
Using Counterexample Generation and Theory Exploration
to Suggest Missing Hypotheses

Ruben Gamboa1,2 Panagiotis Manolios3 Eric Smith2 Kyle Thompson2,4

1University of Wyoming

2Kestrel Institute

2Northeastern University

4University of California San Diego

ACL2 Workshop 2023
Austin, TX



Outline

Context

Introducing DrLA

A Classic Example

Conclusion



Goals

• Easier proof repair
• Evolution of definitions
• Rearranging of libraries or previous theorems
• New versions of theorem prover

• Easier proof discovery
• Useful libraries
• Useful lemmas
• Helpful hints



Goals

• Easier proof repair
• Evolution of definitions
• Rearranging of libraries or previous theorems
• New versions of theorem prover

• Easier proof discovery
• Useful libraries
• Useful lemmas
• Helpful hints
• Missing hypotheses



PEARLS Project

• Eric will cover this better in a rump session

• Basic Idea
• Collect many theorems from community books
• Break them in some way (so we know the “fix”)
• Capture the ACL2 breakpoints
• Train an AI to match breakpoints with the “fixes”



PEARLS Project

• Eric will cover this better in a rump session

• Basic Idea
• Collect many theorems from community books
• Break them in some way (so we know the “fix”)
• Capture the ACL2 breakpoints
• Train an AI to match breakpoints with the “fixes”

• Three big issues
• Is AI better than ad hoc suggestions?
• Should we learn from checkpoints or counterexamples?
• What if the “broken” theorem turns out to be false?



Outline

Context

Introducing DrLA

A Classic Example

Conclusion



DrLA: The Doctor’s Logic Assistant

• Attempts to find missing hypotheses
• Only applies when theorem is false



DrLA: The Doctor’s Logic Assistant

• Attempts to find missing hypotheses
• Only applies when theorem is false

• Not based on ML, in particular not generative AI



DrLA: The Doctor’s Logic Assistant

• Attempts to find missing hypotheses
• Only applies when theorem is false

• Not based on ML, in particular not generative AI

• Based on theory exploration
1 Start with a vocabulary of function names, variables, and constants
2 Generate a forest of expression trees
3 Check each generated expression to see if it’s useful
4 Profit!!!



Generating Expressions

• Start with consp, nil, cons, car, cdr, append, and equal



Generating Expressions

• Start with consp, nil, cons, car, cdr, append, and equal

• Familiar theorems

(equal (car (cons x1 x2)) x1)
(equal (append (append x1 x2) x3) (append x1 (append x2 x3)))



Generating Expressions

• Start with consp, nil, cons, car, cdr, append, and equal

• Familiar theorems

(equal (car (cons x1 x2)) x1)
(equal (append (append x1 x2) x3) (append x1 (append x2 x3)))

• Plausible (but false) theorems

(equal (car (cons x1 x2)) x2)
(equal (append x1 x2) (append x2 x1))



Generating Expressions

• Start with consp, nil, cons, car, cdr, append, and equal

• Familiar theorems

(equal (car (cons x1 x2)) x1)
(equal (append (append x1 x2) x3) (append x1 (append x2 x3)))

• Plausible (but false) theorems

(equal (car (cons x1 x2)) x2)
(equal (append x1 x2) (append x2 x1))

• Utter nonsense

(consp (equal (car nil) (append x1 x2)))
(car (cons (cdr x1) (equal x2 nil)))



Testing Expressions

• Not enough to check if the suggested hypothesis can prove the theorem
• E.g., what if the suggested hypothesis is NIL?



Testing Expressions

• Not enough to check if the suggested hypothesis can prove the theorem
• E.g., what if the suggested hypothesis is NIL?

• Use counter-example generation (cgen from ACL2s)
• produce counterexamples and witnesses to original theorem
• test the proposed hypothesis on the counterexamples
• . . . and on the witnesses



Testing Expressions

• Not enough to check if the suggested hypothesis can prove the theorem
• E.g., what if the suggested hypothesis is NIL?

