
SOURCE CONTROL AND CI

CS378
DR SARAH ABRAHAM

CS378

WORKING WITH LARGE SCALE SYSTEMS

▸ Many things that you can ignore in smaller scale development
become essential in large scale projects

▸ How do I coordinate code submission with team members?

▸ How do I ensure what builds on my system runs for other
team members?

▸ How do I work with artists, designers, and other non-
programmer contributors?

▸ Game development tends to hit these development challenges
earlier than other types of software development

CS378

WHAT IS SOURCE CONTROL?

▸ Allows multiple developers to make changes to a shared
codebase

▸ Relatively straightforward in the serial case:

▸ I work on the code, share it with you, then you work on
the code

▸ But becomes more complicated in the concurrent case:

▸ We both work on the code then submit it

▸ Also where is the code?

CS378

MASTER VERSUS LOCAL COPIES

▸ Need for a “definitive” copy of the code that is somewhere safe

▸ In-house server or cloud solution

▸ Need for “working” copies of the code that can safely be tested
and modified on a developer’s machine

▸ Even if a working copy of the code breaks, should not take
down the definitive copy

▸ ...or at the very least we can get the working definitive copy
back with as little effort as possible

CS378

GIT

▸ De facto version control system in software development

▸ Has mostly beaten out Subversion in this space

▸ Mercurial is another popular choice but this is also a
distributed source control manager (DSCM)

▸ Primary benefits of git are that it is small, fast, and safe

CS378

DISTRIBUTED CONTROL
▸ In a DSCM you access a “clone” of the entire repository rather

than “checking out” the latest version

▸ Have a full backup at all times

▸ Fewer points of failure

▸ Easier to fix bad commits

▸ No notion of a “central” repository

▸ Everyone’s working copy is the full repository

▸ Supports multiple types of workflows

CS378

COMMON WORKFLOWS

▸ Centralized Workflow

▸ Developers push changes whenever
they complete a task

▸ Must integrate other developers’
changes before pushing

▸ Integration Manager Workflow

▸ Developers create pull requests for
an integration manager to push to the
repo

▸ Works well with open source projects
where anyone can submit

CS378

STORAGE FORMAT

▸ Git stores every commit/file in a hashed document

▸ Every commit is a separate entity that is immutable

▸ Changes stored in reflog as a reference and garbage
collected after 30 days

▸ Files compressed with zlib to reduce storage size for better
efficiency

CS378

WHAT DO YOU DO IN GIT?

▸ Basic operations:

▸ Initialize

▸ Clone

▸ Pull

▸ Commit

▸ Push

CS378

INITIALIZATION AND CLONING

▸ git init creates a new git repository in current directory

▸ Creates .git subdirectory containing all necessary metadata

▸ HEAD file also created to point to current commit

▸ git clone creates a copy of an existing repository

▸ Usually how you create a local working copy

▸ Creates remote connection called “origin” pointing to
original repository

CS378

SETTING UP A WORKING DIRECTORY

▸ Numerous quality of life settings when creating your git repository can be done
through git configuration and environment variables

▸ Also important to set up a .gitignore file to prevent including unwanted content

▸ Intermediate build data

▸ Final builds

▸ Project or IDE settings

▸ Determining what should be included on a .gitignore varies from engine to
engine

▸ An example UE4 .gitignore: https://gist.github.com/anveo/
0d3fef240cb1b46178e6

▸ But there are many others!

https://gist.github.com/anveo/0d3fef240cb1b46178e6
https://gist.github.com/anveo/0d3fef240cb1b46178e6

CS378

PULLING AND PUSHING

▸ git pull runs:

▸ git fetch to download content from the specified remote
repository (e.g. origin)

▸ git merge to merge remote content into local merge commit

▸ Must pull before pushing if remote changes do not match local
changes

▸ git push pushes specified branch to specified remote repository

▸ Possible to use force overriding “upstream” changes but very
situational -- do not use unless you understand why you’re doing it!

CS378

COMMITS AND LOCAL REPOSITORY MANAGEMENT

▸ git commit is similar to saving

▸ Creates actual commit from “staged” files

▸ git status shows current changes to working repository

▸ git add includes requested files to staging

▸ Staging allows user to select local changes to commit

▸ git reset can unstage files that should not be staged

CS378

BRANCHING VERSUS FORKING

▸ Branching allows for multiple “working copies” of the same repository

▸ Powerful tool that allows for multiple types of work flows and
efficient, clear ticket management

▸ git branch can create, rename and delete branches

▸ Forking gives every developer their own server-side repository

▸ Developers push to their own server-side repository and project
maintainer can integrate changes as necessary

▸ Useful on large, open source projects with lots of contributors

CS378

MERGE CONFLICTS

▸ Occur when git cannot resolve the “correct” way to
integrate changes

▸ Multiple people changed the same line of code

▸ A file was deleted but is being modified locally

▸ Note that a conflict is never on the remote side -- only the
local side

▸ As frustrating as it may be in the moment, it can always be
solved!

