log-fun-ineq-e-weak
Vo € (0,12),y € (—o0,0)
zy < % +z In(z) + ¥

sin-3425b
Vz € (0,00),y € (—00,00)
1 1,3, 1 .5
(@ <yAy? <6)= W) qg-a Y=Y + il
Sln(x) r— 61113 == mib"

"CONVOI2-sincos
VYt € (0,00),v € (0,00)
((1.565 + 0.313 v) cos(1.16¢) + (0.01340 + 0.00268 v) sin(1.16t)) e~ 1***
— (6.55+1.31v) e ¥ L0410 >0

ACL2 Proofs of Nonlinear Inequalities
with Imandra




1he BIg Picture

* A new tool for proving nonlinear (real) inequalities
automatically in ACL2

% |Leverages a fundamental result in real algebraic
geometry - the Krivine-Stengle Positivstellensatz

* Implemented and relied upon in Imandra, and now
exports checkable ACL2 proof scripts

* Many extensions possible - Would love feedback
from anyone who finds it useful!




Nonlinear real arithmetic

Nonlinear real arithmetic is important in
verification of safety-critical systems
(and much more besides!)

Unlike nonlinear arithmetic over N, Z or
Q, nonlinear real arithmetic is decidable

The most widely used decision
procedure - CAD - does not produce
easily checkable proof objects

However, we can exploit the
Positivstellensatz and convex
optimization (SDP) to decide the
universal fragment and produce easily
checkable proofs




A simple example

Consider one direction of the discriminant criterion for
solubility of a quadratic equation:

‘v’x,a,b,cER(axz bx+c=0 —= b2—4a620).

C ———— e ——




A simple example

Consider one direction of the discriminant criterion for
solubility of a quadratic equation:

‘v’x,a,b,cER(axz bx+c=0 —= b2—4a620).

0 e e R

How might we prove it?




‘v’x,a,b,cER(axz—l—bx—l—c:O — b* —4ac 20).

‘——M




‘v’x,a,b,cER(axz—l—bx—l—c:O — b* —4ac 20).

j—w

ax’ +bx+c=0A4ac—b*>0
I G s :

Iff

Goal




Goal ‘v’x,a,b,cER(axz—l—bx—l—c:O — b’ — 4ac>0)
: B reee——
ax -I-bx—I—C—O/\4ac b2>0

bx c:O/\4ac—b2>O is unsat.




ax2

‘v’x,a,b,cER(ax2+bx—|—c=O — b* —4ac ZO).

0 e S —

bx+c=0A4ac—b*>0
R e e

ax* +bx+c=0A4dac—b*>0

e e —— R

IS sat.

(4ac — b*) + (2ax+b)* + (—4a) (ax* + bx +¢)

Consider the polynomial




ax

2

‘v’x,a,b,cER(ax2+bx+c:O — b* —4ac ZO).

0 S e R

e

bx+c=0A4ac—b*>0
e EEeseeee

ax* +bx+c=0A4dac—b*>0

IS sat.

(4ac — b*) + (2ax+b)* + (—4a) (ax* + bx +¢)

Consider the polynomial

By assumption, it must be >0.




‘v’x,a,b,cER(ax2+bx+c:O — b* —4ac ZO).

Goal
o ——W

ax’ +bx+c=0A4ac—b*>0
PR e EEeseeee
ax’ +bx+c=0A4ac—b*>0
e e ——

Consider the polynomial
(4ac — b*) + (2ax+b)* + (—4a) (ax* + bx +¢)

By assumption, it must be >0.
But it normalizes to 0.




‘v’x,a,b,cER(ax2+bx+c:O — b* —4ac ZO).

Goal
o ——W

ax’ +bx+c=0A4ac—b*>0
PR e EEeseeee
ax’ +bx+c=0A4ac—b*>0
e e ——

Consider the polynomial
(4ac — b*) + (2ax + b)* + (—4a) (ax* + bx + )

By assumption, it must be >0.
But it normalizes to 0.
Contradiction!




‘v’x,a,b,cER(ax2+bx+c:O — b* —4ac ZO).