• Use counter-example generation (cgen from ACL2s)
• produce counterexamples and witnesses to original theorem
• test the proposed hypothesis on the counterexamples
• . . . and on the witnesses

• Original idea was that the suggested hypothesis should be
• false for all counterexamples
• true for all witnesses

• We found it was useful to allow the hypothesis to be false for some witnesses



Choosing the Language

• We need function names, variables, and constants



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit

• The variable names come from
• variables appearing in the theorem



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit

• The variable names come from
• variables appearing in the theorem

• The constants come from
• a handful of built-in constants



Choosing the Language

• We need function names, variables, and constants



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit

• The variable names come from
• variables appearing in the theorem



Choosing the Language

• We need function names, variables, and constants

• The functions come from
• a handful of built-in functions
• functions appearing in the theorem
• functions appearing in the definitions of functions in the theorem
• . . . up to some (configurable) limit

• The variable names come from
• variables appearing in the theorem

• The constants come from
• a handful of built-in constants



Choosing the Handful of Built-in Functions

• Unary functions are better than binary functions
• Forgetting about types is a common source of errors
• Types also come up with theory evolution



Choosing the Handful of Built-in Functions

• Unary functions are better than binary functions
• Forgetting about types is a common source of errors
• Types also come up with theory evolution

• Choose “type” predicates
• As in tau, this means unary boolean predicates



Choosing the Handful of Built-in Functions

• Unary functions are better than binary functions
• Forgetting about types is a common source of errors
• Types also come up with theory evolution

• Choose “type” predicates
• As in tau, this means unary boolean predicates

• Includes atom, integerp, true-listp, . . .
• Also compound predicates, e.g.,
(and (acl2-numberp x) (not (equal x ’0)))



Generating Function Calls

• The functions expect one or more arguments, which need to be generated
• Use the variables and constant symbols
• Use terms built up from functions in the theorem (and their definitions. . . )
• Do not use nested built-in functions



Generating More Complex Boolean Expressions

• Richer hypotheses can be considered by allowing boolean expressions up to
a (configurable) depth limit

• Only known predicates are combined this way, e.g., the built-in functions



Generating More Complex Boolean Expressions

• Richer hypotheses can be considered by allowing boolean expressions up to
a (configurable) depth limit

• Only known predicates are combined this way, e.g., the built-in functions

• The user can enable exploring comparison operators, like equal and <<
• Note that the arguments to these are the same as the arguments to other

functions,
• variables and constant symbols
• terms built up from functions in the theorem (and their definitions. . . )
• But not nested built-in functions

• This leads to many duplicates with the built-in compound predicates, so we
disable those when comparisons are enabled.



Not Drowning while Generating Expressions

• Ideally, we will generate enough expressions to find useful suggestions, but
not so many to make DrLA glacially slow



Not Drowning while Generating Expressions

• Ideally, we will generate enough expressions to find useful suggestions, but
not so many to make DrLA glacially slow

• Do not nest the boolean predicates
• Avoid duplication when using AND/OR/NOT
• Use commutativity and associativity of AND/OR
• Eliminate obvious redundant terms, e.g., (and X X)

• Eliminate subtly redundant terms, e.g., (and X Y) where X implies Y



Not Drowning while Generating Expressions

• Ideally, we will generate enough expressions to find useful suggestions, but
not so many to make DrLA glacially slow

• Do not nest the boolean predicates
• Avoid duplication when using AND/OR/NOT
• Use commutativity and associativity of AND/OR
• Eliminate obvious redundant terms, e.g., (and X X)

• Eliminate subtly redundant terms, e.g., (and X Y) where X implies Y

• Also, generate the expression lazily, so we never need to build an ACL2 list
with all expressions



Ranking the Suggestions

• DrLA considers a very large space of possible hypotheses
• Users do not want to see the best 50,000 suggestions



Ranking the Suggestions

• DrLA considers a very large space of possible hypotheses
• Users do not want to see the best 50,000 suggestions

