A Practical | ool for Finding
Provable Arithmetic Bounds

Sol Swords
ACL2 Workshop 2023

=

intel.



Problem context

Problem: Prove that a hardware design implements some
arithmetic algorithm.

Inevitable challenges:
* |ntermediate values are assumed to fit in certain bit widths

* [f you don’t have tight enough bounds for A, B, C, won’t be able to show
A*B+C fitsin its assumed width

» Other HW tricks — e.qg. the MSBs will always be 101, so don’t bother
storing them.

» Need “good enough”bounds on the computed values.

ACL2 Workshop 2023

intel.

2



Finding Bounds

» Bitblasting can find exact bounds
* But doesn’t scale

= ACL2 has linear/nonlinear decision procedures
* But they won't tell you what's the best bound they can prove
* Also sometimes don't scale

= Algorithm might suggest theoretical bounds
* But mathis hard.

* Practical approach: Find the best bound you can easily prove. If
insufficient, go back and try harder.

ACL2 Workshop 2023

intel.

3



Tool for the practical approach: def—bounds

Find bounds that we can prove, then prove them.
Features

= |nitial simplification: phased rewriting and case splitting
» Core algorithm: abstract interpretation based on ranges

» Linear rules, user hints, typeset reasoning provide base bounds
forabstractinterpretation

* Runs once to find the bounds, produces defthm to prove them

ACL2 Workshop 2023 intel.



Abstract interpretation sketch
a € |a;,a,],b € |b,b,] = a+b€|a+ b,a, + b,]

a e [al; au];b € [bl' bu]
= ab € |min(a;b;, a;by, a,b;, a,b,) , max(a;b;, a;by, a, by, a by, )]

a € [a;, ay]
= a? € [max(min(alz, a,a,, aﬁ) ) 0) ) max(alz, Ay, aﬁ)]

(Bounds may be infinite as well.)

ACL2 Workshop 2023

intel.

5



Example —first try

(defund foo (x)
(- (* x x) (* 3 x)))

(def-bounds foo-bounds

(foo x)

:hyp (and (rationalp x)
(<=2 x)
(<= x 1))

:simp—hints ((:in-theory (enable fo00))))

x € [2,4] = x* € [4,16],3x € [6,12],x* — 3x € [—8,10]
Actualrangeis [-2,4] - [-8,10] isn't a great result...

ACL2 Workshop 2023

intel.

6



Example — better

(defund foo (x)
(- (* x x) (* 3 x)))

(defthmd my-factor
(equal (+ (- (* 3 x)) (* x x))
(* x (- x 3))))

(def-bounds foo-bounds

:simp—hints ((:in-theory (enable f00))
(:in-theory (enable my-factor))))

x €[2,4] = x—3€[-1,1],x(x — 3) € [-4,4]
Better...

ACL2 Workshop 2023

intel.

7



Example — extreme

(defund foo (x)
(- (* x x) (* 3 x)))

(defthmd my-factor ..)
(def-bounds foo-bounds

:cases ((:ranges—-from-to-by x 2 4 1/64)))

Result after 128-way case split: [— %, 4] -- close to the actual range

ACL2 Workshop 2023

intel.

8



Conclusion

» Practical tool for finding and proving bounds

» Allows for various levels of effort depending how tight a bound is
needed

* Rewrite term toward formulation that yields narrowest bounds
= Case split to mitigate imprecision due to correlations between subterms

» Successfully used at Intel for FP SORT verification
= Community books -- centaur/misc/def-bounds

ACL2 Workshop 2023 intel.

9



	Slide 1: A Practical Tool for Finding Provable Arithmetic Bounds
	Slide 2: Problem context
	Slide 3: Finding Bounds
	Slide 4: Tool for the practical approach: def-bounds
	Slide 5: Abstract interpretation sketch
	Slide 6: Example – first try
	Slide 7: Example – better
	Slide 8: Example – extreme
	Slide 9: Conclusion