Goal
o ——W

ax’ +bx+c=0A4ac—b*>0
PR e EEeseeee
ax’ +bx+c=0A4ac—b*>0
e e ——

We call this a Positivstellensatz certificate:

(4ac — b*) + (2ax+ b)* + (—4a)(ax* + bx+c)




‘v’x,a,b,cER(ax2+bx+c:O — b* —4ac ZO).

Goal
o ——W

ax’ +bx+c=0A4ac—b*>0
PR e EEeseeee
ax’ +bx+c=0A4ac—b*>0
e e ——

We call this a Positivstellensatz certificate:

(4ac — b*) + (2ax+ b)* + (—4a)(ax* + bx+c)

And the Positivstellensatz guarantees their
existence! We just have to find them...




The Imandra/ACL2 tool

(IMPLIES (= (+ (*x AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))




The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

S ———— R R

encapsulate ()

B (SET-IGNORE-OK T)
(SET-IRRELEVANT-FORMALS-OK T)

(LOCAL (DEFMACRO NEQ (X Y)
’ <LXLY) (> L,X ,Y))))

(LOCAL (DEFUN SQUARE (X)
(x X X)))

(LOCAL (DEFTHM SQUARE-PSD
(IMPLIES (RATIONALP X)
SQUARE X) 0))
ES (:LINEAR)))

(LOCAL (DEFTHM SQUARE-TYPE
(IMPLIES (RATIONALP X)
(RATIONALP (SQUARE X)))
:RULE-CLASSES (:TYPE-PRESCRIPTION)))




The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

ughgg..illlIlllllllllllll-‘---:T’ t“--.-.--....'..illllpiﬁ*

(LOCAL (IN-THEORY (DISABLE SQUARE)))

(LOCAL (include-book

(LOCAL (DEFUND PROB-0 (A B C X)
@& A G XR) & G BX) ©))

(LOCAL (DEFUND PROB-1 (A B C X)
(encapsulate () o EEBE) (54 aC))

B (SET-IGNORE-0K T) (LOCAL (DEFUN GOAL (A B C X)
(SET-IRRELEVANT-FORMALS-OK T) (IMPLIES (AND (RATIONALP A)
(RATIONALP B)
oAl oAt (RATIONALP C) (RATIONALP X))
i (NOT (AND (= (PROB-0 A B C X )
BR R
(ORI el C (ROl ABE G N B
(LOCAL (DEFUN SQUARE (X)
(x X X)))

(LOCAL (DEFTHM SQUARE-PSD (LOCAL (DEFUND IDEAL-CF-0 (A B C X)

(& A)))
(IMPLIES (RATIONALP X)
(>= (SQUARE X) 0))

) (LOCAL (DEFTHM IDEAL-CF-0-TYPE
:RULE-CLASSES (:LINEAR))) =

(IMPLIES (AND (RATIONALP A)
(RATIONALP B)

(RATIONALP C) (RATIONALP X))

(RATIONALP (IDEAL-CF-0 A B C X)))

(LOCAL (DEFTHM SQUARE-TYPE
(IMPLIES (RATIONALP X)
(RATIONALP (SQUARE X)))
:RULE-CLASSES (:TYPE-PRESCRIPTION)))

:in-theory (enable IDEAL-CF-0))) ll




The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

S

(encapsulate ()

B (SET-IGNORE-OK T)
(SET-IRRELEVANT-FORMALS-OK T)
(LOCAL (DEFMACRO NEQ (X Y)

“(OR (< ,X ,Y) (> ,X ,Y))))

(LOCAL (DEFUN SQUARE (X)
(x X X)))

(LOCAL (DEFTHM SQUARE-PSD
(IMPLIES (RATIONALP X)

(>= (SQUARE X) 0))
:RULE-CLASSES (:LINEAR)))

(LOCAL (DEFTHM SQUARE-TYPE

(IMPLIES (RATIONALP X)
(RATIONALP (SQUARE X)))

:RULE-CLASSES (:TYPE-PRESCRIPTION)))

(LOCAL (IN-THEORY (DISABLE SQUARE)))

(LOCAL (include-book

(LOCAL (DEFUND PROB-06 (A B C X)

(& = A (3 X)) (= (5B X)) ©)N))

