
A Case Study in Analytic Protocol Analysis in ACL2
ACL2 Workshop 2023

󰗜Max von Hippel, Pete Manolios, Ken McMillan, Cristina
Nita-Rotaru, & Lenore Zuck

In transport protocols, we have a
sender and a receiver.

RTT = time between transmission
& receipt of confirmation of
delivery.

RTO = time sender will wait
without a new ACK, before
retransmitting.

RTO is computed recursively over
RTTs.

Like lots of other normal
well-adjusted people, I spent most
of Spring 2023 studying the RTO.

Unexpected hurdle: Showing that
if 0 ≤ a < 1, then Lim n->∞an=0

If the RTTs are bounded, can
I prove asymptotic bounds on
the vars used to compute the
RTO?

L

f(x)

Def: lim x→∞ f(x) = L ⇔ (∀ ε > 0 :: Ǝ δ > 0 :: x > δ ⇒ |f(x) - L| < ε)

ε

δ

x

y

Def: lim n→∞ f(x) = L ⇔ (∀ ε > 0 :: Ǝ δ > 0 :: δ < x ⇒ |f(x) - L| < ε)

;; Replace *L* with the actual limit value
(defun-sk limit (x ε)
 (declare (xargs :guard (^ (posratp x) (posratp ε)) :verify-guards t))
 ;; For all e > 0, there exists some δ > 0 such that …
 (exists (δ) (^ (posratp δ)
 ;; … if δ < x, then |f(x) - *L*| < ε.
 (=> (< δ x) (< (abs (- (f x) *L*)) ε)))))

;; To actually prove it, we need to provide “delta”.
(property limit-holds (x e :posrat)
 (limit x e) :instructions …) ;; Use (limit-suff (δ (delta e)))

TODAY’S TALK:

- The “Obvious Proof”, in
ACL2(r), with a little help
from Ruben

- Ken’s “Ceiling Proof”

- Pete’s “Binomial Proof”

- Putting it all in context

- Some thoughts about real
numbers in the ACL2
ecosystem.

The “Obvious Proof” that 0≤a<1 ⇒ (∀ε>0 :: ∃δ>0 :: δ>n ⇒ an< ε)

Let 0 < ε < 1. Set δ = loga(ε)

n > δ ⇔ n > loga(ε) { def. δ }

⇔ an < alog a(ε) { as a < 1 }

⇔ an < ε { xlogₓ(y)=y }

QED

logs are
so useful!

The “Obvious Proof” in ACL2(r)
Let ε > 0. Set δ = ln(ε)/ln(a). Then …

n > δ ⇔ n > ln(ε)/ln(a) { by def. of δ }

⇔ n ln(a) < ln(ε) { note, ln(a) < 0 }

⇔ en ln(a) < eln(ε) { monotonicity of exp }

⇔ en ln(a) < ε { eln(x)=x }

⇔ eln(aⁿ) < ε { n ln(a) = ln(an) }

⇔ an < ε, QED { eln(x)=x }

The “Obvious Proof” doesn’t work in ACL2 …
But you see,
logs can be
irrational …

50 years later …

So, after much anguish, we
formalized two rational proofs

in ACL2s: the ceiling proof
and the binomial proof.

The “Ceiling Proof” in ACL2
Let ε > 0. Let k = ⌈ a/(1-a) ⌉.
Let fa(n) = kak/n.
Lem A: ⌈x/mn⌉=⌈⌈x/m⌉/n⌉.
Lem B: a ≤ k/(1+k).
Lem C: For all n ≥ k, an ≤ fa(n).

Thm: Let d = ⌈ kak/ε ⌉ and let δ = max(k, d). δ < n ⇒ an < ε.

The “Ceiling Proof” in ACL2
Let ε > 0. Let k = ⌈ a/(1-a) ⌉.
Let fa(n) = kak/n.
Lem A: ⌈x/mn⌉=⌈⌈x/m⌉/n⌉.
Lem B: a ≤ k/(1+k).
Lem C: For all n ≥ k, an ≤ fa(n).

Thm: Let d = ⌈ kak/ε ⌉ and let δ = max(k, d). δ < n ⇒ an < ε.

