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Introduction
LU decomposition:
▶ Factor a matrix into Lower and Upper

triangular parts
▶ Fundamental in scientific computing, solves

linear systems, many other applications

=

Motivation:
▶ Numerical linear algebra used in numerous critical applications
▶ Very few verification efforts for matrix algorithms, many possible reasons, one

major reason is indexing
Today:
▶ First theorem prover verification of LU decomposition (to our knowledge)
▶ ACL2 approach to formalization modifies a systematic approach to deriving matrix

algorithms via partitioning, can be applied to other classes of algorithms
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Indexing Examples
Typical examples of matrix algorithms in literature:

Algorithm 1 C := C + AB (Golub)
for i = 1 : m do

for j = 1 : n do
for k = 1 : r do

C(i, j) = C(i, j) + A(i, k)B(k, j)

Above is not too bad to think about, but what about below?

Algorithm 2 A = LU (Stewart)
for k = 1 : n − 1 do

if A[k,k] = 0 then Error
A[k + 1 : n, k] = A[k + 1 : n, k]/A[k, k]
A[k + 1 : n, k + 1 : n] = A[k + 1 : n, k + 1 : n]− A[k + 1 : n, k]A[k, k + 1 : n]

Implement? Sure. But what about verification? In ACL2?
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LU Decomposition

An LU decomposition factors a matrix A
into an upper triangular matrix U and a
unit lower triangular matrix L

=

Want: 0s above diagonal of L, 1s on diagonal of L, 0s below diagonal of U(
α11 aT

12
a21 A22

)
= A = LU =

(
1
ℓ21 L22

)(
υ11 uT

12
U22

)
or, equivalently,

α11 = υ11 , a21 = υ11ℓ21 , aT
12 = uT

12 , A22 = ℓ21uT
21 + L22U22 .

This forces
ℓ21 = a21α

−1
11 , L22U22 = A22 − a21α

−1
11 aT

12 .

Reduce LU for A to LU for a smaller matrix A22 − a21α
−1
11 aT

12. Formalize this.
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LU Decomposition in ACL2
Algorithm 3 LU decomposition (recursive)

procedure lu(A ∈ Rm×n)

Partition A =

(
α11 aT

12
a21 A22

)
if m = 0 or n = 0 then return

( )
else if n = 1 then return

(
α11

a21α
−1
11

)
else if m = 1 then return A
else

a21 := a21α
−1
11

A22 := A22 − a21aT
12

return
(
α11 aT

12
a21 lu(A22)

)
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Conditions for Success
Textbook condition for success: Leading principal
submatrices of order 1, …, n − 1 must be nonsingular

Proof (sketch):

Let A =

(
α11 aT

12
a21 A22

)
and look at S := A22 − a21α

−1
11 aT

12.
Note if α11 nonsingular, then A is nonsingular iff S is
nonsingular. Induct.

Upshot: If A is n × n, then S is (n − 1)× (n − 1). Reduce the condition for a matrix to
be LU decomposable into the same condition for a smaller matrix.

ACL2 approach: Write a function that checks α11 ̸= 0 and recurse on S – this
recognizes nonsingular leading principal submatrices. ACL2 automatically inducts
according to a scheme suggested by this function and proves LU correctness without
any user-provided hints. Induction step is satisfied by the formal derivation.
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Conditions for Success
Program 1 ACL2 recognizer for matrices with nonsingular leading principal submatrices
and ACL2 theorem for LU correctness
(define nonsingular-leading-principal-submatrices-p ((A matrixp))
:measure (and (row-count A) (col-count A))
(b* (((unless (matrixp A)) nil)

((if (m-emptyp A)) t)
(alph (car (col-car A)))
((if (zerop alph)) nil)
((if (or (m-emptyp (row-cdr A))

(m-emptyp (col-cdr A))))
t)
;; Compute S = A22 - out-*(a21/alph,a12)
(a21 (col-car (row-cdr A)))
(a12 (row-car (col-cdr A)))
(A22 (col-cdr (row-cdr A)))
(a21/a (sv* (/ alph) a21))
(S (m+ A22 (sm* -1 (out-* a21/a a12)))))
(nonsingular-leading-principal-submatrices-p S))

///
(defthm lu-correctness
(b* ((LU (lu A))

(L (get-L LU))
(U (get-U LU)))
(implies (and (equal (col-count A) (row-count A))

(nonsingular-leading-principal-submatrices-p A))
(equal (m* L U) A)))))

Carl Kwan (UT Austin) Classical LU Decomposition in ACL2 2023-11-13 7 / 10



Conclusion

▶ Casting linear algebra algorithms in terms of partitioned matrices makes
verification easier

▶ Partition, prove the derivation, define the recognizer, and ACL2 handles the rest
▶ Works for other algorithms, e.g. Cholesky verified
▶ QR next – LU, Cholesky, and QR form the “three amigos”

Program 2 LU correctness
(defthm lu-correctness
(b* ((LU (lu A))

(L (get-L LU))
(U (get-U LU)))
(implies (and (equal (col-count A) (row-count A))

(nonsingular-leading-principal-submatrices-p A))
(equal (m* L U) A)))))
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Thank you!
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