(LOCAL (DEFUND PROB-1 (A B C X)

Fo=6BE) &

(LOCAL (DEFUN GOAL (A B C X)
(IMPLIES (AND (RATIONALP A)

(RATIONALP B)

(RATIONALP C) (RATIONALP X))
PROB-0 A B C X )
(> (PROB-1 A B C X

(NOT (AND (=

(LOCAL (DEFUND IDEAL-CF-0 (A B C X)

(* A)))

(LOCAL (DEFTHM IDEAL-CF-@-TYPE
(IMPLIES (AND (RATIONALP A)
(RATIONALP B)

:dir :system))

(* A C))))))

f1---Illlllllllllllllli...qsug.

(LOCAL (DEFUND CONE-CF-0 (A B C X)

(SQUARE (+ (= (» A X)) B))))
(LOCAL (DEFTHM CONE-CF-0-TYPE
(IMPLIES (AND (RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(RATIONALP (CONE-CF-0 A B C X)))
thints
(( :in-theory (enable CONE-CF-0)))))

DEFTHM CONE-CF-0-PSD
(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(>= (CONE-CF-0 A B C X) 0))

dlocAl

2)))))

thints
(( :in-theory

(enable CONE-CF-0 PROB-0 PROB-1)))
:rule-classes (:linear )))

(RATIONALP C) (RATIONALP X))

(RATIONALP (IDEAL-CF-0 A B C X)))

:in-theory (enable IDEAL-CF-0))) ll

(LOCAL (DEFUND MONOID-CF-0

€ O (& G BB

(A B E )
(G5 L S DDRRY)



The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

(LOCAL (DEFUN CERT (A B C X)
(+ (MONOID-CF-0 A B C X)

(CONE=CE=0 A Bi G X
(& (EDEAI=CE=0 A B € X9 (PROB=0 A B € X)) )}




The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

R R S T

(LOCAL (DEFTHMD CERT-KEY
(IMPLIES (AND (RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
C (CERT AB G 0))

:hints
(( :in-theory
(enable SQUARE
CERT
PROB-0
PROB-1
IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))))

(LOCAL (DEFTHM CERT-CONTRA-M-0
(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(> (MONOID-CF-0 A B C X) 0))

:in-theory
(enable SQUARE
CERT
PROB-0
PROB-1
IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))

:rule-classes (:linear )))




The Imandra/ACL2 tool

(IMPLIES (= (+ (*x AXX) (*xBX) C 0)

(>= (-

(* B

B) (*x 4 AC)) 0))

uqx-..-illl.lll-.l-l-ll---:T

(LOCAL (DEFTHMD CERT-KEY
(IMPLIES (AND (RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
C (CERT AB G 0))

:in-theory

(enable SQUARE
CERT
PROB-0
PROB-1

IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))))

(LOCAL (DEFTHM CERT-CONTRA-M-0
(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(> (MONOID-CF-0 A B C X) 0))

:in-theory

(enable SQUARE
CERT
PROB-0
PROB-1

IDEAE=CE=0 cONE=Chs6 MONGTDSCR=0) )

:rule-classes (:linear )))

e ———————
A

(LOCAL (DEFTHM CERT-CONTRA-C-0
(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(>= (CONE-CF-0 A B C X) 0))
:rule-classes (:linear )))

(LOCAL (DEFTHM CERT-CONTRA-I-0
(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(= (= ((pEAL=CF=0 n B € X)
(PROB-0 A B C X))
))
:hints
(( :in-theory
(enable SQUARE
CERT
PROB-0
PROB-1
IDEAL-CF-0 CONE-CF-0 MONOID-CF-0)))
:rule-classes (:linear )))

(LOCAL (DEFTHM CERT-CONTRA

(IMPLIES (AND (NOT (GOAL A B C X))
(RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(NEQ (CERT A B C X) 0))
:rule-classes nil))




The Imandra/ACL2 tool

(IMPLIES (= (+ (* AXX) (*x BX) C) 0)
(>= (- (*x BB) (x4 AC)) 0))

e ————— R

(LOCAL (DEFTHM MAIN
(IMPLIES (AND (RATIONALP A)
(RATIONALP B)
(RATIONALP C) (RATIONALP X))
(GOAL A B C X))
il nEs
(i :in-theory
(disable GOAL)
:use (CERT-KEY CERT-CONTRA)))
:rule-classes nil))

