Answer Sets for Propositional Theories

Paolo Ferraris

University of Texas at Austin, Austin TX 78712, USA otto@cs.utexas.edu

Abstract. Equilibrium logic, introduced by David Pearce, extends the
concept of an answer set from logic programs to arbitrary sets of for-
mulas. Logic programs correspond to the special case in which every
formula is a “rule” — an implication that has no implications in the
antecedent (body) and consequent (head). The semantics of equilibrium
logic looks very different from the usual definitions of an answer set in
logic programming, as it is based on Kripke models. In this paper we
propose a new definition of equilibrium logic which uses the concept of a
reduct, as in the standard definition of an answer set. Second, we apply
the generalized concept of an answer set to the problem of defining the
semantics of aggregates in answer set programming. We propose, in par-
ticular, a semantics for weight constraints that covers the problematic
case of negative weights. Our semantics of aggregates is an extension of
the approach due to Faber, Leone, and Pfeifer to a language with choice
rules and, more generally, arbitrary rules with nested expressions.

1 Introduction

Equilibrium logic, introduced by Pearce [1997, 1999], extends the concept of an
answer set [Gelfond and Lifschitz, 1988, 1991] from logic programs to arbitrary
sets of formulas. Logic programs correspond to the special case in which every
formula is a “rule” — an implication that has no implications (or equivalences)
in the antecedent (body) and consequent (head).

The semantics of equilibrium logic looks very different from the usual defi-
nitions of an answer set in logic programming: it is based on Kripke models. In
this note, we propose a new definition of equilibrium logic, equivalent to Pearce’s
definition, which uses the concept of a reduct, as in the one used in the standard
definition of an answer sets.

Second, we apply the generalized concept of an answer set to the problem
of defining the semantics of aggregates in answer set programming. The best
proposal in this area published so far is due to Faber, Leone, and Pfeifer [2004].
The strong point of that paper is that it is applicable to aggregates that are
neither monotone nor antimonotone (such as, for instance, weight constraints
in which some some weights are positive and some are negative). It has two
defects, however. First, it does not allow negation in aggregate expressions. Sec-
ond, it does not cover choice rules, which play an important role in answer set
programming. ! Our semantics includes aggregates in the style of [Faber et al.,

! Both negation within aggregates and choice rules can be defined, in principle, as
abbreviations for expressions containing auxiliary atoms.

2004] containing arbitrary formulas and also choice rules. We show also that the
existence of an answer set for nondisjunctive program with aggregates of a very
simple kind (weight constraints with the weights 1 and —1) is X¥-hard, as in
the case of disjunctive programs.

In the following section we define answer sets for propositional theories, and
we relate this definition to equilibrium logic and to the traditional definition
of an answer set. In Section 3 we extend several important theorems about
logic programs to propostional theories. In Section 4, we propose our semantics
of aggregates, discuss its properties, and show, as an example, how it applies
to representing a combinatorial auction with negative costs. Comparisons with
other formalizations are given in Section 5.

2 Formulas, reducts and answer sets

2.1 Definition

For simplicity, we limit our attention to formulas without strong negation. We
consider (propositional) formulas formed from atoms and connectives L, V, A
and D. 2 A theory is a set of formulas. In the rest of the paper, F' and G denote
formulas, I" a theory, X and Y sets of atoms, and ® a binary connective.

We identify an interpretation with the set of atoms satisfied by it. We write
X EF (X ETD)if X satisfies F (or I') in the sense of classical logic.

The reduct FX of F relative to X is defined recursively:

— if X £ F then FX = 1,
— if X = a (a is an atom) then a® = a, and
— if X F F®G then (F®G)X = FX @ GX.

This definition of a reduct is similar to a transformation proposed in [Osorio et
al., 2004, Section 4.2].

The reduct F¥X can be alternatively defined as the formula obtained from F
by replacing every outermost subformula not satisfied by X with L (this alter-
native definition applies even if we treat =, T and = as primitive connectives).

For instance, if X contains p but not ¢ then

(P2a)V(g2dp)* =LV (LDp).
It is easy to see that, for every X, Y, ®, F and G,
YEFGONifF X EFeoGandY = FX @ G¥. (1)

The reduct I'X of I relative to X is {FX : F € I'}. A set X is an answer set
for I' if X is a minimal set satisfying I"X.