If δ ≤ n then ⌈ kak/ε ⌉ < n, thus kak/ε < n. But this implies
kak/n < ε, and therefore, by Lem C, an ≤ ε. Repeat with, say,
ε/100, and you’re done.

The “Binomial Proof” in ACL2
Let ε=x/y > 0, a=p/q, and b=p/(p+1).

Lem 1: a ≤ b.

Lem 2: bp = pp/(p+1)p { def. b }
= pp/(... + ppp-1 + pp) { bin. thm }
≤ 1/2

Lem 3: 1/2y ≤ ε

Let δ = py. Then n > δ ⇒ an < apy ≤ bpy ≤ ½y ≤ ε. QED

Putting it all in Context
RTT = time between when a sender sends a packet,
and when it first receives an ACK for that packet.

RTT samples S0, S1, … measured with Karn’s Alg.

RTTs are used to compute the Retransmission
TimeOut value.

If > rto time passes without any new ACKs, the
sender “backs off” and retransmits unACKed
packets.

What happens when samples Si are bounded?

Putting it all in Context
rto is parameterized by a, b ∈[0, 1) and G > 0.

srtti = (1-a)srtti-1 + a Si

rttvari = (1-b)rttvari-1 + b |srtti-1 - Si |

rtoi = srtti + max(G, 4 * rttvari).

I haven’t heard
from Haddock in
ages, I wonder if

the bird is dropping
my messages?

Putting it all in Context
rto is parameterized by a, b ∈[0, 1) and G > 0.

srtti = (1-a)srtti-1 + a Si

rttvari = (1-b)rttvari-1 + b |srtti-1 - Si |

rtoi = srtti + max(G, 4 * rttvari).

When RTT samples are bounded, srtt is of the form:

srtti = (1-a)srtti-1 + a (some bounds)

When difference between srtt and samples is bounded,

rttvar is of the form:

rttvari-1 = (1-b)rttvari-1 + b (some bounds)

I haven’t heard
from Haddock in
ages, I wonder if

the bird is dropping
my messages?

Common Pattern in SRTT and RTTVar Bound Limits

Xi = (1-C)Xi-1 + CD

= (1-C)2Xi-2 + (1-C)CD + CD

= …

= (1-C)iX0 + ∑j=0
i-1(1-C)jCD

= (1-C)iX0 + [C(1-C)i-1 - (1-C)i-1 + 1] D

Common Pattern in SRTT and RTTVar Bound Limits

Xi = (1-C)Xi-1 + CD

= (1-C)2Xi-2 + (1-C)CD + CD

= …

= (1-C)iX0 + ∑j=0
i-1(1-C)jCD

= (1-C)iX0 + [C(1-C)i-1 - (1-C)i-1 + 1] D → D

limi→∞

0 0 0

Number N of consecutive steady-state samples

m
s

Putting it all in Context
Suppose the samples are bounded.

0 200 400 600 800 1000

Number N of consecutive steady-state samples

Putting it all in Context
Suppose the samples are bounded. Then the srtt is bounded as well, and its
bounds converge to the sample bounds.

0 200 400 600 800 1000

m
s

Number N of consecutive steady-state samples

Putting it all in Context
Suppose the samples are bounded. Then the srtt is bounded as well, and its
bounds converge to the sample bounds. Plus, the rttvar’s upper bound converges
to the diameter of the sample bounds.

0 200 400 600 800 1000

m
s

Nevertheless, infinitely many timeouts could occur!

Si ∊ U(60, 75)

Si = 75 if i % 100
= 0 else 60

TO! TO! TO! TO! TO! TO! TO! TO! TO!

Some thoughts about real numbers in the ACL2
ecosystem.
- ACL2r could benefit from more arithmetic machinery, e.g., arbitrary

exponent, arbitrary-base logarithm.

- Although some lemmas we proved already existed in the ACL2 books,
searchability could be improved.
- E.g. would be really interesting to have an LLM-based search tool …

- Easiest proof to write & understand in ACL2 was binomial argument.

- Would be really useful to have some kind of “bridge” between ACL2r and
ACL2, but not sure how this could be done (if at all …)
- (Maybe something building on Grant Passmore’s work?)

 Questions?

