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In transport protocols, we have a 
sender and a receiver.

RTT = time between transmission 
& receipt of confirmation of 
delivery.

RTO = time sender will wait 
without a new ACK, before 
retransmitting.

RTO is computed recursively over 
RTTs.



Like lots of other normal 
well-adjusted people, I spent most 
of Spring 2023 studying the RTO.

Unexpected hurdle: Showing that 
if 0 ≤ a < 1, then Lim n->∞an=0

If the RTTs are bounded, can 
I prove asymptotic bounds on 
the vars used to compute the 
RTO?
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Def: lim n→∞ f(x) = L ⇔ ( ∀ ε > 0 :: Ǝ δ > 0 :: δ < x ⇒ |f(x) - L| < ε)

;; Replace *L* with the actual limit value
(defun-sk limit (x ε)
  (declare (xargs :guard (^ (posratp x) (posratp ε)) :verify-guards t))
  ;; For all e > 0, there exists some δ > 0 such that …
  (exists (δ) (^ (posratp δ) 
      ;; … if δ < x, then |f(x) - *L*| < ε.
      (=> (< δ x) (< (abs (- (f x) *L*)) ε)))))

;; To actually prove it, we need to provide “delta”.
(property limit-holds (x e :posrat)
  (limit x e) :instructions …) ;; Use (limit-suff (δ (delta e)))



TODAY’S TALK:

- The “Obvious Proof”, in 
ACL2(r), with a little help 
from Ruben

- Ken’s “Ceiling Proof”

- Pete’s “Binomial Proof”

- Putting it all in context

- Some thoughts about real 
numbers in the ACL2 
ecosystem.



The “Obvious Proof” that 0≤a<1 ⇒ ( ∀ε>0 :: ∃δ>0 :: δ>n ⇒ an< ε )

Let 0 < ε < 1.  Set δ = loga(ε)

n > δ ⇔ n > loga(ε) { def. δ }

⇔ an < alog a(ε) { as a < 1 }

⇔ an < ε { xlogₓ(y)=y }

QED

logs are 
so useful!



The “Obvious Proof” in ACL2(r)
Let ε > 0.  Set δ = ln(ε)/ln(a).  Then …

n > δ ⇔  n > ln(ε)/ln(a) { by def. of δ }

⇔ n ln(a) < ln(ε) { note, ln(a) < 0 }

⇔ en ln(a) < eln(ε) { monotonicity of exp }

⇔ en ln(a) < ε { eln(x)=x }

⇔ eln(aⁿ) < ε { n ln(a) = ln(an) }

⇔ an < ε, QED { eln(x)=x }



The “Obvious Proof” doesn’t work in ACL2 …
But you see, 
logs can be 
irrational …

50 years later …

So, after much anguish, we 
formalized two rational proofs 

in ACL2s: the ceiling proof 
and the binomial proof.



The “Ceiling Proof” in ACL2
Let ε > 0.  Let k = ⌈ a/(1-a) ⌉.  
Let fa(n) = kak/n.
Lem A: ⌈x/mn⌉=⌈⌈x/m⌉/n⌉. 
Lem B: a ≤ k/(1+k).  
Lem C: For all n ≥ k, an ≤ fa(n).  

Thm: Let d = ⌈ kak/ε ⌉ and let δ = max(k, d).  δ < n ⇒ an < ε.  
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Thm: Let d = ⌈ kak/ε ⌉ and let δ = max(k, d).  δ < n ⇒ an < ε. 

If δ ≤ n then ⌈ kak/ε ⌉ < n, thus kak/ε < n.  But this implies 
kak/n < ε, and therefore, by Lem C, an ≤ ε.  Repeat with, say, 
ε/100, and you’re done.



The “Binomial Proof” in ACL2
Let ε=x/y > 0, a=p/q, and b=p/(p+1).

Lem 1: a ≤ b.

Lem 2: bp = pp/(p+1)p   { def. b }
= pp/(... + ppp-1 + pp)   { bin. thm }
≤ 1/2

Lem 3: 1/2y ≤ ε

Let δ = py.  Then n > δ ⇒ an < apy ≤ bpy ≤ ½y ≤ ε.  QED



Putting it all in Context
RTT = time between when a sender sends a packet, 
and when it first receives an ACK for that packet.

RTT samples S0, S1, … measured with Karn’s Alg.

RTTs are used to compute the Retransmission 
TimeOut value.

If > rto time passes without any new ACKs, the 
sender “backs off” and retransmits unACKed 
packets.

What happens when samples Si are bounded?



Putting it all in Context
rto is parameterized by a, b ∈[0, 1) and G > 0.

srtti = (1-a)srtti-1 + a Si 

rttvari = (1-b)rttvari-1 + b |srtti-1 - Si |

rtoi = srtti + max(G, 4 * rttvari).

I haven’t heard 
from Haddock in 
ages, I wonder if 

the bird is dropping 
my messages?
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rto is parameterized by a, b ∈[0, 1) and G > 0.

srtti = (1-a)srtti-1 + a Si 

rttvari = (1-b)rttvari-1 + b |srtti-1 - Si |

rtoi = srtti + max(G, 4 * rttvari).

When RTT samples are bounded, srtt is of the form:

srtti = (1-a)srtti-1 + a (some bounds)

When difference between srtt and samples is bounded, 

rttvar is of the form:

rttvari-1 = (1-b)rttvari-1 + b (some bounds)

I haven’t heard 
from Haddock in 
ages, I wonder if 

the bird is dropping 
my messages?



Common Pattern in SRTT and RTTVar Bound Limits

Xi = (1-C)Xi-1 + CD

= (1-C)2Xi-2 + (1-C)CD + CD 

= … 

= (1-C)iX0 + ∑j=0
i-1(1-C)jCD 

= (1-C)iX0 + [ C(1-C)i-1 - (1-C)i-1 + 1 ] D 



Common Pattern in SRTT and RTTVar Bound Limits

Xi = (1-C)Xi-1 + CD

= (1-C)2Xi-2 + (1-C)CD + CD 

= … 

= (1-C)iX0 + ∑j=0
i-1(1-C)jCD 

= (1-C)iX0 + [ C(1-C)i-1 - (1-C)i-1 + 1 ] D → D

limi→∞

0 0 0



Number N of consecutive steady-state samples 
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Putting it all in Context
Suppose the samples are bounded.
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Suppose the samples are bounded.  Then the srtt is bounded as well, and its 
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Number N of consecutive steady-state samples 

Putting it all in Context
Suppose the samples are bounded.  Then the srtt is bounded as well, and its 
bounds converge to the sample bounds.  Plus, the rttvar’s upper bound converges 
to the diameter of the sample bounds.
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Nevertheless, infinitely many timeouts could occur!

Si ∊ U(60, 75)

Si = 75 if i % 100 
= 0 else 60

TO! TO! TO! TO! TO! TO! TO! TO! TO!



Some thoughts about real numbers in the ACL2 
ecosystem.
- ACL2r could benefit from more arithmetic machinery, e.g., arbitrary 

exponent, arbitrary-base logarithm.

- Although some lemmas we proved already existed in the ACL2 books, 
searchability could be improved.
- E.g. would be really interesting to have an LLM-based search tool …

- Easiest proof to write & understand in ACL2 was binomial argument.

- Would be really useful to have some kind of “bridge” between ACL2r and 
ACL2, but not sure how this could be done (if at all …)
- (Maybe something building on Grant Passmore’s work?)



   Questions?


