd)

Table 7: Coverage of probing on 108 PlanetLab nodes.

	Five sample sources (by location)				Overall (108 sources)			
	UK	Pitts,US	LA,US	Norway	Japan	min	max	median
ASes reached by probing (%)	99.9	100.0	99.9	100.0	100.0	95.6	100.0	99.9
ASes having complete path (%)	79.7	74.5	80.7	82.4	82.4	69.7	85.9	81.0

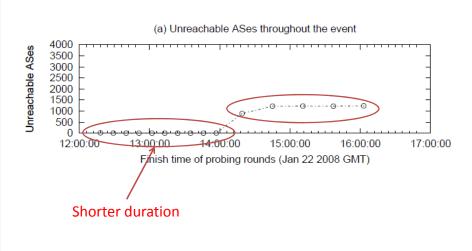

29

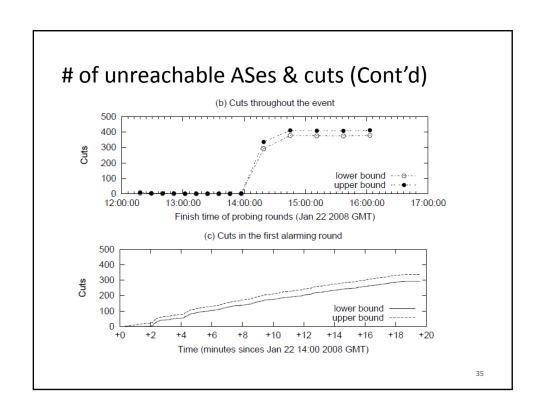
5. Prefix-Owner-Centric Hijack Detection

- Handling Uncertain Subpaths
 - Calculate the lower bound of $|\Omega|$ (all uncertain cuts sharing the same starting node are the same)
 - Calculate the upper bound of $|\Omega|$ (each uncertain cut is a different cut)
 - Use the lower & upper bound to aid decision making
- Continuous Decision Making
 - Continuously stream new vPath data into the decision making module
 - Can detect hijacking well before all cuts in a complete round of probing are witnessed.

6.1 PlanetLab Experiment

- Evaluate the detection false positive ratio
- Detection Accuracy
 - 0.17% alarm (all false positive)
 - $-\,\Omega$ did not last for more than one round & No Multiple Origin AS announcement
- Choice of Detection Threshold
 - 10 cuts




6.2 Hijacking Experimen

- Verio ClaraNet JPNIC
 Seattle London Tokyo
- Experiment Setup
 - 3 hosts
 - Launched 15 attacks on their own prefix
 - Allow to inject an anycast prefix from 3 hosts
- Experiment Step
 - 1. The victim injects the target prefix
 - 2. Two hours later, the attacker also injects
 - 3. The attacker withdraws prefix after 2 more hours

3

of unreachable ASes & cuts

Statics of the 15 hijacking events / Detection **Performance** ISPY Performance Hijack start time (GMT) ([LB, UB]) start time (min) latency (min) Jan 22 14:00 [376, 409] 0.4 Seattle Jan 23 20:00 [383, 415] -4.0 0.4 Jan 25 02:00 36.0 [384, 417] -7.0 yes 0.3 Jan 26 08:00 0.4 yes [376, 409] 0.4 yes Jan 28 20:00 -2.6 2.7 0.5 Jan 22 20:00 0.5 Seattle yes Jan 24 02:00 [201, 226] -4.5 2.1 0.3 June 04 02:00 [219, 246] 1.0 yes Jan 27 02:00 -2.9 0.3 yes Jan 28 02:00 0.4 yes Tokyo June 02 02:00 [788, 839] -0.4 3.1 0.4 yes June 02 06:00 [805, 855] -10.9 0.4 14 June 03 08:00 [785, 833] -5.5 0.4 June 03 14:00 793, 841] 0.3 Large number of cuts 36

Discussion

- Counter Measures by attackers against iSPY
 - Probe Modification
 - Need to manipulate replies to all traceroute probes
 - Pollution shaping
 - Difficult to shape a small-cut pollution
 - Hard to calculate ASes to add to the initial bogus route
- Future work
 - Detection accuracy improvement selecting personalized thresholds by each network
 - Identifying the attacker in real-time

3

Conclusion

- Highly effective <u>prefix-owner-based</u> IP prefix hijacking detection system (iSPY)
 - 1. Highly accurate
 - 2. Almost real time detection (1.4 ~ 3.1 minutes)
 - 3. Lightweight
 - 4. Easy to deploy for prefix owner
 - 5. Strong Incentive to deploy
 - 6. Robust in victim notification (Hijack detection decision made locally)