• An approach to ranking the suggestions is to use subsumption
• If both X and Y are suggested, DrLA will pick only X if X is more general than Y

• E.g., if both rationalp and acl2-numberp are possible hypotheses,
choose acl2-numberp



Outline

Context

Introducing DrLA

A Classic Example

Conclusion



Reverse Reverse

• Beginners are often surprised to find that this is not a theorem in ACL2
(reverse (reverse x)) = x

• Experienced ACL2 users immediately recognize the missing hypothesis
(true-listp x)



Generating Terms

The first step is to generate terms, not necessarily booleans

• (posp x)

• (consp x)

• (reverse x)

• (revappend x 0)

• (equal (reverse x) x)



Generating Terms

The first step is to generate terms, not necessarily booleans

• (posp x)

• (consp x)

• (reverse x)

• (revappend x 0)

• (equal (reverse x) x)

Note that DrLA will not nest the built-in predicates, so it will not consider terms like

• (posp (consp x))



Generating Terms

The first step is to generate terms, not necessarily booleans

• (posp x)

• (consp x)

• (reverse x)

• (revappend x 0)

• (equal (reverse x) x)

Note that DrLA will not nest the built-in predicates, so it will not consider terms like

• (posp (consp x))

DrLA also considers boolean combinations of such expressions

• (or (posp x) (consp x))



Finding Useful Suggestions

DrLA will find many, many candidate hypotheses, including

• (equal x ’nil)

• (equal (revappend x x) ’nil)

• (true-listp (revappend x x))

• (and (consp x) (true-listp x))

• (and (true-listp x) (equal (reverse x) ’nil))

• (true-listp x)

• . . .



Finding Useful Suggestions

DrLA then uses subsumption to prune the possible suggestions

(implies (or (stringp x)
(true-listp x))

(equal (reverse (reverse x)) x))



Finding Useful Suggestions

DrLA then uses subsumption to prune the possible suggestions

(implies (or (stringp x)
(true-listp x))

(equal (reverse (reverse x)) x))

Surprise! reverse works on lists and strings



Outline

Context

Introducing DrLA

A Classic Example

Conclusion



Future Work

• Take advantage of powerful features of cgen
• E.g., use defattach to support constrained functions



Future Work

• Take advantage of powerful features of cgen
• E.g., use defattach to support constrained functions

• Better selection of initial vocabulary
• E.g., let user suggest some functions to use as predicates or general terms
• (Recall that DrLA uses these types of functions differently)
• Users may also provide a list of functions not to consider



Future Work

• Take advantage of powerful features of cgen
• E.g., use defattach to support constrained functions

• Better selection of initial vocabulary
• E.g., let user suggest some functions to use as predicates or general terms
• (Recall that DrLA uses these types of functions differently)
• Users may also provide a list of functions not to consider

• Use ML to suggest the initial vocabulary
• E.g., checkpoints that look like this benefit from true-listp

• Also, use locality to suggest the initial vocabulary
• E.g., I see that you’ve been using balanced-p in many recent theorems



Future Work

• Take advantage of powerful features of cgen
• E.g., use defattach to support constrained functions

• Better selection of initial vocabulary
• E.g., let user suggest some functions to use as predicates or general terms
• (Recall that DrLA uses these types of functions differently)
• Users may also provide a list of functions not to consider

• Use ML to suggest the initial vocabulary
• E.g., checkpoints that look like this benefit from true-listp

• Also, use locality to suggest the initial vocabulary
• E.g., I see that you’ve been using balanced-p in many recent theorems

• Integrate with student front-ends, e.g., ProofPad



Thanks!



False Witnesses

Consider this (non-)theorem

(equal (<= (* k x) (* k y))
(<= x y))

The ideal missing hypothesis is (and (rationalp k) (< 0 k))

But that’s assuming the intended use where all variables are numbers

A possible (false) witness is k=-1, x=NIL, and y=NIL

Another (false) witness is k=-1, x=0, and y=0


