
Formal Verification of
Zero-Knowledge Circuits

Alessandro Coglio Eric McCarthy Eric Smith

Kestrel
Institute

Workshop 2023

That must be indeed the case,
with overwhelming probability.

But I have no idea what 𝑥 is.

Zero-knowledge circuits are used in zero-knowledge proofs.

𝑃 is some predicate, known to both prover and verifier.

I know a secret 𝑥
such that 𝑃(𝑥) holds.

ZK proof

prover verifier

Zero-knowledge circuits are used in zero-knowledge proofs.

𝑃 is some predicate, known to both prover and verifier.

ZK proof

ZK circuit other info

defines

ZK circuit

defines

𝑃 is some predicate, known to both prover and verifier.

…
𝑐 1 − 𝑐 = 0
2𝑎 𝑏 = 𝑎 + 𝑏 − 𝑦
𝑐 𝑢 − 𝑤 = 𝑣 − 𝑤
𝑧 1 = 𝑥! + 2𝑥" +⋯+ 2#$"𝑥#$"

…

equality constraints
over arithmetic expressions
interpreted in a prime field

(i.e. integers modulo a prime),
in R1CS or other form

low-level
definition

The input parameter 𝑥 of 𝑃 is represented by one or more variables in the constraints.

The constraints are essentially a program to calculate 𝑃(𝑥) from 𝑥:
the solutions to the constraints yield the values of 𝑥 that satisfy 𝑃.

𝑃 =

ZK proof

ZK circuit

𝑃 is some predicate, known to both prover and verifier.

low-level
definitionprover verifier

𝑃 = high-level
definition

high-level definition, e.g. in a programming language

 ...
 // This function calculates the interest accrued
 // over a variable number of iterations (max 50) for some `capital` and `rate`.
 transition bounded_iteration_interest(capital: u32, public rate: u32, iterations: u8) -> u32 {
 assert(iterations <= 50u8);
 let amount: u32 = capital;

 // Accrue for up to 50 iterations.
 for i:u8 in 0u8..50u8 {
 if i < iterations {
 // Note that the added amount is rounded down.
 amount += (amount * rate) / 100u32;

 } // Skip the remaining iterations.
 if i == 40u8 {
 return amount;
 }
 }
 return amount;
 }
 ...

𝑃 =

𝑃 = ZK circuit
(low-level)

𝑃 = high-level
definition

=?

How do we know that they define the same P?

If they do not, the ZK proof may not quite prove what is expected.

We use formal verification, of course.

=
ZK circuit
(low-level)

This is how we use formal verification to ensure that a ZK circuit is correct.

The ZK circuit can be for 𝑃,
or for some part of it.

The high-level definition
is a specification.specification

ZK circuit

specification

=

This is how we use formal verification to ensure that a ZK circuit is correct.

Formal characterization of the ZK circuit.1

Formal characterization of the specification.2

Formal proof (≠ ZK proof) of equivalence.3

ZK circuit example

specification example

=

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

The 1st constraint sets 𝑤 = 1/𝑦, if 𝑦 ≠ 0.

The 2nd constraint sets 𝑧 = 𝑥/𝑦, if 𝑦 ≠ 0.

If 𝑦 = 0, the constraints have no solution.

Divide 𝑥 by 𝑦 if 𝑦 ≠ 0, otherwise return ℰ (error).
𝑧 = 7𝑥/𝑦 if	 𝑦 ≠ 0

ℰ if	 𝑦 = 0

=
ZK circuit example

𝑅 𝑥, 𝑦, 𝑧, 𝑤 = 𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

𝑄 𝑥, 𝑦, 𝑧 = ∃𝑤. 𝑅 𝑥, 𝑦, 𝑧, 𝑤

specification example

𝑓 𝑥, 𝑦 = 7𝑥/𝑦 if	 𝑦 ≠ 0
ℰ if	 𝑦 = 0

𝑆 𝑥, 𝑦, 𝑧 = 𝑧 = 𝑓 𝑥, 𝑦 ≠ ℰ

Formally, a specification is
a functional computation 𝑓
from inputs to outputs or error.

This determines a relation 𝑆
over the input/output variables.

Formally, the ZK circuit correctness is
expressed as 𝑄 𝑥, 𝑦, 𝑧 ⟺ 𝑆 𝑥, 𝑦, 𝑧 .