For instance, let I" be {(p D ¢) V (¢ D p),p}. Set {p} is an answer set for I"
because {p} is a minimal model satisfying the reduct { LV (L D p),p}. It is not
difficult to see that no other set of atoms is an answer set for I'.

2 F stands for ' O 1; T stands for L D L; F = G stands for (F D G) A (G D F).

2.2 Relationship to equilibrium logic

Theorem 1. For any theory, its models in the sense of equilibrium logic are
identical to its answer sets.

Since in application to programs with nested expressions equilibrium logic is
equivalent to the semantics defined in [Lifschitz et al., 1999], Theorem 1 implies
that our definition of an answer set extends the corresponding definition from
that paper.

In the proof of Theorem 1, we write (X,Y) | I' (with X CY) if the HT-
interpretation 3 (X,Y) is a model of I

Lemma 1. For any X and Y such that X CY and any theory I,
XEIYif(X,Y)T.

The lemma is proven first for the case when I' is a singleton, by structural
induction.
Proof of Theorem 1. According to the semantics of equilibrium logic (reproduced
in [Lifschitz et al., 2001, Section 4.4]), Y is a model of I iff

(Y,Y) = I' and, for all proper subsets X of Y, (X,Y) |~ I'.
In view of Lemma 1, this is the same as

Y = I'Y and, for all proper subsets X of Y, X & I'Y.

which means that Y is an answer set for I". O

2.3 Relationship to the traditional definition of reduct

A nested expressions is a formula that contains no implications F' O G with
G # 1, and no equivalences. * A program with nested expressions is a set of
rules F «— G, where F and G are nested expressions. We will identify such a
rule with the implication G D F.

In application to programs with nested expressions, our definition of a reduct
is quite different from the traditional definition [Lifschitz et al., 1999]. Consider,
for instance, the following program:

p < not q
q < notr

According to [Lifschitz et al., 1999], its reduct relative to {r} is

pe—T
q— 1

3 See [Lifschitz et al., 2001, Section 2.1].
4 Traditionally, in nested expressions conjunction is denoted by comma, disjunction
by semicolon, and negation by “not”.

with our definition, it is
€
q+— L.

The first reduct is satisfied, for instance, by {p}, while the second is unsatisfiable.
However, some similarities between these formalisms exist. For instance, it is easy
to see that for any formula F, (—F)%X, according to the new definition, is T when
X [~ F, and L otherwise, as with the traditional definition. Indeed, if X = F
then X = F O L and consequently

(-F)* =(F> L)X = 1.
Otherwise, X = F D 1, so that
CR)X=F>L)*=F¥>1l=1>51=T.

The following proposition states a more general relationship between the new
definition of the reduct and the traditional one. We denote by FX the reduct of
a nested expression F relative to X according to the definition from [Lifschitz
et al., 1999], and similarly for the reduct of a program.

Proposition 1. For any program II with nested expressions and any set X of
atoms, ITX is equivalent, in the sense of classical logic,

—to L, if X £ II, and
— to the program obtained from ITX by replacing all atoms that do not belong
to X by L, otherwise.

The proof of this proposition is based on the following lemma, proven by
structural induction.

Lemma 2. The reduct FX of a nested expression F is equivalent, in the sense
of classical logic, to the nested expression obtained from FX by replacing all
atoms that do not belong to X by L.

Corollary 1. Given two sets of atoms X and Y with Y C X and any program
IY =EIDX iff X =11 and Y = ITX.

This corollary suggests another way to verify that the definition of an answer
set proposed in this paper is equivalent to the usual one in the case of programs
with nested expressions. If X [~ IT then X is not an answer set for I1 under
either semantics. Otherwise, for every subset Y of X, Y | IIX iff Y |= ITX by
Corollary 1.

3 Properties of propositional theories

Several theorems about answer sets for logic programs can be extended to propo-
sitional theories. The proofs are omitted for lack of space.

Two theories I and I are strongly equivalent if, for every theory I', I'1 U T’
and I5 U I have the same answer sets.