(DEFTHM FINAL
IMPLIES (AND (RATIONALP A)
(RATIONALP B)
(RATIONALP C)
(RATIONALP X) (= (+ (* A X X) (* B X) C) 8))
(= ( (X B B) (4 ANCj) O)

:hints
( :in-theory

(enable GOAL PROB-0 PROB-1) :use (MAIN ))
:rule-classes nil)

e




| he Positivstellensatz

kO ]Cl k}g
</\pi - O) A </\qz o O) A (/\m =~ O) s.t.  pi,qi, 1 € Q7]
is unsatisfiable over R iff

P € Ideal(p1,. .., Pky)

1Q € Cone(q1, - - -, qk, )
IR € Monoid(r1,...,ry,)

s.t.
P+Q+R*=0

where

Ideal(ay,...,ay) = {Z a;b; | b; € Q[a‘:’]}
i=1
Cone(ay,...,an) = {r + Ztiui r ts € Z(Q[i’])Q,ui € Monoid(ay,... ,am)}
i=1

Monoid(ay,...,a,) = {H(ai)j | j € N}

=)

> _(Ql#])* = {Z(MQ | p; €Q[E] A ve N} :

1=1



T he Positivstellensatz

ko k1 ko
(/\pi :0> A (/\qz S5 O) A </\7“2 %0) s.t.  pi,qi, 1 € Q7]

is unsatisfiable over R iff

S.t.

where

Cone(aq, . .

P € Ideal(p1,. .., Pky)

ElQ c Cone((]h Ao le)
JR € Monoid(ry,...,Tk,)

P+Q+R*=0

Ideal(ay,...,ay) = {Zaibi | b € @[f]}
i=1

SRS {r 3 Ztiui | r,t; € Z(Q[i’])2,ui € Monoid(ay, ... ,am)}
i=1

m

Monoid(ay,...,an) = {H(ai)j | j € N}

=)

> _(Ql#])* = {Z(m)Q | p; €Q[E] A ve N} :

sk




T he Positivstellensatz

ko k1 ko
(/\pi :0> A (/\qz S5 O) A </\7“2 %0) s.t.  pi,qi, 1 € Q7]

is unsatisfiable over R iff

Monoid(ay, ..., g, i {H(ai)j | j € N}

=)

> _(Ql#])* = {Z(m)Q | p; €Q[E] A ve N} :

sk




T he Positivstellensatz

ko k1 ko
(/\pi :0> A (/\q@ % 0) A </\7"2 %0) s.t.  pi,qi, 1 € Q7]

is unsatisfiable over R iff

Monoid(ay, ..., g, i {H(ai)j | j € N}

=)

> _(Ql#])* = {Z(m)Q | p; €Q[E] A ve N} :

sk




T he Positivstellensatz

ko k1 ko
(/\pi :0> A (/\q@ % 0) A </\7"2 %0) s.t.  pi,qi, 1 € Q7]

is unsatisfiable over R iff

Monoid(ay, ..., g, i {H(ai)j | j € N}

=)

> _(Ql#])* = {Z(m)Q | p; €Q[E] A ve N} :

sk




Semi-definite Programming
for Positivstellensatz Search

* SDP: Convex optimization of a linear objective
function modulo PSD matrix

* Pioneered by Parrilo in his 2000 Caltech PhD:

Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization

% Builds on the Gram Matrix Sums of Squares
approach of Powers and Woermann

* Implemented in HOL-Light by John Harrison (2007):
we build heavily on his work!




Semi-definite Programming
for Positivstellensatz Search

Math ical Progr ipt No.
(will be inserted by the edltor)

Pablo A. Parrilo

Semidefinite programming relaxations for semialgebraic
problems

Abstract. A hierarchy of convex ions for ial ic prot is introduced. For questions re-
ducible to a finite number of p ial lities and lities, it is shown how to construc! a comple(c
family of pol sized semi i i ditions that prove . The main tools
loyed are a semis i i ion of the sum of squares decomposmon for multivariate
polynomlals, and some results from real algebmc geometry. The lechmques provide a consl.mcnve approach
for finding bounded degree solutions to the P and are with from diverse
application fields.
Key words. i ite p ing — convex optimization — sums of squares — polynomial equations —

real algebraic geometry.

