
Fuzzy Equilibrium Logic: Declarative Problem
Solving in Continuous Domains

STEVEN SCHOCKAERT

Cardiff University

JEROEN JANSSEN

Vrije Universiteit Brussel

DIRK VERMEIR

Vrije Universiteit Brussel

In this paper, we introduce fuzzy equilibrium logic as a generalization of both Pearce equilibrium

logic and fuzzy answer set programming. The resulting framework combines the capability of
equilibrium logic to declaratively specify search problems, with the capability of fuzzy logics to

model continuous domains. We show that our fuzzy equilibrium logic is a proper generalization of

both Pearce equilibrium logic and fuzzy answer set programming, and we locate the computational
complexity of the main reasoning tasks at the second level of the polynomial hierarchy. We then

provide a reduction from the problem of finding fuzzy equilibrium logic models to the problem of

solving a particular bilevel mixed integer program (biMIP), allowing us to implement reasoners
by reusing existing work from the operations research community. To illustrate the usefulness

of our framework from a theoretical perspective, we show that a well-known characterization

of strong equivalence in Pearce equilibrium logic generalizes to our setting, yielding a practical
method to verify whether two fuzzy answer set programs are strongly equivalent. Finally, to

illustrate its application potential, we show how fuzzy equilibrium logic can be used to find strong

Nash equilibria, even when players have a continuum of strategies at their disposal. As a second
application example, we show how to find abductive explanations from Lukasiewicz logic theories.

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving—Logic programming; Uncertainty, “fuzzy”, and probabilistic reasoning; G.1.6 [Numer-

ical Analysis]: Optimization—Integer programming

General Terms: Theory

Additional Key Words and Phrases: Answer set programming, Equilibrium logic, Fuzzy logics,
 Lukasiewicz logic

1. INTRODUCTION

Answer set programming (ASP) provides a declarative language which is particu-
larly useful for modeling combinatorial problems [Baral 2003]. A problem instance

Author’s address: S. Schockaert, School of Computer Science & Informatics, Cardiff University, 5
The Parade, CF24 3AA Cardiff, UK, s.schockaert@cs.cardiff.ac.uk; J. Janssen and D. Vermeir,

Department of Computer Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium,
{jeroen.janssen,dvermeir}@vub.ac.be.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0111 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 111–0??.

112 · Steven Schockaert et al.

is encoded as a set of rules, called a program, of the form α← β. Intuitively, such a
rule indicates that the head α should be assumed, whenever the body β is assumed
to hold. Typically, α and β are propositional expressions in negation-normal form,
although two types of negation may occur in front of atoms, viz. strong negation
∼ and negation-as-failure not . The intuition of ASP is to apply forward chaining
on a set of facts and rules. A strongly negated atom ∼a is then true when the
falsity of a can be explicitly derived, whereas not a is true when the truth of a
cannot be derived. Given a program P , the core idea of the answer set semantics
is to designate particular sets of literals as plausible conclusions, i.e., what may
be derived using forward chaining. Due to the non-determinism resulting from the
use of negation-as-failure, there may be several such sets (or none at all), which
are called the answer sets of P. The program P should be such that there is a one-
on-one correspondence between the answer sets and the solutions of the considered
problem.

Fuzzy answer set programming (FASP) is a generalization of ASP based on the
idea of graded truth [Janssen et al. 2009; Medina et al. 2001; Straccia et al. 2009;
Van Nieuwenborgh et al. 2007]. A rule of the form α ← β then intuitively means
that the truth degree of the expression α must be greater than or equal to the
truth degree of β, where α and β are expressions that evaluate to a number in the
unit interval [0, 1]. By allowing infinitely many truth degrees, it becomes possible
to encode problems with variables that range over continuous domains, in a way
which is entirely similar to how discrete problems are modeled in classical ASP. It
is important to note that, despite referring to the term ‘fuzzy’, FASP is not about
dealing with vagueness or uncertainty. The notion of graded truth, as we use it here,
is nothing more than a vehicle to encode certain knowledge in a more compact way;
see [Dubois et al. 2000; Dubois and Prade 2001] for a discussion on graded truth
and the difference with vagueness and uncertainty. Below, we will often restrict
ourselves to rules that are encoded using the connectives from Lukasiewicz logic.
From a well-known theorem due to McNaughton [McNaughton 1951], we know that
the problems that can be modeled using Lukasiewicz logic are essentially those that
can be described as piecewise-linear functions. Hence, when using the Lukasiewicz
connectives, FASP is related to mixed integer programming (MIP) in the same way
as ASP is related to the boolean SAT problem.

