
A Practical Tool for Finding
Provable Arithmetic Bounds
Sol Swords

ACL2 Workshop 2023

Intel ConfidentialDepartment or Event Name 2ACL2 Workshop 2023 2

Problem context

Problem: Prove that a hardware design implements some
arithmetic algorithm.

Inevitable challenges:
• Intermediate values are assumed to fit in certain bit widths

• If you don’t have tight enough bounds for A, B, C, won’t be able to show
A*B+C fits in its assumed width

• Other HW tricks – e.g. the MSBs will always be 101, so don’t bother
storing them.

• Need “good enough” bounds on the computed values.

Intel ConfidentialDepartment or Event Name 3ACL2 Workshop 2023 3

Finding Bounds

• Bitblasting can find exact bounds
• But doesn’t scale

• ACL2 has linear/nonlinear decision procedures
• But they won’t tell you what’s the best bound they can prove

• Also sometimes don’t scale

• Algorithm might suggest theoretical bounds
• But math is hard.

• Practical approach: Find the best bound you can easily prove. If
insufficient, go back and try harder.

Intel ConfidentialDepartment or Event Name 4ACL2 Workshop 2023 4

Tool for the practical approach: def-bounds

Find bounds that we can prove, then prove them.

Features

• Initial simplification: phased rewriting and case splitting

• Core algorithm: abstract interpretation based on ranges

• Linear rules, user hints, typeset reasoning provide base bounds
for abstract interpretation

• Runs once to find the bounds, produces defthm to prove them

Intel ConfidentialDepartment or Event Name 5ACL2 Workshop 2023 5

Abstract interpretation sketch

𝑎 ∈ 𝑎𝑙 , 𝑎𝑢 , 𝑏 ∈ 𝑏𝑙 , 𝑏𝑢 ⇒ 𝑎 + 𝑏 ∈ 𝑎𝑙 + 𝑏𝑙 , 𝑎𝑢 + 𝑏𝑢

𝑎 ∈ 𝑎𝑙 , 𝑎𝑢 , 𝑏 ∈ 𝑏𝑙 , 𝑏𝑢
⇒ 𝑎𝑏 ∈ min 𝑎𝑙𝑏𝑙 , 𝑎𝑙𝑏𝑢, 𝑎𝑢𝑏𝑙 , 𝑎𝑢𝑏𝑢 , max 𝑎𝑙𝑏𝑙 , 𝑎𝑙𝑏𝑢, 𝑎𝑢𝑏𝑙 , 𝑎𝑢𝑏𝑢

𝑎 ∈ 𝑎𝑙 , 𝑎𝑢
⇒ 𝑎2 ∈ max min 𝑎𝑙

2, 𝑎𝑙𝑎𝑢, 𝑎𝑢
2 , 0 , max 𝑎𝑙

2, 𝑎𝑙𝑎𝑢, 𝑎𝑢
2

(Bounds may be infinite as well.)

Intel ConfidentialDepartment or Event Name 6ACL2 Workshop 2023 6

Example – first try

(defund foo (x)

 (- (* x x) (* 3 x)))

(def-bounds foo-bounds

 (foo x)

 :hyp (and (rationalp x)

 (<= 2 x)

 (<= x 4))

 :simp-hints ((:in-theory (enable foo))))

𝑥 ∈ 2, 4 ⇒ 𝑥2 ∈ 4, 16 , 3𝑥 ∈ 6, 12 , 𝑥2 − 3𝑥 ∈ [−8, 10]

Actual range is [-2, 4] – [-8, 10] isn’t a great result…

Intel ConfidentialDepartment or Event Name 7ACL2 Workshop 2023 7

Example – better

(defund foo (x)
 (- (* x x) (* 3 x)))

(defthmd my-factor
 (equal (+ (- (* 3 x)) (* x x))
 (* x (- x 3))))

(def-bounds foo-bounds
 …
 :simp-hints ((:in-theory (enable foo))
 (:in-theory (enable my-factor))))

𝑥 ∈ 2, 4 ⇒ 𝑥 − 3 ∈ −1, 1 , 𝑥 𝑥 − 3 ∈ [−4, 4]

Better…

Intel ConfidentialDepartment or Event Name 8ACL2 Workshop 2023 8

Example – extreme

(defund foo (x)

 (- (* x x) (* 3 x)))

(defthmd my-factor …)

(def-bounds foo-bounds

 …

 :cases ((:ranges-from-to-by x 2 4 1/64)))

Result after 128-way case split: −
129

64
, 4 -- close to the actual range

Intel ConfidentialDepartment or Event Name 9ACL2 Workshop 2023 9

Conclusion

• Practical tool for finding and proving bounds

• Allows for various levels of effort depending how tight a bound is
needed
• Rewrite term toward formulation that yields narrowest bounds

• Case split to mitigate imprecision due to correlations between subterms

• Successfully used at Intel for FP SQRT verification

• Community books -- centaur/misc/def-bounds

	Slide 1: A Practical Tool for Finding Provable Arithmetic Bounds
	Slide 2: Problem context
	Slide 3: Finding Bounds
	Slide 4: Tool for the practical approach: def-bounds
	Slide 5: Abstract interpretation sketch
	Slide 6: Example – first try
	Slide 7: Example – better
	Slide 8: Example – extreme
	Slide 9: Conclusion