Proposition 2. For any two theories Iy and I, the following conditions are
equivalent:

(i) I is strongly equivalent to Iy,
(ii) I is equivalent to I's in the logic of here-and-there, and
(iii) for each set X of atoms, I'{X is equivalent to I's in classical logic.

The equivalence between (i) and (ii) is a generalization of the main result of [Lif-
schitz et al., 2001], and it is an immediate consequence of Lemma 4 from that
paper and our Theorem 1. The equivalence between (i) and (iii) is similar to
Theorem 1 from [Turner, 2003].

The following claims require some definitions. An occurrence of an atom in
a formula is positive if it is in the antecedent of an even number of implications.
An occurrence is strictly positive if such number is 0. An occurrence of an atom
in a formula is negated if it is in a subformula of the form ' O L. For instance,
in a formula (p D L) D ¢, the occurrences of p and q are positive, the one of ¢
is strictly positive, and the one of p is negated.

The following proposition is an extension of the property that in each answer
set of a program, each atom occurs in the head of a rule of that program [Lif-
schitz, 1996, Section 3.1].

Proposition 3. Fach answer set of a theory consists of atoms that have a
strictly positive occurrence in some formula of that theory.

The following two propositions were stated in [Ferraris and Lifschitz, 2005
in the case of logic programs.

Proposition 4 (Lemma on Explicit Definitions). Let I be any proposi-
tional theory, and Q a set of atoms that do not occur in I'. For each q € Q, let
Def(q) be a formula that doesn’t contain any atom from Q. Then X — X\ Q is
a 1-1 correspondence between the answer sets of I'U{Def(q) D q:q € Q} and
the answer sets of I.

Proposition 5 (Completion Lemma). Let I' be any propositional theory,
and @ a set of atoms that do not have positive, nonnegated occurrences in any
rule of I'. For each q € Q, let Def(q) be a formula such that all occurrences of
elements of Q in Def(q) are either positive or negated. Then I'U{Def(q) D q:
g€ Q} and "'U{Def(q) = q: q € Q} have the same answer sets.

The following proposition is essentially a generalization of the splitting set
theorem from [Lifschitz and Turner, 1994] and [Erdogan and Lifschitz, 2004].

Proposition 6 (Splitting Set Theorem). Let Iy and Iy be two theories, and
S a set of atoms such that all atoms that occur in I} are elements of S, and
no element of S has strictly positive occurrences in I5. Then a set of X is an
answer set for I'1 U Iy iff X NS is an answer set for I and X is an answer set
for (X NS)UTIy.

4 Representing aggregates

4.1 Definition

Aggregates are an important extension to logic programs, widely used in answer
set programming. We define a (ground) aggregate as an expression of the form

op({Fi =w1,....Fy=wy}) <N (2)
where

— op is (a symbol for) a function from multisets of R (real numbers) to R U
{—00,4+00} (such as sum, product, min, max, etc.),

—{F =w1,...,F, =w,} (n > 0) is a multiset where Fi, ..., F, are formulas,
and wy,...,w, are (symbols for) real numbers (“weights”),

— < is (a symbol for) a binary relation between real numbers, such as < and
=, and

— N is a (symbol for) a real number.

As an intuitive explanation of an aggregate, take the multiset W consisting of
the weights w; (1 < i < n) such that F; is “true”. The aggregate is considered
“true” if op(W) < N. For example,

sum({{p=1,¢=1}) # 1. (3)

intuitively expresses the condition that both p are ¢ are “true” or none of them.
To define the semantics of aggregates, we propose to identify (2) with the

formula
/\ ((AF) > (VF)). (4)

IC{1,....n} : op({w; : i€I})AN i€l =
where I stands for {1,...,n}\ I, and £ is the negation of < 5.
For instance, if we consider aggregate (3), the conjunctive terms in (4) cor-

respond to the ases when the sum of weights is 1, that is, when I = {1} and
I = {2}. The two implications are ¢ O p and p D ¢ respectively, so that (3) is

(@>p)A(pDa). (5)

Similarly,
sum({p=1,¢g=1}) =1 (6)
(pVa)A=(pAg). (7)

Note that, even if (5) is classically equivalent to (7), they are not equivalent in
the logic of here-and-there. This shows that it is generally incorrect to “move”
a negation from a binary relation symbol (such as #) in front of the aggregate
as the unary connective —.