While several authors have already studied FASP, this formalism is by far not as
developed as classical ASP. Very little is known about the computational complex-
ity, for example, and almost no techniques are available to calculate the answer sets
of a FASP program. One exception is [Janssen et al. 2008], where a translation from
a restricted variant of FASP to fuzzy propositional theories is proposed, generaliz-
ing the ASSAT technique from classical ASP [Lin and Zhao 2004]. Furthermore,
many of the syntactic extensions that have been proposed for ASP, such as e.g.,
nested rules, have not yet been considered in FASP. In fact, with the exception of
some preliminary work on disjunctive FASP [Lukasiewicz and Straccia 2007], most
work has been restricted to rules whose head is an atom. Finally, the derivation of
theoretical results about FASP is complicated by the fact that no model-theoretic
characterization of answer sets has been developed for FASP.

The aim of this paper is to address these issues by applying the idea of graded
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 113

truth as it is used in FASP to the equilibrium logic of Pearce [Pearce 1997]. Equi-
librium logic is one of the most general approaches to ASP, in which programs can
be arbitrary propositional theories, with no restrictions on where the two types of
negation may occur. When restricted to the syntax of ASP, there is a one-to-one
correspondence between the equilibrium models of a program and its answer sets.
Equilibrium logic thus achieves two goals at the same time: extending the generality
of ASP and providing an elegant model-theoretic characterization of answer sets.
Due to its generality, equilibrium logic has proven useful in defining the semantics
of various practical extensions to ASP [Ferraris 2005]. Moreover, due to the elegant
characterization of answer sets, equilibrium logic has also proven fundamental in
establishing important theoretical results [Lifschitz et al. 2001].

We show that the fuzzy equilibrium logic introduced in this paper is a sound
extension of both Pearce equilibrium logic and FASP, in the sense that, under
the appropriate syntactic restrictions, fuzzy equilibrium logic models correspond to
models in Pearce equilibrium logic, and under other syntactic restrictions to an-
swer sets of FASP programs. By developing a fuzzy equilibrium logic, we inherit
the generality and intuitive appeal of equilibrium logic. Moreover, due to the way
in which fuzzy equilibrium logic models are defined, we can show that reasoning in
FASP is located at the second level of the polynomial hierarchy, thus revealing that
the computational complexity of FASP is identical to that of ASP in the general
case. To the best of our knowledge, this is the first result about the computa-
tional complexity of FASP. Moreover, we show how reasoning in fuzzy equilibrium
logic can be reduced to bilevel mixed integer programming, which constitutes the
first technique for finding answer sets of general FASP programs. Moreover, by
making explicit what the intuitive relationship is between FASP and mathemati-
cal programming, we can tap into the vast amount of work that has already been
done in the operations research community on efficient techniques for mathematical
programming. Note that in the same way, many strong ASP solvers rely on the
availability of efficient SAT solvers.

We illustrate the usefulness of our approach for both theoretical and practical
purposes. First, we show how fuzzy equilibrium logic can be used to verify whether
two FASP programs P and Q are strongly equivalent, in the sense that for every
FASP program R, the answer sets of P ∪R and Q ∪R coincide. This result is the
generalization of a property from [Lifschitz et al. 2001] about the strong equivalence
of classical ASP programs. Next, we study two application examples: finding
strong (pure) Nash equilibria with continuous strategies, and abductive reasoning
in Lukasiewicz logic. Both problems are at the second level of the polynomial
hierarchy, and hence, they could in principle be implemented directly in bilevel
MIP. Finding such an implementation, and proving its correctness, however, would
be far from trivial. In contrast, we show how fuzzy equilibrium logic allows us to
encode these problems in a declarative way, similar to how discrete problems are
encoded in disjunctive ASP. The actual solutions can then be found by relying on
a subsequent compilation to bilevel MIP for finding the solutions.

The paper is structured as follows. In the next section, we provide the relevant
background on fuzzy logics, answer set programming, fuzzy answer set programming
and Pearce equilibrium logic. Next, Section 3 introduces fuzzy equilibrium logic

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

114 · Steven Schockaert et al.

and discusses its relationship with fuzzy answer set programming and with Pearce
equilibrium logic. Section 4 illustrates the usefulness of our framework, discussing
strong equivalence of fuzzy answer set programs, finding strong Nash equilibria un-
der continuous strategies, and abductive reasoning in Lukasiewicz logic. In Section
5, we subsequently focus on the computational complexity of the most important
reasoning tasks, and we provide an implementation using bilevel MIP. Related work
is discussed in Section 6, after which we present our conclusions. The proofs of the
main results are provided in the appendix. Finally, note that this paper extends
results that appeared in [Schockaert et al. 2009] in a preliminary form.

2. BACKGROUND

Before we introduce fuzzy equilibrium logic, in this section we briefly recall some
basic notions about answer set programming, equilibrium logic, fuzzy logic and
fuzzy answer set programming. We will also focus on the intuitions underlying
these formalisms, which will guide us in developing a fuzzy equilibrium logic.