1. Introduction

Numerous questions in applied mathematics can be formally expressed using a finite
number of polynomial equalities and inequalities. Well-known examples are optimiza-
tion problems with polynomial objective and constraints, such as quadratic, linear, and
boolean programming. This is a fairly broad class, including problems with a combina-
tion of continuous and discrete variables, and easily seen to be NP-hard in the general
case.

In this paper we introduce a new approach to the formulation of computable relax-
ations for this kind of problems. The crucial enabling fact is the computational tractabil-
ity of the sum of squares decomposition for multivariate polynomials, coupled with
powerful results from semialgebraic geometry. As a result, a whole new class of con-
vex approximations for ialgebraic problems is obtained. The results lize in a
very natural way existing successful approaches, including the well-known semidefinite
relaxations for combinatorial optimization problems.

The paper includes notions from traditionally separated research areas, namely nu-
merical optimization and real algebra. In the interest of achieving the broadest possible
communication of the main ideas, we have tried to make this article as self-contained
as possible, providing a brief introduction to both semidefinite programming and real
algebra. It is our belief that there is a lot of potential in the interaction between these
fields, particularly with regard to practical applications. Most of the material in the pa-

Automatic Control Laboratory, Swiss Federal Institute of Technology (ETH), CH-8092 Zurich, Switzerland.
e-mail: parrilo@aut.ee.ethz.ch. The majority of this research has been carried out while the author
was with the Control & Dynamical Systems Department, California Institute of Technology, Pasadena, CA
91125, USA.

WW

Verifying nonlinear real formulas via sums of squares

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA
johnh@ichips.intel.com

Abstract. Techniques based on sums of squares appear promising as a general
approach to the universal theory of reals with addition and multiplication, i.e.
verifying Boolean inations of ions and i A parti 1y at-
tractive feature is that suitable ‘sum of squares’ certificates can be found by so-
phisticated numerical methods such as semidefinite programming, yet the actual
verification of the resulting proof is straightforward even in a highly foundational
theorem prover. We will describe our experience with an implementation in HOL
Light, noting some successes as well as difficulties. We also describe a new ap-
proach to the univariate case that can handle some otherwise difficult examples.

1 Verifying nonlinear formulas over the reals

Over the real numbers, there are algorithms that can in principle perform quantifier
elimination from arbitrary first-order formulas built up using addition, multiplication
and the usual equality and inequality predicates. A classic example of such a quantifier
elimination equivalence is the criterion for a quadratic equation to have a real root:

Vabe 3z.az’ +bz+c=0) o a=0A(b=0=c=0)Va#OAb >4ac

The first quantifier elimination algorithm for this theory was developed by Tarski
[32],! who actually demonstrated completeness and quantifier elimination just for the
theory of real-closed fields, which can be characterized as ordered fields where all non-
negative elements have square roots (Vz. 0 < = = Jy. z = y?) and all non-trivial
polynomials of odd degree have a root. There are several interesting models of these
axioms besides the reals (e.g. the algebraic reals, the computable reals, the hyperreals)
yet Tarski’s result shows that these different models satisfy exactly the same properties
in the first-order language under consideration.

However, Tarski’s procedure is complicated and inefficient. Many alternative deci-
sion methods were sut d; two that are signi ly simpler were given
by Seidenberg [30] and Cohen [8] whlle the CAD algorithm [9], apparently the first
ever to be implemented, is significantly more efficient, though relatively complicated.
Cohen’s ideas were recast by Hormander [17] into a relatively simple algorithm. How-
ever, even CAD has poor worst-case complexity (doubly exponential), and the Cohen-
Hormander algorithm is generally still slower. Thus, there has been limited progress on

! Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards.

e ——




Semi-definite Programming
for Positivstellensatz Search

Sums of Squares Methods Explained: Part I

Grant Olney Passmore
grant.passmore@cl.cam.ac.uk
15 JJ Thomson Ave., University of Cambridge, CB3 0FD, UK

1 Sums of Squares Methods
From a high level, these methods rely upon the following two observations:

1. The question as to whether or not a real polynomial p(Z) € R[Z] is a sum of squares (SOS) of
real polynomials can be reduced to a semidefinite programming problem, and

2. The search for a Positivstellensatz refutation certifying the emptiness of a semialgebraic set
defined by an RCF constraint system can be reduced to a finite sequence of searches for SOS
decompositions.