Some properties of aggregates are stated in the following proposition.

5 This definition, based on the idea of the translation from [Faber et al., 2004], is
meant to provide a very general semantics for aggregates, but we do not propose to
use it directly for computing answer sets

Proposition 7. For any aggregate op(S) < N where S is
{Fl :w17"'7Fn :wn}7
and any sets X andY of atoms,

(a) X Eop(S)y < N iff op({w; : X E F;}) <N, and
(b) Y = (op(S) < N)X iff X Fop(S) < N and Y = op(S*) < N,

where SX stands for {F{X = wy,...,FX =w,}.

Proposition 7(a) confirms that our proposal to identify (2) with (4) is in agree-
ment with the intuitive meaning of an aggregate. Part (b) is similar to prop-
erty (1) of binary connectives.

When a theory I' is described using abbreviation (2) in its formulas, answer
sets of I" can be computed using Proposition 7 instead of a direct reference to (4).

Finally, it can be shown by Proposition 2 that if we want to identify (2) with
a formula so that Proposition 7 holds then (4) is the only choice, modulo strong
equivalence.

Proposition 7(a) follows from the fact that X satisfies an implication in (4)
iff I #{j : X = F;}. The proof of part (b) uses the following lemma that is
easily provable.

Lemma 3. For any formulas Fy, ..., F, (n>0), any set X of atoms, and any
connective ® € {V,A}, (F1®---®F,)%X is classically equivalent to F{*®-- - @ FX.

4.2 Monotone aggregates

An aggregate op({Fy = w1,...,F, = w,}) < N is monotone if, for each pair
of multisets Wy, Wy such that Wy C Wy C {ws,...,w,}, op(Ws) < N is true
whenever op(WW7) < N is true. The definition of an antimonotone aggregate is
similar, with W7 C W5 replaced by Wy C Wh.
For instance,

sum{{p=1,q=1}) > 1. (8)
is monotone, and

sum{{p=1,q=1}) < 1. (9)
is antimonotone. An example of an aggregate that is neither monotone nor an-
timonotone is (3).

Proposition 8. An aggregate op{{F1 = w1,..., F, = w,}) < N is equivalent,
in the logic of here-and-there, to
A (V)

IC{l,...,n} : op({w; : i€EI})AN 4T
if the aggregate is monotone, and to
-AF)
IC{1,....n} : op({w; : i€EI})AN el

if the aggregate is antimonotone.

In other words, if op(S) < N is monotone then the antecedents of the implica-
tions in (4) can be dropped. Similarly, in case of antimonotone aggregates, the
consequents of these implications can be replaced by L. In both cases, (4) is
turned into a nested expression, if FY,..., F, are nested expressions.

For instance, the monotone aggregate (8) is

(V@) AN(pDaq)A(gDp),

which is equivalent, in the logic of here and there, to

(pVa)NgADp

and then to ¢ A p. In the case of the antimonotone aggregate (9), the formula

(PAg) D L)A(PD g A(gDp)

is equivalent, in the logic of here-and-there, to

(=(p A @) N=p A g,

and then to —p A —q.

On the other hand, if an aggregate is neither monotone nor antimonotone,
it may be not possible to find a nested expression equivalent, in the logic of
here-and-there, to (4), even if Fy,..., F, are nested expressions. This is the case
for (3). Indeed, let A denote (3). Considering that this expression stands for (5),
it is easy to check that ({p}, {p, ¢}) = A and (0, {p, q}) = A. On the other hand,
for any nested expression F, if ({p},{p,q}) = F then (0, {p,q}) ¥ F (easily
provable by structural induction.)

Both parts of Proposition 8 can be proven, in the difficult direction, by strong
induction on the cardinality of I.

4.3 Example

We consider the following variation of the combinatorial auction problem, which
can be naturally formalized using an aggregate that is neither monotone nor
antimonotone.