2.1 Answer Set Programs

In its basic form, an answer set program is a collection of rules of the form

a← b1, ..., bn,not c1, ...,not cm (1)

where a, b1, ..., bn, c1, ..., cm are atoms that are taken from a fixed set At . A subset
of atoms V ⊆ At is called an interpretation. It is important to note that interpre-
tations in ASP encode epistemic states rather than truth, in the sense that a ∈ V
means that a is assumed to be true, while a /∈ V means that a is not known to be
true (rather than that a is known to be false, as in classical logic). Accordingly,
the negation not is understood as negation-as-failure: not ci is satisfied unless ci is
known to be true. Intuitively, the body b1, ..., bn,not c1, ...,not cm is understood as
a conjunction, defining a condition under which the consequent a is assumed to be
true. An interpretation V is called a model of the rule (1) if it is a classical model
of the propositional formula b1∧ ...∧ bn∧¬c1∧ ...∧¬cm → a; V is called a model of
a program if it is a model of every rule in that program. When m = 0, the rule (1)
is called a definite rule, and a collection of definite rules is called a definite program.
When n = 0 and m = 0, the rule (1) is called a fact, as it then expresses that a is
unconditionally true.

An answer set program encodes a given problem of interest. The core idea of the
answer set semantics then is to designate particular models of a program as solutions
of that problem; these models are called the answer sets of the program. The answer
set of a definite program is defined as its unique minimal model. Alternatively, it
can be defined as the least fixpoint of an immediate consequence operator, i.e., the
atoms that are in the answer set of a definite program are those atoms that can
be derived from the rules using forward chaining. To understand the semantics
of programs with negation-as-failure, it makes sense to again refer to the idea of
forward chaining. During the process of applying forward chaining, at any moment
we can distinguish between three situations: (i) an atom a is known to be true, (ii)
an atom a is not yet known to be true but it will be when the forward chaining
procedure has ended, and (iii) an atom a will not even be known to be true when
the procedure has ended. We then have that not ci is satisfied only in the third
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 115

case, i.e., not ci intuitively means that we will not be able to derive ci. As a result
of this interpretation, the forward chaining procedure is non-deterministic, which
is useful to model problems that have more than one solution. Intuitively, to find
an answer set of a program with negation-as-failure, we first need to guess what we
will be able to derive, and then verify whether the guess is correct.

Example 1. Consider the program {a ← not b, b ← not a}. Initially, we have
not yet derived anything, so we may intuitively think that not a and not b should
be true. This would mean, however, that we could derive both a and b, which is
in conflict with our assumption that not a and not b are true. On the other hand,
if we assume that we will only be able to derive a, we find that not a is false and
not b is true. Thus we can indeed derive a but not b, which means that our initial
assumption was correct and that {a} is an answer set. In the same way, we find
that {b} is an answer set of this program.

The semantics of answer set programs with negation-as-failure can be formally
defined using the Gelfond-Lifschitz reduct [Gelfond and Lifschitz 1988]. Given an
interpretation V , the Gelfond-Lifschitz reduct PV of a program P can be obtained
by replacing every atom of the form not ci by > if ci /∈ V and by ⊥ otherwise.
This corresponds to removing rules of the form (1) when {c1, ..., cm} ∩ V 6= ∅, and
replacing them by a← b1, ..., bn otherwise. An interpretation V is then an answer
set of a program P if it is an answer set of the definite program PV . Clearly, this
approach directly follows the idea of guessing an interpretation and then verifying
whether this guess is consistent with the aforementioned intuition of negation-as-
failure. In addition to rules of the form (1), sometimes rules with an empty head
are used:

← b1, ..., bn,not c1, ...,not cm (2)

Such a rule is called a constraint; it expresses that the body should not be true. An
interpretation V satisfies the constraint (2) if V classically satisfies the implication
b1 ∧ ... ∧ bn ∧ ¬c1 ∧ ... ∧ ¬cm → ⊥. An interpretation V is called an answer set of
P ∪ C, with P a set of normal rules and C a set of constraints, if V is an answer
set of P and a model of C.

Example 2. The graph coloring problem can easily be described in ASP:

green(X)← not red(X),not blue(X)
red(X)← not green(X),not blue(X)
blue(X)← not red(X),not green(X)

← edge(X,Y), red(X), red(Y)
← edge(X,Y), green(X), green(Y)
← edge(X,Y), blue(X), blue(Y)

The first three rules express that every node should have exactly one of the col-
ors green, red, blue. The last three rules are constraints expressing that two nodes
which are connected by an edge should have different colors. This pattern of first
guessing a solution, using the non-determinism provided by the negation-as-failure,
and then using constraints to verify whether the guess was correct is a typical pat-
tern in many answer set programs. Note that these rules contain variables such

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

116 · Steven Schockaert et al.

as X and Y , which are essentially used to allow for a compact description of the
problem. After grounding a program (i.e., instantiating the rules in all meaningful
ways), the answer set semantics defines the solutions to the problem. In addi-
tion to these six rules, a number of facts of the form edge(a, b) ← are used to
encode which graph we are actually interested in. For example, if we consider
the facts {(edge(a, b) ←), (edge(a, c) ←)}, then one of the answer sets is given by
V = {edge(a, b), edge(a, c), green(a), red(b), red(c)}.