Below we present an expository account of the difficult part of the first observation, due to Powers
and Woérmann [PW99] and building upon the key insights of Choi, Lam, and Reznick [MDCR95].
An expository account of the second observation, due to Parrilo [Par03], will be the subject of a
second note.

Given a PSD real polynomial p(Z) € R[Z] that is a sum of squares of real polynomials, we seek an
algorithm that will compute pi (&), .. .,p, (%) € R[Z] s.t. p(&) = 11, p?(&).

Remark. From now on, unless specified otherwise, when we write “sum of squares” or “SOS” we
mean “sum of squares of real polynomials in Rzy,...,z,)".

1.1 The Powers-Woérmann SOS Decomposition

Let p(Z) € R[Z] be SOS in ¢ real polynomial squares. Then, p(Z) must have even degree. Let
deg(p(%)) = 2k. Then, 3qs,...,q € R[] s.t. deg(qi(Z)) < k and p(Z) = Y25, ¢F(@).-

A key observation is that we can now exactly characterise the finitely many possible power-products
that could occur in each ¢;(Z).

Definition 1.1. Let A,(d) = {a = (a1,...,00) EN" |y + ... + a, < d}.

Then, as deg(¢;(%)) < k (V1 < i < t), we see that the exponent vector a for each monomial
occurring in each ¢;(Z) must be a member of A, (k).
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Sums of Squares Methods Explained: Part I

Grant Olney Passmore
grant.passmore@cl.cam.ac.uk
15 JJ Thomson Ave., University of Cambridge, CB3 0FD, UK

1 Sums of Squares Methods
From a high level, these methods rely upon the following two observations:

1. The question as to whether or not a real polynomial p(Z) € R[Z] is a sum of squares (SOS) of
real polynomials can be reduced to a semidefinite programming problem, and

2. The search for a Positivstellensatz refutation certifying the emptiness of a semialgebraic set
defined by an RCF constraint system can be reduced to a finite sequence of searches for SOS
decompositions.

Below we present an expository account of the difficult part of the first observation, due to Powers
and Wérmann [PW99] and building upon the key insights of Choi, Lam, and Reznick [MDCR95].
An expository account of the second observation, due to Parrilo [Par03], will be the subject of a
second note.

Given a PSD real polynomial p(Z) € R[Z] that is a sum of squares of real polynomials, we seek an
algorithm that will compute p1 (&), ..., pa(&) € R[Z] s.t. p(&) = 31, p?().

Remark. From now on, unless specified otherwise, when we write “sum of squares” or “SOS” we
mean “sum of squares of real polynomials in R(zy,...,z,]".

1.1 The Powers-Woérmann SOS Decomposition

Let p(Z) € R[Z] be SOS in ¢ real polynomial squares. Then, p(Z) must have even degree. Let
deg(p(#)) = 2k. Then, 3qi,...,q € R[7] s.t. deg(qi(¥)) < k and p(&) = ¥'_, ¢?(&).

A key observation is that we can now exactly characterise the finitely many possible power-products
that could occur in each ¢;(Z).

Definition 1.1. Let A,(d) = {a = (a1,...,a,) EN" | a1 + ... + o, < d}.

Then, as deg(q;(Z)) < k (V1 < i < t), we see that the exponent vector a for each monomial
occurring in each ¢;(Z) must be a member of A, (k).

Example 1.1. Let p(z1, z2) = 427 + z3. Then,

1. dim(p) = 2, deg(p) = 2 = 2k with k =1,

2. Ao(2k) = A2(2) = {(0,0), (1,0),(0,1), (1,1),(2,0),(0,2)}, which are the exponent vectors for
the following power-products (in this order):

2 .2
{1, 21, 29, z122, 27, 23}

These are all of the power-products that could occur in an arbitrary 2-dimensional polynomial
of degree 2.

