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Disclaimer

The views expressed are those of the authors and do not reflect the official 
policy or position of the Defense Advanced Research Projects Agency (DARPA) 
or the U.S. Government. 




Motivation
• An emerging consensus amongst computer 

science thought leaders is that memory-safe 
programming language technology needs to be 
adopted more broadly:


• “NSA recommends using a memory safe 
language when possible.” (11/2022)


• “The [White House] has established an 
Open-Source Software Security Initiative 
(OS3I) to champion the adoption of 
memory safe programming languages and 
open-source software security.”  (08/2023)


• Microsoft, Google, and Amazon have all 
announced significant Rust initiatives.


• Rust verification technology features 
prominently in the Collins Aerospace 
winning proposal for the DARPA 
PROVERS program. (09/2023)



Example: Dancing Links for Exact 
Cover Problems

• An exact cover problem attempts to find, for an n x m matrix with binary elements, 
all of the subsets of the rows of the matrix such that all the column sums are exactly 
one. 


• This basic notion naturally extends to matrix elements that are in some 
numerical range; Sudoku is an extended exact cover problem for a 9 x 9 matrix 
with element values in the range of 1 to 9, inclusive. 


• The exact cover problem is NP-complete, but recursive, nondeterministic 
backtracking algorithms to find exact covers have been devised.


• One such procedure is Knuth’s Algorithm X. Elements of the matrix are 
connected via circular doubly-linked lists, and individual elements are removed, 
or restored, as the algorithm proceeds. 


• Removals and restorations out of/into the list are quite common, so one should 
make these operations efficient.  Knuth’s “Dancing Links” is one such 
optimization.


• The Dancing Links technique is documented in Knuth’s TAOCP, vol. 4B (2022).



Dancing Links, Illustrated

(a) Doubly-linked circular list portion prior to remove operation.

(b) After remove of element Y.

(c) After restore of element Y.
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Hardware/Software Co-Design and 
Co-Assurance

• We desire to create high-assurance components using hardware/
software co-design/co-assurance techniques


• The high-level Architectural Modeling approach in DARPA CASE, and 
now PROVERS supports both hardware- and software-based 
realizations


• The ability to defer and/or change the allocation of functionality to 
hardware or software provides development flexibility


• Hardware provides greater tamper resistance, as well as higher 
performance


• Thus, we have been investigating the use of High-Level Synthesis (HLS) 
hardware/software co-design languages for components that also support 
formal verification
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The RAC Approach to Hardware/
Software Verification

• The hardware/software verification approach we leverage 
was developed by David Russinoff and John O’Leary, 
while both were at Intel, and later refined by Russinoff and 
colleagues at Arm


• Russinoff’s method is called Restricted Algorithmic C 
(RAC), as it is based on Mentor’s HLS Algorithmic C


• RAC is extensively documented in Russinoff’s book, 
Formal Verification of Floating-Point Hardware 
Design: A Mathematical Approach


• In Russinoff’s text, RAC is applied to the verification 
of realistic Arm floating-point designs


• RAC, and the verifications described in the book, are 
all available in the standard ACL2 theorem prover 
distribution



Algorithmic C
• The Algorithmic C datatypes “provide a basis for writing bit-accurate algorithms to 

be synthesized into hardware”


• Example use: 

• typedef ac_int<112,false> ui112;


    declares an unsigned 112-bit type used in floating-point hardware datapaths


• Supported by Mentor hardware synthesis tools, e.g. Catapult; for details, see 
https://hlslibs.org


• Restricted Algorithmic C (RAC) further restricts Algorithmic C to facilitate proof; 
see Chapter 15 of Russinoff’s book for details


• NB: We use cpp macros to support either Algorithmic C or Xilinx Vivado HLS in 
hardware synthesis



Hardware/Software Co-Assurance 
using Rust?

• Recently, we began work to realize the hardware/software co-assurance 
toolchain vision, inspired by RAC, for a Rust language subset called 
Restricted Algorithmic Rust, or RAR


• Rust has several assurance advantages over C/C++, including:

• Improved type safety

• Vastly improved memory safety

• No arbitrary pointer arithmetic

• …in short, the sources of 80% of C/C++ security flaws are eliminated 

outright!


• Basic Rust syntax is familiar to C/C++ developers, easing the transition


• The Rust compiler produces efficient and energy-efficient code, which 
makes Rust a favorite for sustainable computing
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Restricted Algorithmic Rust Toolchain
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RAR Toolchain Details

• The Plexi RAR-to-RAC translator:

• Is based on the open source plex parser and lexer generator tool, written 

in Rust

• Rapid prototyping principles used to produce a tool that works “well 

enough”

• Translates RAR code to RAC code one line at a time


• Future work will investigate replacing this tool with a fully-verified transpiler


• A number of examples have been processed using the RAR toolchain, 
including:


• Array-Backed Verified Algebraic Data Types: Stack, Singly-linked list, 
Doubly-linked list, Circular Queue, Deque, etc.


• A DFA-based JSON lexer, coupled with an LL(1) JSON parser

• A significant subset of the Monocypher modern cryptography suite



Dancing Links in RAR

const CDLL_MAX_NODE1: usize = 8191;

const CDLL_MAX_NODE: usize = CDLL_MAX_NODE1 - 1;


#[derive(Copy, Clone)]

struct CDLLNode {

  alloc: u2,

  val: i64,

  prev: usize,

  next: usize,

}


#[derive(Copy, Clone)]

struct CDLL {

  nodeHd: usize,

  nodeCount: usize,

  nodeArr: [CDLLNode; CDLL_MAX_NODE1],

}

• A circular doubly-linked list (CDLL) is specified in RAR as follows:



Dancing Links remove() function
fn CDLL_remove(n: usize, mut CDObj: CDLL) -> CDLL {

  if (n > CDLL_MAX_NODE) {

    return CDObj;

  } else {

    if (n == CDObj.nodeHd) {  // Can't remove head

      return CDObj;

    } else {

      if (CDObj.nodeCount < 3) {  // Need three elements

        return CDObj;

      } else {

        let nextNode: usize = CDObj.nodeArr[n].next;

        let prevNode: usize = CDObj.nodeArr[n].prev;


        CDObj.nodeArr[prevNode].next = nextNode;

        CDObj.nodeArr[nextNode].prev = prevNode;


        CDObj.nodeCount = CDObj.nodeCount - 1;


        return CDObj; } } } }



Dancing Links restore() function
fn CDLL_restore(n: usize, mut CDObj: CDLL) -> CDLL {

  if (n > CDLL_MAX_NODE) {

    return CDObj;

  } else {

    if (n == CDObj.nodeHd) {  // Can't restore head

      return CDObj;

    } else {

      if ((CDObj.nodeCount < 2) ||         // Need two elements

          (CDObj.nodeCount == CDLL_MAX_NODE1))  {  // full list

        return CDObj;

      } else {

        let prevNode: usize = CDObj.nodeArr[n].prev;

        let nextNode: usize = CDObj.nodeArr[n].next;


        CDObj.nodeArr[prevNode].next = n;

        CDObj.nodeArr[nextNode].prev = n;

        CDObj.nodeCount = CDObj.nodeCount + 1;

        return CDObj;

      } } } }



Example Translation to ACL2
(DEFUND CDLL_REMOVE (N CDOBJ)

     (IF1 (LOG> N (CDLL_MAX_NODE))

          CDOBJ

          (IF1 (LOG= N (AG 'NODEHD CDOBJ))

               CDOBJ

               (IF1 (LOG< (AG 'NODECOUNT CDOBJ) 3)

                    CDOBJ

                    (LET* ((NEXTNODE (AG 'NEXT (AG N (AG 'NODEARR CDOBJ))))

                           (PREVNODE (AG 'PREV (AG N (AG 'NODEARR CDOBJ))))

                           (CDOBJ (AS 'NODEARR

                                      (AS PREVNODE

                                          (AS 'NEXT

                                              NEXTNODE

                                              (AG PREVNODE (AG 'NODEARR CDOBJ)))

                                          (AG 'NODEARR CDOBJ))

                                      CDOBJ))

                           (CDOBJ (AS 'NODEARR

                                      (AS NEXTNODE

                                          (AS 'PREV

                                              PREVNODE

                                              (AG NEXTNODE (AG 'NODEARR CDOBJ)))

                                          (AG 'NODEARR CDOBJ))

                                      CDOBJ)))

                          (AS 'NODECOUNT

                              (- (AG 'NODECOUNT CDOBJ) 1)

                              CDOBJ))))))



Dancing Links Correctness

(defthm restore-of-remove--thm

 (implies

  (and (cdllp Obj)

       (good-nodep n Obj)    ;; various well-formedness predicates

       (not (= n (ag 'nodeHd Obj)))

       (>= (ag 'nodeCount Obj) 3))

  (= (CDLL_restore n (CDLL_remove n Obj))

     Obj)))

ACL2 proves 160 circular doubly-linked list functional correctness 
lemmas and theorems completely automatically.



Related Work
• A number of domain-specific languages targeting both hardware and software realization, 

and providing support for formal verification, have been created.

• Cryptol has been employed as a “golden spec” for the evaluation of cryptographic 

implementations, in which automated tools perform equivalence checking between the 
Cryptol spec for a given algorithm, and the VHDL implementation 


• A number of verification tools have been developed for Rust, including:

• Cruesot (Inria)

• Prusti (ETH Zurich)

• RustHorn (University of Tokyo/Chiba University)

• Kani (Amazon)

• Verus (Carnegie-Mellon University)


• With Verus, programmers express proofs and specifications using Rust syntax, allowing 
proofs to take advantage of Rust’s linear types and borrow checking.  Collins Aerospace will 
be teamed with the Verus team on the DARPA PROVERS program.


• It will be interesting to attempt the sorts of correctness proofs achievable on our system 
using these verification tools, and compare the effort required.



Conclusion
• Memory-safe language technology is on the rise, both in leading technology companies, as 

well as in the view of Government agencies

• Memory-safe languages have positive impllcations for formal verification


• We have detailed a method and toolchain for the creation of high-assurance components, 
using a hardware/software co-assurance approach employing the memory-safe Rust 
programming language


• Our efforts stand on the broad shoulders of Restricted Algorithmic C


• In future work (e.g., DARPA PROVERS) we will generate Restricted Algorithmic Rust from 
Architecture Models, as well as from Coq specifications.  We will perform Rust code 
verification, both using the RAR toolchain, as well as SMT-based verification technology.  
Along the way, we will:


• Enlarge the Rust subset that can be formally verified

• Use Rust for hardware synthesis

• Compare and contrast the expressiveness and effectiveness of the SMT-based approach 

relative to the RAR toolchain

• Develop ways to minimize verified Rust code annotation