Joe wants to move to another town and has the problem of removing all his
bulky furniture from his old place. He has received some bids: each bid may
be for one piece or several pieces of furniture, and the amount offered can be
negative (if the value of the pieces is lower than the cost of removing them). A
junkyard will take any object not sold to bidders, for a price. The goal is to find
a collection of bids for which Joe doesn’t lose money, if there is any.

Assume that there are n bids, labeled from 1 to n. We express by the formulas

b; V —b; (10)

(1 <4< n) that Joe is free to accept any bid or not. Clearly, Joe cannot accept
two bids that involve the selling of the same piece of furniture. So, for each pair
1,7 of such bids, we include the formula

Next, we need to express which pieces of the furniture have not been given to
bidders. If there are m objects (numbered from 1 through m), we can express
that an object ¢ is sold by bid j by adding the rule

bj D S; (12)

to our theory.
Finally, we need to express that Joe doesn’t lose money by selling his items.
This is done by the aggregate

sum{({by = w1,..., by = Wp, 81 = —C1,. .., 8m = —Cm }) >0, (13)

where each w; is the amount of money (possibly negative) obtained by accepting
bid ¢, and each c¢; is the money requested by the junkyard to remove item . Note
that (13) is neither monotone nor antimonotone.

Proposition 9. X — X N {by,..., by} is a 1-1 correspondence between the
answer sets of theory consisting of formulas (10)—(13) and the solutions of this
problem.

5 Other formalisms

5.1 Programs with weight constraints

Weight constraints [Niemeld and Simons, 2000] can be viewed as aggregates of
the form sum(S) > N (traditionally denoted by N < S) and sum(S) < N
(denoted by S < N), where each formula in S is a literal. Weight constraints are
one of the most commonly used kind of aggregates in logic programs, especially
in the case of weights that are equal to 1 (cardinality constraints).

A program with weight constraints is a set of formulas of the form

WiN---AW,Da (14)
(n > 0) where a is an atom or L, and W, ..., W,, are weight constraints. ©

Theorem 2. For every program with weight constraints, if all the weights are
positive, then the answer sets under our semantics are identical to its answer
sets in the sense of [Niemeld and Simons, 2000, Section 2.3].

The proof consists in showing that, in the case of positive weights, sum(S) > N
and sum(S) < N are equivalent, in the logic of here-and-there, to the nested
expressions [N < S] and [S < N| defined in [Ferraris and Lifschitz, 2005]. The-
orem 2 follows from this fact in view of Theorem 1 from [Ferraris and Lifschitz,
2005).

5 For simplicity, we are considering only part of the syntax allowed in [Niemeld and
Simons, 2000]. Every rule in sense of that paper can be equivalently rewritten as a
set of rules of the form (14).

Our semantics is not equivalent to the semantics of [Niemels and Simons,
2000] when the weights can be negative (as discussed in the introduction, our
view of negative weights is equivalent to the one proposed in [Faber et al., 2004].)
According to [Ferraris and Lifschitz, 2005, Footnote 6], the traditional semantics
for weight constraints may lead to some unintuitive results: program

O0<{p=2,p=-1})Dp (15)

according to [Niemeld and Simons, 2000], has no answer sets, while

O<{p=1}>p

has one answer set {p}. Under our semantics, {p} is the only answer set for both
programs.

While weight constraints with positive weights only are either monotone or
antimonotone, this is not the case when negative weights are allowed as in (13).
In particular, it may not be possible to represent an aggregate of this kind by a
nested expression.

This is the main reason why the translation from programs with weight
constraints to programs with nested expressions of [Ferraris and Lifschitz, 2005
was limited to the case of positive weights only.

5.2 Complexity of programs with weight constraints

Under the semantics of [Niemeld and Simons, 2000], the existence of an answer
set for programs with weight constraints is a NP-complete problem even in pres-
ence of negative weights. On the other hand, under our semantics, the place of
this problem in the polynomial hierarchy is different.

Proposition 10. Under the semantics of this paper, the existence of an answer
set for a program with weight constraints is a X%-complete problem.

A similar result has been independently proven by Nicola Leone and Wolfgang
Faber (personal communication).