CS378

FAILURE TO START MERGE

▸ Cannot initiate merge if there are changes in the working
area or stages

▸ Local changes can be committed

▸ Local changes can be “stashed” away (git stash)

▸ Can switch, or create branches, or undo changes using
checkout

CS378

FAILURE DURING MERGE

▸ Cannot complete a merge due to a conflict between the
local branch and the branch being merged

▸ Conflict must be resolved by looking through the
offending file and manually fixing

▸ Must compare <<< current-branch to >>> content-to-
merge and select correct content to keep

▸ Can also abort the merge attempt using abort flag

CS378

GIT MERGE EXAMPLE

▸ Top <<< section is current branch (HEAD)

▸ Bottom >>> section is what is being merged

▸ === separates the conflicting segments of code (only one
segment is valid)

▸ Text is generated by git within the file

https://opensource.com/article/20/4/git-merge-conflict

https://opensource.com/article/20/4/git-merge-conflict

CS378

WHAT ABOUT BINARY DATA?

▸ Git needs to clone every version of every file due to its
distributed nature

▸ Works well generally

▸ Not so great for large assets

▸ How can we handle this problem?

CS378

GIT LFS

▸ Git Large File System

▸ Replaces large, binary files in the repository with pointers to assets in an LFS
cache

▸ Handled automatically so no need to understand how the pointers work

▸ Essential for working with game engines and other creative projects

▸ Numerous binaries for artists and designers

▸ Levels and other assets are almost always binary data!

▸ Need to install LFS once on the working machine to track all file types that are
binary data:

▸ https://git-lfs.github.com/

https://git-lfs.github.com/

CS378

LOCKING FILES
▸ Possible to lock a file meaning on the user holding the files lock can

modify it

▸ Prevents distributed work on a given file

▸ More useful for binaries than code

▸ Git LFS allows for locking binary files using --lockable flag when first
tracking the data type

▸ Must use git lfs on the command line to lock it before modifying
and unlock it so others can access it

▸ Can also handle file locking through GitLab UI

▸ More info on both here: https://docs.gitlab.com/ee/user/project/
file_lock.html

https://docs.gitlab.com/ee/user/project/file_lock.html
https://docs.gitlab.com/ee/user/project/file_lock.html

CS378

IS THIS ALL THERE IS TO GIT?

▸ My goodness, no!

▸ Git is...very complex

▸ Many other available commands and flags

▸ All of these are highly situational but if you have a
problem, likely git has a solution

▸ Best to learn through doing, so don’t be afraid to break
things!

CS378

PERFORCE
▸ Industry standard for version control in game industry

▸ Preferred because of its native handling of large binary assets

▸ Perforce is centralized rather than distributed

▸ Notion of one master version copied to individual
workspaces

▸ Same idea as git’s Centralized Workflow but some
implementation differences

▸ Scales well with large databases and cross repository
dependencies

CS378

CHECK OUT AND CHECK IN

▸ Developers pick out specific files to checkout, modify, and submit
back to the repository

▸ Exclusive checkouts ensure only one developer can access a
given file at a time

▸ Permissions system ensures developers can only access certain
files

▸ Exclusive checkouts solve problems related to merging binary files
such as levels when it is difficult or impossible to merge conflicts

▸ But makes workflow sequential so not always ideal

CS378

STREAMS

▸ Perforce uses “streams” for branching and merging

▸ Developers can switch between them as with branches

▸ Can have merge conflicts when submitting changes but gives notice
before merge starts

▸ Streams can define rules for how changes can be merged and from which
streams

▸ Stream type examples:

▸ Release streams are designed to be more stable than its parent

▸ Task streams are lightweight, short-term branches

CS378

UNREAL AND SOURCE CONTROL

▸ UE4 has built in support for source control

▸ Perforce and SVN supported by default but git works as well

▸ Activate source control via editor preferences

▸ Allows for better check in and out of modified/added assets

▸ Allows hot reloading of changes

▸ Editor-based source control can be used in conjunction with
command line (or GUI) source control commands

CS378

WHAT IS CONTINUOUS INTEGRATION?

▸ Process of automatically building and testing code every
time changes are committed

▸ Use of unit tests to ensure some degree of correctness

▸ Constant, validated builds helps minimize merge
conflicts and unexpected behaviors

▸ Helps organize builds at different stages of development

▸ Prevents late-stage issues and keeps pipeline flowing

CS378

USING CONTINUOUS INTEGRATION

▸ When code is frequently committed to a shared repository

▸ Requires:

▸ Well-established work flow

▸ Automatic build scheduling

▸ Relatively fast builds

▸ Unit tests to prevent erroneous code (in theory)

CS378

CI SYSTEMS

Jenkins

Travis CI

CS378

GITLAB CI

▸ GitLab has CI/CD build in

▸ Set up runners with jobs configured in .gitlab-ci.yml file

▸ Set up pipeline for building and deploying code

▸ Include all essential stages and scripts those stages will
execute in the runner

▸ We won’t be working directly with CI/CD in UE4, because it
has too much overhead, but we’ll discuss this topic to better
understand how large-scale software build systems work