3. Ay(k) = Az(1) = {(0,0),(1,0), (0,1)} which are the exponent vectors for the following power-
products (in this order):
{L, 21,22}

These are all of the power-products that could occur in SOS co-factors of an arbitrary 2-
dimensional polynomial of degree 2.

4. We set u = |[Ay(k)| = 3 and fix an order upon Ay(k) by setting:

B1= (0, 0)7 B2 = (1,0), B3 = (0, 1)‘

foles 1
{=|2%) =
j’ﬁa To

6. Now, p(z1,22) is SOS iff we can exhibit a u X u (= 3 x 3) real, symmetric, PSD matrix B s.t.

5. We then set

p(z1,z2) = CTBC.

That is, we are looking for some real, symmetric, PSD

T
b1 b1 big 1 b1 bip big 1

B= b2’1 b2,2 b2,3 s.t. & b2,1 bg,g b2,3 T = 42% + z%
bs1 b3z bz T b1 b3z b33/ \z2

By multiplying through, we then see that:

bia bia b 1
(1 21 @2) |bog bap bas| |21 =
b31 bza b33/ \x2

1
(b1,1 +beazy +bziza bi2+ baoxr + b3z bz + beszi + bs,sxz) (ml) =
)

(b1‘2 + b2,1)1‘1 + (b1,3 + b3‘1).22 + (b2,3 + bg,g)zlzz + bz,gz% + b3,31‘% + b171.




(IMPLIES

(IMPLIES

(IMPLIES

(IMPLIES

(IMPLIES

(IMPLIES

(= (+ (*

More example problems

XX) (xYY) (xZ2) 1)

kK=(x (+XYZ) (+XY1Z)) 3)

(= (+ (*

WW XX (xYY) (xZ2) 1)

kK= +WXYZ) (+WXYZ)) 4)

(AND (<=
(<= (+ X

(AND (>=
(= (¢ X

(AND (<=

(<=

(AND (<=
(<=

(<= (* C A AB) X))
e ——————— ,

0X) (k=0Y) (=
Y) (+ (x X X) (%

(* XY) 1))
Y Y))))

X 1) (=Y 1))
Y) (- (+XY) 1)

0 X) (<= 0Y))
(* XY (EXPT (+ X Y) 2))
(EXPT (+ (*x X X) (x Y Y)) 2)))

0 A) (<= 0B) (<=0 0)
(x C (EXPT (+ (* 2 A) B) 3)) (* 27 X)))

W




grant@logicBOX imandra-sos % dune exec ./main.exe

ACL2 !>>>(DEFTHM
FINAL
- (IMPLIES (AND (RATIONALP A)
N T T R/ 2 Y RN 7 (RATIONALP B)
4 N N v (RATIONALP O
/ACL2 for nonlinear real arithmetic v@.la - (c) Imandra Inc (RATIONALP X)
- Goal (over R): (<= 0 A)
(IMPLIES (AND (<= @ a) (<= 0 B)
(<= 0 b) (<=0 O
(<= 0 ©)
(<= (* ¢ (EXPT (+ (* 2 @) b) 3)) (* 27 x))) (<= (* C (EXPT (+ (* 2 A) B) 3))
(<= (* caab)x). * 27 X)))
:. Proof found! (<= (* CAA B) X))
:HINTS
((HGOG'I. "
¥ heoren Cover B): :IN-THEORY (ENABLE GOAL PROB-@ PROB-1 PROB-2 PROB-3 PROB-4)
:USE (MAIN)))

- Constructing ACL2 proof from Imandra's Positivstellensatz refutation:

;3 (IMPLIES (AND (<= @ a)
> (<=0 b) :RULE-CLASSES NIL)
(<=0
(<= (* ¢ (EXPT (+ (* 2 @) b) 3)) (* 27 x)))
(<= (* caab) x)).

55
;3 Proof found by Imandra in 1.728803 secs.
;; Questions? Contact Grant Passmore (grant@imandra.ai).




