# Section 2.4 - Properties of Matrix-Matrix Multiplication 

Maggie Myers<br>Robert A. van de Geijn<br>The University of Texas at Austin

## Practical Linear Algebra - Fall 2009



## Matrix-Matrix Multiplication is Associative

Let $A, B$, and $C$ be matrices of conforming dimensions. Then

$$
(A B) C=A(B C)
$$

Proof
Let $e_{j}$ equal the $j$ th unit basis vector. Then

$$
(A B) C e_{j}=(A B) c_{j}=A\left(B c_{j}\right)=A\left(B C e_{j}\right)=A(B C) e_{j}
$$

Thus, the columns of $(A B) C$ equal the columns of $A(B C)$, making the two matrices equal.

## Matrix-Matrix Multiplication is Distributive

Let $A, B$, and $C$ be matrices of conforming dimensions. Then

$$
(A+B) C=A C+B C \quad \text { and } \quad A(B+C)=A B+A C
$$

## Note: Matrix-matrix multiplication does not commute

Only in very rare cases does $A B$ equal $B A$. Indeed, the matrix dimensions may not even be conformal.

## Theorem

Let $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$. Then

$$
(A B)^{T}=B^{T} A^{T}
$$

## Lemma

Let $A \in \mathbb{R}^{m \times n}$. Then $e_{i}^{T} A^{T}=\left(A e_{i}\right)^{T}$ and $A^{T} e_{j}=\left(e_{j}^{T} A\right)^{T}$.

## Proof of Lemma

The proof of this lemma is pretty obvious: The $i$ th row of $A^{T}$ is clearly the $i$ th column of $A$, but viewed as a row, etc.

## Proof of Theorem that $(A B)^{T}=B^{T} A^{T}$

We prove that the $(i, j)$ element of $(A B)^{T}$ equals the $(i, j)$ element of $\left(B^{T} A^{T}\right)$ :

$$
\begin{aligned}
& e_{i}^{T}(A B)^{T} e_{j} \\
& \quad=<(i, j) \text { element of } C \text { equals }(j, i) \text { element of } C^{T}> \\
& e_{j}^{T}(A B) e_{i} \\
& \quad=<\text { Associativity of matrix multiplication }> \\
& \left(e_{j}^{T} A\right)\left(B e_{i}\right) \\
& \quad=<x^{T} y=y^{T} x> \\
& \left(B e_{i}\right)^{T}\left(e_{j}^{T} A\right)^{T} \\
& \quad=<\text { Lemma }> \\
& e_{i}^{T}\left(B^{T} A^{T}\right) e_{j} .
\end{aligned}
$$