Formally, a ZK circuit is
a relation 𝑅 over the variables.

This determines a relation 𝑄
over the input/output variables,
by existentially quantifying
over the auxiliary variables.

input variables
output variables

auxiliary variables

based on

𝑆 𝑥, 𝑦, 𝑧𝑄 𝑥, 𝑦, 𝑧

ZK circuit

𝑅 𝜄, 𝜔, �⃗� = constraints

𝑄 𝜄, 𝜔 = ∃�⃗�. 𝑅 𝜄, 𝜔, �⃗�

specification

𝑓 𝜄 = 7… if	 …
ℰ if	 …

𝑆 𝜄, 𝜔 = 𝜔 = 𝑓 𝜄 ≠ ℰ

Formally, a specification is
a functional computation 𝑓
from inputs to outputs or error.

This determines a relation 𝑆
over the input/output variables.

Formally, the ZK circuit correctness is
expressed as 𝑄 𝜄, 𝜔 ⟺ 𝑆 𝜄, 𝜔 .

Formally, a ZK circuit is
a relation 𝑅 over the variables.

This determines a relation 𝑄
over the input/output variables,
by existentially quantifying
over the auxiliary variables.

input variables
output variables

auxiliary variables

𝑆 𝜄, 𝜔𝑄 𝜄, 𝜔 ⟺

based on

ZK circuit

𝑅 𝜄, 𝜔, �⃗� = constraints

𝑄 𝜄, 𝜔 = ∃�⃗�. 𝑅 𝜄, 𝜔, �⃗�

specification

𝑓 𝜄 = 7… if	 …
ℰ if	 …

𝑆 𝜄, 𝜔 = 𝜔 = 𝑓 𝜄 ≠ ℰ

𝑆 𝜄, 𝜔𝑄 𝜄, 𝜔 ⟹

𝑆 𝜄, 𝜔𝑄 𝜄, 𝜔 ⟸
𝑆 𝜄, 𝜔𝑄 𝜄, 𝜔 ⟺

soundness

completeness

To prove soundness, we expand 𝑄
and turn ∃ over the antecedent
into ∀ over the implication.

∀𝜄, 𝜔, �⃗�. 	𝑅 𝜄, 𝜔, �⃗� ⟹ 𝑆 𝜄, 𝜔

To prove completeness, we expand 𝑄
but we cannot turn ∃ into ∀ here,
and we must exhibit �⃗� witnesses.

∀𝜄, 𝜔. 	𝑆 𝜄, 𝜔 ⟹ ∃�⃗�. 𝑅 𝜄, 𝜔, �⃗�

Every solution to the constraints
is a non-erroneous computation.

Every non-erroneous computation
is a solution to the constraints.

(≠ their meaning in ZK proofs)
correctness

ZK circuit 1

ZK circuit 4

ZK circuit 6

ZK circuit 5
ZK circuit 3

ZK circuit 2

ZK circuits have an implicit hierarchical structure.

ZK circuits have an implicit hierarchical structure.

ZK circuit 1

ZK circuit 4

ZK circuit 6

ZK circuit 5
ZK circuit 3

ZK circuit 2
inversion circuit

𝑦 𝑤 = 1

multiplication circuit

𝑥 𝑤 = 𝑧

division circuit

(very simple example)

This implicit hierarchical structure derives from the way the circuits are constructed.

Circuits are hierarchically constructed via libraries like snarkVM, bellman, etc.

ZK circuit 1

ZK circuit 4

ZK circuit 6

ZK circuit 5
ZK circuit 3

ZK circuit 2

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

This implicit hierarchical structure derives from the way the circuits are constructed.

Circuits are hierarchically constructed via libraries like snarkVM, bellman, etc.

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

division circuit

V18 V19 = 1
V17 V19 = V20

V52 V62 = 1
V11 V62 = V63

division circuit

Circuits are hierarchically constructed via libraries like snarkVM, bellman, etc.

But the generated constraints are a flat list; the hierarchy is not explicit.

This implicit hierarchical structure derives from the way the circuits are constructed.

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

…
…
V18 V19 = 1
V17 V19 = V20

…
…
…

…
…
…
…
V52 V62 = 1
V11 V62 = V63

…

Every circuit instance has different variables, with increasing indices.