The problem is clearly in X% by the definition of an answer set. The X%-
hardness follows from the Y%-completeness of the existence of an answer set
for disjunctive logic programs [Eiter and Gottlob, 1993, Corollary 3.8], and the
following lemma, which provides a polynomial translation from disjunctive pro-
grams to programs with weight constraints.

Lemma 4. Rule
ll/\--~/\lm3a1\/---\/an

(n > 0,m > 0) where ay,...,a, are atoms and ly, ..., 1, are literals, is strongly
equivalent to the set of n implications (i =1,...,n)

(lg{llzl})/\-~-/\(1S{lmzl})/\Aﬂ/\-~-/\AmDai,

where each A;; stands for 0 <{a; =1,a; = —1}.

5.3 FLP-aggregates

We will now show that our semantics of aggregates is an extension of the seman-
tics proposed by Faber, Leone and Pfeifer [2004]. An aggregate of the form (2)
is a (ground) FLP-aggregate if Fy, ..., F, are conjunctions of atoms. A (ground)
FLP-program is a set of formulas

AN NA,Da1V---Vay, (16)
(n,m > 0), where ay,...,a, are atoms and Ay,..., A,, are FLP-aggregates. *

Theorem 3. The answer sets for a FLP-program under our semantics are iden-
tical to its answer sets in the sense of [Faber et al., 2004/.

To prove this theorem we need to observe, first of all, that the definition
of satisfaction of FLP-aggregates and FLP-programs in [Faber et al., 2004] is
equivalent to ours. The definition of a reduct is different, however. According
to [Faber et al., 2004], the reduct of a program IT with FLP-aggregates relative
to X (we denote such reduct by ITZ) consists of the rules (16) of IT such that
X E A1 A+ A Ay, The definition of an answer set is again similar to ours:
a set X of atoms is an answer set for a FLP-program I7 if X is a minimal set
satisfying IT X

Lemma 5. For any nested expression F without negations and any two sets X
and Y of atoms such thatY C X, Y | FX iff Y = F.

Lemma 6. For any FLP-aggregate op{S) < N and any set X of atoms, if
X = op(S) < N then

Y E (op(S) < N)X iff Y = op(S) < N.

Lemma 5 can be proven by structural induction. Lemma 6 follows from Lemma 5
and Proposition 7(b).

Proof of Theorem 3. It is easy to see that if X (£ II then X [£ IIX and
X ¥ IT£, so that X is not an answer set under either semantics. Now assume
that X = II. We will show that the two reducts are satisfied by the same subsets
of X. It is sufficient to consider the case in which IT contains only one rule (16).
If X £ Ay A--- A Ay, then ITE = (), and IT¥ is the tautology

LD (ay V- Vap)X.
Otherwise, IT2 is rule (16), and IT% is
AFA-ANAS D (a1 V- Vay)~.
These two reducts are satisfied by the same subsets of X by Lemmas 5 and 6. O

" The syntax of [Faber et al., 2004] is more general in several ways. An expression of the
form —(op(S) < N) in such syntax has the same meaning as op(S) £ N. Also, that
paper allows literals as conjunctive terms in the antecedent of the implication (16).
However, semantically, an atom a is not different from sum({a = 1}) > 1, and —a
is not different from sum({a =1}) <0.

6 Conclusion

We extended the definition of an answer set to arbitrary propositional theories.
This definition of an answer set is equivalent to the definition of a model in equi-
librium logic, so that it shares important properties of equilibrium logic such as
the characterization of strong equivalence in terms of the logic of here-and-there.
The new definition of reduct is different from the traditional definition [Lifschitz
et al., 1999] in the case of programs with nested expressions, but it is in some
ways similar to it.

Even though propositional theories have a richer syntax, it turns out that
any propositional theory can be expressed as a program with nested expression
with the same answer sets [Cabalar and Ferraris, 2004]. In view of this fact, the
possibility of defining answer sets for arbitrary propositional theories is not so
surprising.

Propositional formulas cover both disjunctive rules with FLP-aggregates and
choice rules. In the case of weight constraints, if negative weights are allowed
then our semantics is not equivalent to the one of [Niemels and Simons, 2000,
but seems to have better properties. We have seen that this difference has con-
sequences from the point of view of computational complexity.

