
Verification of a Rust Implementation
of Knuth’s Dancing Links using ACL2

David S. Hardin

2023 ACL2 Workshop

13 November 2023

Disclaimer

The views expressed are those of the authors and do not reflect the official
policy or position of the Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

Motivation
• An emerging consensus amongst computer

science thought leaders is that memory-safe
programming language technology needs to be
adopted more broadly:

• “NSA recommends using a memory safe
language when possible.” (11/2022)

• “The [White House] has established an
Open-Source Software Security Initiative
(OS3I) to champion the adoption of
memory safe programming languages and
open-source software security.” (08/2023)

• Microsoft, Google, and Amazon have all
announced significant Rust initiatives.

• Rust verification technology features
prominently in the Collins Aerospace
winning proposal for the DARPA
PROVERS program. (09/2023)

Example: Dancing Links for Exact
Cover Problems

• An exact cover problem attempts to find, for an n x m matrix with binary elements,
all of the subsets of the rows of the matrix such that all the column sums are exactly
one.

• This basic notion naturally extends to matrix elements that are in some
numerical range; Sudoku is an extended exact cover problem for a 9 x 9 matrix
with element values in the range of 1 to 9, inclusive.

• The exact cover problem is NP-complete, but recursive, nondeterministic
backtracking algorithms to find exact covers have been devised.

• One such procedure is Knuth’s Algorithm X. Elements of the matrix are
connected via circular doubly-linked lists, and individual elements are removed,
or restored, as the algorithm proceeds.

• Removals and restorations out of/into the list are quite common, so one should
make these operations efficient. Knuth’s “Dancing Links” is one such
optimization.

• The Dancing Links technique is documented in Knuth’s TAOCP, vol. 4B (2022).

Dancing Links, Illustrated

(a) Doubly-linked circular list portion prior to remove operation.

(b) After remove of element Y.

(c) After restore of element Y.

Element

Y

Element

X

next

Element

Z

(b)

prev

Element

X

next

Element

Z

(a)

prev

prev

next

Element

Y

Element

X

next

Element

Z

(c)

prev

prev

next

Element

Y

Hardware/Software Co-Design and
Co-Assurance

• We desire to create high-assurance components using hardware/
software co-design/co-assurance techniques

• The high-level Architectural Modeling approach in DARPA CASE, and
now PROVERS supports both hardware- and software-based
realizations

• The ability to defer and/or change the allocation of functionality to
hardware or software provides development flexibility

• Hardware provides greater tamper resistance, as well as higher
performance

• Thus, we have been investigating the use of High-Level Synthesis (HLS)
hardware/software co-design languages for components that also support
formal verification

Hardware/Software Co-Design/

Co-Assurance Toolchain

Data Format
Specification RTL

Application
Logic

Runtime
Libraries

Object Code

Hardware/

Software

Co-Design Tool

Modern, High-
Level

Language IDE

Protocol
Specification

Verified
Synthesis

Tools

Proofs

Verified
Transpilers

Lemma
Libraries

Theorem
Prover

The RAC Approach to Hardware/
Software Verification

• The hardware/software verification approach we leverage
was developed by David Russinoff and John O’Leary,
while both were at Intel, and later refined by Russinoff and
colleagues at Arm

• Russinoff’s method is called Restricted Algorithmic C
(RAC), as it is based on Mentor’s HLS Algorithmic C

• RAC is extensively documented in Russinoff’s book,
Formal Verification of Floating-Point Hardware
Design: A Mathematical Approach

• In Russinoff’s text, RAC is applied to the verification
of realistic Arm floating-point designs

• RAC, and the verifications described in the book, are
all available in the standard ACL2 theorem prover
distribution

Algorithmic C
• The Algorithmic C datatypes “provide a basis for writing bit-accurate algorithms to

be synthesized into hardware”

• Example use:

• typedef ac_int<112,false> ui112;

 declares an unsigned 112-bit type used in floating-point hardware datapaths

• Supported by Mentor hardware synthesis tools, e.g. Catapult; for details, see
https://hlslibs.org

• Restricted Algorithmic C (RAC) further restricts Algorithmic C to facilitate proof;
see Chapter 15 of Russinoff’s book for details

• NB: We use cpp macros to support either Algorithmic C or Xilinx Vivado HLS in
hardware synthesis

Hardware/Software Co-Assurance
using Rust?

• Recently, we began work to realize the hardware/software co-assurance
toolchain vision, inspired by RAC, for a Rust language subset called
Restricted Algorithmic Rust, or RAR

• Rust has several assurance advantages over C/C++, including:

• Improved type safety

• Vastly improved memory safety

• No arbitrary pointer arithmetic

• …in short, the sources of 80% of C/C++ security flaws are eliminated

outright!

• Basic Rust syntax is familiar to C/C++ developers, easing the transition

• The Rust compiler produces efficient and energy-efficient code, which
makes Rust a favorite for sustainable computing

Restricted Algorithmic C Toolchain

RAC Source
Code

ACL2
Theorem
Prover

RAC-to-ACL2
Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

“Verification

Side”

“Design

Side”

Synthesis,
Simulation, Test,

Equivalence
Checking

Restricted Algorithmic Rust Toolchain

RAC Source
Code

ACL2
Theorem
Prover

RAC-to-ACL2
Translator

Algorithmic
C Header Lemmas

C++ Compiler
Proofs

(.cert files)

#include

Hardware
Design Tools

Simulation and
Test

“Verification

Side”

“Design

Side”

Synthesis,
Simulation, Test,

Equivalence
Checking

RAR Source
Code

Plexi

Transpiler

RAR Toolchain Details

• The Plexi RAR-to-RAC translator:

• Is based on the open source plex parser and lexer generator tool, written

in Rust

• Rapid prototyping principles used to produce a tool that works “well

enough”

• Translates RAR code to RAC code one line at a time

• Future work will investigate replacing this tool with a fully-verified transpiler

• A number of examples have been processed using the RAR toolchain,
including:

• Array-Backed Verified Algebraic Data Types: Stack, Singly-linked list,
Doubly-linked list, Circular Queue, Deque, etc.

• A DFA-based JSON lexer, coupled with an LL(1) JSON parser

• A significant subset of the Monocypher modern cryptography suite

Dancing Links in RAR

const CDLL_MAX_NODE1: usize = 8191;

const CDLL_MAX_NODE: usize = CDLL_MAX_NODE1 - 1;

#[derive(Copy, Clone)]

struct CDLLNode {

 alloc: u2,

 val: i64,

 prev: usize,

 next: usize,

}

#[derive(Copy, Clone)]

struct CDLL {

 nodeHd: usize,

 nodeCount: usize,

 nodeArr: [CDLLNode; CDLL_MAX_NODE1],

}

• A circular doubly-linked list (CDLL) is specified in RAR as follows:

Dancing Links remove() function
fn CDLL_remove(n: usize, mut CDObj: CDLL) -> CDLL {

 if (n > CDLL_MAX_NODE) {

 return CDObj;

 } else {

 if (n == CDObj.nodeHd) { // Can't remove head

 return CDObj;

 } else {

 if (CDObj.nodeCount < 3) { // Need three elements

 return CDObj;

 } else {

 let nextNode: usize = CDObj.nodeArr[n].next;

 let prevNode: usize = CDObj.nodeArr[n].prev;

 CDObj.nodeArr[prevNode].next = nextNode;

 CDObj.nodeArr[nextNode].prev = prevNode;

 CDObj.nodeCount = CDObj.nodeCount - 1;

 return CDObj; } } } }

Dancing Links restore() function
fn CDLL_restore(n: usize, mut CDObj: CDLL) -> CDLL {

 if (n > CDLL_MAX_NODE) {

 return CDObj;

 } else {

 if (n == CDObj.nodeHd) { // Can't restore head

 return CDObj;