Reconstructing the hierarchy from the flat list is difficult in general.

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

…
…
V18 V19 = 1
V17 V19 = V20

…
…
…

…
…
…
…
V52 V62 = 1
V11 V62 = V63

…

Our initial proofs did not take advantage of the hierarchical structure, naturally.

(defconst *circuit* <constraints>)

representation of the circuit in ACL2

extract convert

...
(defaggregate constraint
 ((a (sparse-vectorp a))
 (b (sparse-vectorp b))
 (c (sparse-vectorp c))))
...
(defund satp (constrs asg prime) ...)
...

model of R1CS in ACL2

(defthm circuit-correct
 ... (satp *circuit* ...) ...)

proofs in ACL2 and Axe

Our initial proofs did not take advantage of the hierarchical structure, naturally.

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

…
…
V18 V19 = 1
V17 V19 = V20

…
…
…

…
…
…
…
V52 V62 = 1
V11 V62 = V63

…

(defconst *circuit* <constraints>)

representation of the circuit in ACL2

(defthm circuit-correct
 ... (satp *circuit* ...) ...)

proofs in ACL2 and Axe

extract convert

We ran into scalability problems:
§ Size of circuits grows quickly.
§ Hard to reuse sub-circuit proofs.

Axe helps with the first problem,
but the second problem remains.

We verified several circuits,
for Ethereum, Zcash, & Aleo.

The next step was to take advantage of the hierarchical structure.

ZK circuit 1

ZK circuit 4

ZK circuit 6

ZK circuit 5
ZK circuit 3

ZK circuit 2

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

constraints

circuit construction in ACL2

...
(defun field-div-circuit (x y z w)
 (append
 (field-inv-circuit y w)
 (field-mul-circuit x w z)))
...

Circuits are constructed by ACL2 functions,
parameterized over the variables to use,
which call other functions to construct sub-circuits,
and/or construct constraints directly.

We replicate the hierarchical circuit constructions in ACL2.

circuit construction library

...
field_div_circuit(...) {
 field_inv_circuit(...);
 field_mul_circuit(...);
}
...

constraints

We validate the circuit constructions by comparing the generated constraints syntactically.

circuit construction in ACL2

...
(defun field-div-circuit (x y z w)
 (append
 (field-inv-circuit y w)
 (field-mul-circuit x w z)))
...

constraints

= (syntactic)

formalizes
circuit construction in ACL2

(defun field-div-circuit ...)

division circuit

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧 (all possible instances

of the division circuit)

formalizes

formalizes
circuit construction in ACL2

(defun field-div-circuit ...)

circuit specification in ACL2

(defun field-div-spec (x y p)
 (if (equal y 0)
 (error)
 (pfdiv x y p)))

division circuit

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

division specification

𝑧 = 7𝑥/𝑦 if	 𝑦 ≠ 0
ℰ if	 𝑦 = 0

We write the circuit specifications in ACL2 as well.

(all possible instances
of the division circuit)

⟺

formally
proves

formalizes
circuit construction in ACL2

(defun field-div-circuit ...)

We prove correctness in ACL2, for all possible circuit instances.

division circuit

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

division specification

𝑧 = 7𝑥/𝑦 if	 𝑦 ≠ 0
ℰ if	 𝑦 = 0

formalizes
circuit specification in ACL2

(defun field-div-spec ...)

(defthm field-div-circuit-correctness
 (implies ... ; <- boilerplate hypotheses
 (equal (satp (field-div-circuit x y z w) asg p)
 (and (equal zval (field-div-spec xval yval p))
 ...)))) ; <- discussed later

circuit correctness theorem in ACL2

makes use of

…

makes use of

The formal proofs are compositional, according to the circuit hierarchy.

(defthm field-div-circuit-correctness ...)

(defthm field-inv-circuit-correctness ...)

(defthm field-mul-circuit-correctness ...)

(defthm some-larger-circuit-correctness ...)

The parameterization of the circuits goes beyond variable names:
some circuits have varying numbers of variables and constraints.

field-to-bits circuit

𝑦! 1 − 𝑦! = 0
𝑦" 1 − 𝑦" = 0

…
𝑦#$" 1 − 𝑦#$" = 0

𝑥 1 = 𝑦! + 2𝑦" +⋯+ 2#$"𝑦#$"

Y
%&!