It is possible, by Proposition 7, to view an aggregate op(S) < N as a primitive
construct rather than an abbreviation for an exponentially larger formula. This
is what is already happening in the answer set solver DLV ®, which partially
supports programs with FLP-aggregates. On the other hand, viewing aggregates
as formulas allows us to reason about strong equivalence in terms of the logic of
here-and-there.

Acknowledgments

I am grateful to Pedro Cabalar, Selim Erdogan, Joohyung Lee, David Pearce,
Wanwan Ren and Hudson Turner for comments on a previous version of this pa-
per. Special thanks go to Vladimir Lifschitz for many comments and discussions
on the topic, and his careful reading of this paper. This research was partially
supported by the National Science Foundation under Grant 11S-0412907.

References

[Cabalar and Ferraris, 2004] Pedro Cabalar and Paolo Ferraris. Propositional theories
are equivalent to logic programs. In preparation, 2004.

[Eiter and Gottlob, 1993] Thomas Eiter and Georg Gottlob. Complexity results for
disjunctive logic programming and application to nonmonotonic logics. In Dale
Miller, editor, Proceedings of International Logic Programming Symposium (ILPS),
pages 266-278, 1993

8 http://www.dbai.tuwien.ac.at/proj/dlv/ .

[Erdogan and Lifschitz, 2004] Selim T. Erdogan and Vladimir Lifschitz. Definitions
in answer set programming. In Vladimir Lifschitz and Ilkka Niemela, editors, Pro-
ceedings of Tth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR-7), pages 114-126, 2004.

[Faber et al., 2004] Wolfgang Faber, Nicola Leone, and Gerard Pfeifer. Recursive ag-
gregates in disjunctive logic programs: Semantics and complexity. In Proc. 9th Eu-
ropean Conference on Artificial Intelligence (JELIA’04), 2004. Revised version:
http://www.wfaber.com/research/papers/jelia2004.pdf.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir Lifschitz. Weight constraints
as nested expressions. Theory and Practice of Logic Programming, 5:45-74, 2005.
[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert Kowalski and Kenneth Bowen,
editors, Proceedings of International Logic Programming Conference and Symposium,

pages 1070-1080, 1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir Lifschitz. Classical nega-
tion in logic programs and disjunctive databases. New Generation Computing, 9:365—
385, 1991.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson Turner. Splitting a logic
program. In Pascal Van Hentenryck, editor, Proceedings of International Conference
on Logic Programming (ICLP), pages 23-37, 1994.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner.
Nested expressions in logic programs. Annals of Mathematics and Artificial In-
telligence, 25:369-389, 1999.

[Lifschitz et al., 2001] Vladimir Lifschitz, David Pearce, and Agustin Valverde.
Strongly equivalent logic programs. ACM Transactions on Computational Logic,
2:526-541, 2001.

[Lifschitz, 1996] Vladimir Lifschitz. Foundations of logic programming. In Gerhard
Brewka, editor, Principles of Knowledge Representation, pages 69—128. CSLI Publi-
cations, 1996.

[Niemeld and Simons, 2000] Ilkka Niemeld and Patrik Simons. Extending the Smodels
system with cardinality and weight constraints. In Jack Minker, editor, Logic-Based
Artificial Intelligence, pages 491-521. Kluwer, 2000.

[Osorio et al., 2004] Mauricio Osorio, Juan Antonio Navarro, and José Arrazola. Safe
beliefs for propositional theories. Accepted to appear at Annals of Pure and Applied
Logic, 2004.

[Pearce, 1997] David Pearce. A new logical characterization of stable models and an-
swer sets. In Jiirgen Dix, Luis Pereira, and Teodor Przymusinski, editors, Non-
Monotonic Extensions of Logic Programming (Lecture Notes in Artificial Intelligence
1216), pages 57-70. Springer-Verlag, 1997.

[Pearce, 1999] David Pearce. From here to there: Stable negation in logic programming.
In D. Gabbay and H. Wansing, editors, What Is Negation? Kluwer, 1999.

[Turner, 2003] Hudson Turner. Strong equivalence made easy: nested expressions and
weight constraints. Theory and Practice of Logic Programming, 3(4,5):609-622, 2003.