 } else {

 if ((CDObj.nodeCount < 2) || // Need two elements

 (CDObj.nodeCount == CDLL_MAX_NODE1)) { // full list

 return CDObj;

 } else {

 let prevNode: usize = CDObj.nodeArr[n].prev;

 let nextNode: usize = CDObj.nodeArr[n].next;

 CDObj.nodeArr[prevNode].next = n;

 CDObj.nodeArr[nextNode].prev = n;

 CDObj.nodeCount = CDObj.nodeCount + 1;

 return CDObj;

 } } } }

Example Translation to ACL2
(DEFUND CDLL_REMOVE (N CDOBJ)

 (IF1 (LOG> N (CDLL_MAX_NODE))

 CDOBJ

 (IF1 (LOG= N (AG 'NODEHD CDOBJ))

 CDOBJ

 (IF1 (LOG< (AG 'NODECOUNT CDOBJ) 3)

 CDOBJ

 (LET* ((NEXTNODE (AG 'NEXT (AG N (AG 'NODEARR CDOBJ))))

 (PREVNODE (AG 'PREV (AG N (AG 'NODEARR CDOBJ))))

 (CDOBJ (AS 'NODEARR

 (AS PREVNODE

 (AS 'NEXT

 NEXTNODE

 (AG PREVNODE (AG 'NODEARR CDOBJ)))

 (AG 'NODEARR CDOBJ))

 CDOBJ))

 (CDOBJ (AS 'NODEARR

 (AS NEXTNODE

 (AS 'PREV

 PREVNODE

 (AG NEXTNODE (AG 'NODEARR CDOBJ)))

 (AG 'NODEARR CDOBJ))

 CDOBJ)))

 (AS 'NODECOUNT

 (- (AG 'NODECOUNT CDOBJ) 1)

 CDOBJ))))))

Dancing Links Correctness

(defthm restore-of-remove--thm

 (implies

 (and (cdllp Obj)

 (good-nodep n Obj) ;; various well-formedness predicates

 (not (= n (ag 'nodeHd Obj)))

 (>= (ag 'nodeCount Obj) 3))

 (= (CDLL_restore n (CDLL_remove n Obj))

 Obj)))

ACL2 proves 160 circular doubly-linked list functional correctness
lemmas and theorems completely automatically.

Related Work
• A number of domain-specific languages targeting both hardware and software realization,

and providing support for formal verification, have been created.

• Cryptol has been employed as a “golden spec” for the evaluation of cryptographic

implementations, in which automated tools perform equivalence checking between the
Cryptol spec for a given algorithm, and the VHDL implementation

• A number of verification tools have been developed for Rust, including:

• Cruesot (Inria)

• Prusti (ETH Zurich)

• RustHorn (University of Tokyo/Chiba University)

• Kani (Amazon)

• Verus (Carnegie-Mellon University)

• With Verus, programmers express proofs and specifications using Rust syntax, allowing
proofs to take advantage of Rust’s linear types and borrow checking. Collins Aerospace will
be teamed with the Verus team on the DARPA PROVERS program.

• It will be interesting to attempt the sorts of correctness proofs achievable on our system
using these verification tools, and compare the effort required.

Conclusion
• Memory-safe language technology is on the rise, both in leading technology companies, as

well as in the view of Government agencies

• Memory-safe languages have positive impllcations for formal verification

• We have detailed a method and toolchain for the creation of high-assurance components,
using a hardware/software co-assurance approach employing the memory-safe Rust
programming language

• Our efforts stand on the broad shoulders of Restricted Algorithmic C

• In future work (e.g., DARPA PROVERS) we will generate Restricted Algorithmic Rust from
Architecture Models, as well as from Coq specifications. We will perform Rust code
verification, both using the RAR toolchain, as well as SMT-based verification technology.
Along the way, we will:

• Enlarge the Rust subset that can be formally verified

• Use Rust for hardware synthesis

• Compare and contrast the expressiveness and effectiveness of the SMT-based approach

relative to the RAR toolchain

• Develop ways to minimize verified Rust code annotation