#$"
2% 𝑦% < 𝑝 (details omitted)

(defun field-to-bits-circuit (x ys ...)
 (append (boolean-check-circuit-list ys)
 (pow2sum-circuit x ys)
 (bits-lt-prime-circuit ys ...)))

circuit construction in ACL2

Their correctness is proved using induction (directly or indirectly).

Their correctness holds for all possible sizes, beyond all possible variable names.

list of variables

We have used this approach to formalize and verify
a large subset of Aleo’s snarkVM circuits for
boolean, field, and integer operations.
We are working on the remaining snarkVM circuits.

Besides increasing confidence in snarkVM’s circuit constructions,
this work led us to discover a few bugs and several optimizations.

We ran into another scalability problem,
related to the auxiliary variables of circuits.

division circuit

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

The auxiliary variables of a circuit are exposed as parameters of the ACL2 functions.

(defun field-div-circuit (x y z w) ...)

input
output

auxiliary

(defun larger-circuit (... w ...) ...)

larger circuit

even larger circuit
(defun even-larger-circuit (... w ...) ...)

The parameters of the ACL2 functions grow as larger and larger circuits are built.

pass

pass

...

(defun field-div-circuit (x y z w) ...)

division circuit

𝑦 𝑤 = 1
𝑥 𝑤 = 𝑧

The auxiliary variables of a circuit are also exposed in the ACL2 correctness theorems.

(defun field-div-spec (x y p) ...)

division specification

𝑧 = 7𝑥/𝑦 if	 𝑦 ≠ 0
ℰ if	 𝑦 = 0

(defthm field-div-circuit-correctness
 (implies ... ; <- boilerplate hypotheses
 (equal (satp (field-div-circuit x y z w) asg p)
 (and (equal zval (field-div-spec xval yval p))⟺

))))(equal wval (pfinv yval p))

The theorem must talk about the auxiliary variables, but they are not part of the specification.

This propagates up to the correctness theorems of all the containing circuits.

; <- discussed later

The auxiliary variables of a circuit are not exposed in our new PFCS formalism.

PFCS (= Prime Field Constraint Systems) generalize R1CS (= Rank-1 Constraint Systems):

captures R1CS
and other forms

captures hierarchy

(1) equalities can be over any prime field expressions;
(2) constraints can be grouped into named predicates.

The auxiliary variables of a circuit are not exposed in our new PFCS formalism.

inversion circuit

𝑦 𝑤 = 1

multiplication circuit

𝑥 𝑤 = 𝑧

division circuit

R1CS

PFCS

inversion circuit

𝑖𝑛𝑣 𝑎, 𝑏 = 𝑎 𝑏 = 1

Predicate with name 𝑖𝑛𝑣,
parameters 𝑎, 𝑏,
one equality constraint,
no auxiliary variables.

multiplication circuit

𝑚𝑢𝑙 𝑢, 𝑣, 𝑤 = 𝑢 𝑣 = 𝑤

Predicate with name 𝑚𝑢𝑙,
parameters 𝑢, 𝑣, 𝑤,
one equality constraint,
no auxiliary variables.

division circuit

𝑑𝑖𝑣 𝑥, 𝑦, 𝑧 = 	 𝑖𝑛𝑣 𝑦, 𝑤
𝑚𝑢𝑙 𝑥, 𝑤, 𝑧 	

Predicate with name 𝑑𝑖𝑣,
parameters 𝑥, 𝑦, 𝑧,
two predicate constraints,
auxiliary variable 𝑤.

𝑅 𝑥, 𝑦, 𝑧, 𝑤 is
the semantics of

the predicate body

𝑄 𝑥, 𝑦, 𝑧 is
the semantics of

the predicate itself
captures ∃𝑤

We have formalized the PFCS syntax and semantics in ACL2.

We are porting our formalized and verified snarkVM circuits to PFCS form.

R1CS form PFCS form

This solves the scalability problem with the auxiliary variables of circuits.

𝑓 ⇢ 𝑆

ZK proof

prover verifier

specification

⟺correctness⟸completeness
⟹soundness

(defun circuit ...
 ...sub-circuit...)

(defun spec ...)

(defthm correctness ...)
𝑅 ⇢ 𝑄∀

∃

circuit

sub-circuit

formal verification

R1CS form PFCS form

ACL2 and Axe

Recap:

