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PEARLS Project

• Eric will cover this better in a rump session

• Basic Idea
• Collect many theorems from community books
• Break them in some way (so we know the “fix”)
• Capture the ACL2 breakpoints
• Train an AI to match breakpoints with the “fixes”

• Three big issues
• Is AI better than ad hoc suggestions?
• Should we learn from checkpoints or counterexamples?
• What if the “broken” theorem turns out to be false?
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DrLA: The Doctor’s Logic Assistant

• Attempts to find missing hypotheses
• Only applies when theorem is false

• Not based on ML, in particular not generative AI

• Based on theory exploration
1 Start with a vocabulary of function names, variables, and constants
2 Generate a forest of expression trees
3 Check each generated expression to see if it’s useful
4 Profit!!!
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Generating Expressions

• Start with consp, nil, cons, car, cdr, append, and equal

• Familiar theorems

(equal (car (cons x1 x2)) x1)
(equal (append (append x1 x2) x3) (append x1 (append x2 x3)))

• Plausible (but false) theorems

(equal (car (cons x1 x2)) x2)
(equal (append x1 x2) (append x2 x1))

• Utter nonsense

(consp (equal (car nil) (append x1 x2)))
(car (cons (cdr x1) (equal x2 nil)))
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Testing Expressions

• Not enough to check if the suggested hypothesis can prove the theorem
• E.g., what if the suggested hypothesis is NIL?

• Use counter-example generation (cgen from ACL2s)
• produce counterexamples and witnesses to original theorem
• test the proposed hypothesis on the counterexamples
• . . . and on the witnesses

• Original idea was that the suggested hypothesis should be
• false for all counterexamples
• true for all witnesses

• We found it was useful to allow the hypothesis to be false for some witnesses
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Choosing the Handful of Built-in Functions

• Unary functions are better than binary functions
• Forgetting about types is a common source of errors
• Types also come up with theory evolution

• Choose “type” predicates
• As in tau, this means unary boolean predicates

• Includes atom, integerp, true-listp, . . .
• Also compound predicates, e.g.,
(and (acl2-numberp x) (not (equal x ’0)))



Generating Function Calls

• The functions expect one or more arguments, which need to be generated
• Use the variables and constant symbols
• Use terms built up from functions in the theorem (and their definitions. . . )
• Do not use nested built-in functions
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Generating More Complex Boolean Expressions

• Richer hypotheses can be considered by allowing boolean expressions up to
a (configurable) depth limit

• Only known predicates are combined this way, e.g., the built-in functions

• The user can enable exploring comparison operators, like equal and <<
• Note that the arguments to these are the same as the arguments to other

functions,
• variables and constant symbols
• terms built up from functions in the theorem (and their definitions. . . )
• But not nested built-in functions

• This leads to many duplicates with the built-in compound predicates, so we
disable those when comparisons are enabled.
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Not Drowning while Generating Expressions

• Ideally, we will generate enough expressions to find useful suggestions, but
not so many to make DrLA glacially slow

• Do not nest the boolean predicates
• Avoid duplication when using AND/OR/NOT
• Use commutativity and associativity of AND/OR
• Eliminate obvious redundant terms, e.g., (and X X)

• Eliminate subtly redundant terms, e.g., (and X Y) where X implies Y

• Also, generate the expression lazily, so we never need to build an ACL2 list
with all expressions
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Ranking the Suggestions

• DrLA considers a very large space of possible hypotheses
• Users do not want to see the best 50,000 suggestions

• An approach to ranking the suggestions is to use subsumption
• If both X and Y are suggested, DrLA will pick only X if X is more general than Y

• E.g., if both rationalp and acl2-numberp are possible hypotheses,
choose acl2-numberp
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Reverse Reverse

• Beginners are often surprised to find that this is not a theorem in ACL2
(reverse (reverse x)) = x

• Experienced ACL2 users immediately recognize the missing hypothesis
(true-listp x)
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• (revappend x 0)
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Generating Terms

The first step is to generate terms, not necessarily booleans

• (posp x)

• (consp x)

• (reverse x)

• (revappend x 0)

• (equal (reverse x) x)

Note that DrLA will not nest the built-in predicates, so it will not consider terms like

• (posp (consp x))

DrLA also considers boolean combinations of such expressions

• (or (posp x) (consp x))



Finding Useful Suggestions

DrLA will find many, many candidate hypotheses, including

• (equal x ’nil)

• (equal (revappend x x) ’nil)

• (true-listp (revappend x x))

• (and (consp x) (true-listp x))

• (and (true-listp x) (equal (reverse x) ’nil))

• (true-listp x)

• . . .
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(implies (or (stringp x)
(true-listp x))

(equal (reverse (reverse x)) x))



Finding Useful Suggestions

DrLA then uses subsumption to prune the possible suggestions

(implies (or (stringp x)
(true-listp x))

(equal (reverse (reverse x)) x))

Surprise! reverse works on lists and strings
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Future Work

• Take advantage of powerful features of cgen
• E.g., use defattach to support constrained functions

• Better selection of initial vocabulary
• E.g., let user suggest some functions to use as predicates or general terms
• (Recall that DrLA uses these types of functions differently)
• Users may also provide a list of functions not to consider

• Use ML to suggest the initial vocabulary
• E.g., checkpoints that look like this benefit from true-listp

• Also, use locality to suggest the initial vocabulary
• E.g., I see that you’ve been using balanced-p in many recent theorems

• Integrate with student front-ends, e.g., ProofPad



Thanks!



False Witnesses

Consider this (non-)theorem

(equal (<= (* k x) (* k y))
(<= x y))

The ideal missing hypothesis is (and (rationalp k) (< 0 k))

But that’s assuming the intended use where all variables are numbers

A possible (false) witness is k=-1, x=NIL, and y=NIL

Another (false) witness is k=-1, x=0, and y=0