Several syntactic extensions to rules of the form (1) exist, including disjunctive
rules, in which the head is a disjunction of atoms, and strong negation. The strong
negation ∼a of an atom a is satisfied if the falsity of a can be established. The
semantics of answer set programs with strong negation are essentially defined by
treating ∼a as an atom, whose truth is, in effect, independent of the atom a, with
the exception that answer sets are required to be consistent in the sense that they
cannot contain at the same time a and ∼a. Using strong negation, a consistent
interpretation V can distinguish between three epistemic states regarding an atom
a: (i) nothing is known about the truth of a (i.e., a /∈ V and ∼a /∈ V), (ii) a is
known to be true (i.e., a ∈ V and ∼a /∈ V), and (iii) a is known to be false (i.e.,
a /∈ V and ∼a ∈ V).

Example 3. Consider the following program with strong negation:

P = {(∼ a←), (c← not a), (d← ∼a), (e← not b), (f ← ∼b)}

The unique answer set of P is given by V = {∼ a, c, d, e}. Note in particular that
we cannot derive f , because we have not explicitly established the falsity of b, while
we can derive e because we have not established b’s truth.

2.2 Equilibrium Logic

Equilibrium logic was introduced by Pearce with the aim of extending the notion of
answer set to general propositional theories [Pearce 1997; 2006]. The formulation
of this logic is based on an extension of the logic of here-and-there with strong
negation. The logic of here-and-there, also known as Smetanich logic, is known
to be the strongest intermediate logic that is properly included in classical logic
[Chagrov and Zakharyaschev 1997; Pearce 1997]. As will be recalled in Section 2.3,
this logic can semantically be characterized as a three-valued logic. Alternatively,
however, it can also be characterized in terms of Kripke frames, using a two-valued
valuation in two worlds, called h (here) and t (there). The semantics of equilibrium
logic is also based on these two worlds, by considering a three-valued valuation in
both worlds1 [Pearce 1997]. In particular, a valuation V is defined as a mapping
from {h, t} × At to {−1, 0, 1}, such that for each atom a for which V (h, a) 6= 0,
it holds that V (h, a) = V (t, a). The intuition is that V (w, a) = 1 means that a
is known to be true in world w, V (w, a) = −1 means that a is known to be false
in world w, and V (w, a) = 0 means that the truth of a is unknown in world w.
Furthermore, the there-world is assumed to be a refinement of the here-world, i.e.,

1Alternatively, it is also possible to use two-valued valuations that assign truth values to literals in-
stead of atoms [Pearce 2006]. The use of three-valued valuations, however, makes the introduction

of fuzzy equilibrium logic slightly more intuitive.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 117

atoms whose truth value is unknown ‘here’ may have a known truth value ‘there’,
but whenever the truth value of a is already known ‘here’ it has to be the same
‘there’, hence the requirement that V (h, a) 6= 0⇒ V (h, a) = V (t, a). The valuation
in world t will intuitively play the role of the guess in the Gelfond-Lifschitz reduct.
By defining ≤ as {(h, h), (t, t), (h, t)}, valuations are extended to arbitrary formulas
as follows:

V (w,∼α) = −V (w,α) (3)
V (w,α ∧ β) = min(V (w,α), V (w, β)) (4)
V (w,α ∨ β) = max(V (w,α), V (w, β)) (5)

V (w,α→ β) =

1 if ∀w′ ≥ w . (V (w′, α) = 1)⇒ (V (w′, β) = 1)
−1 if V (w,α) = 1 and V (w, β) = −1
0 otherwise

(6)

V (w,not α) =

1 if ∀w′ ≥ w . V (w′, α) < 1
−1 if V (w,α) = 1
0 otherwise

(7)

The intuition behind the semantics of strong negation ∼, conjunction and disjunc-
tion is rather straightforward, e.g., a conjunction is known to be true (valuation 1) if
both conjuncts are known to be true, it is known to be false (valuation −1) if either
of its conjuncts is known to be false, and it is undecided (valuation 0) otherwise.
The semantics of implication is such that an implication can only be true ‘here’
if it is neither violated ‘here’ nor ‘there’. Apart from this, the implication α → β
behaves as material implication, i.e., as ∼α ∨ β. Similarly, not α is true, in either
world, unless α is true ‘there’, and essentially behaves as strong negation otherwise.
In analogy with logic programming, we will sometimes write the implication α→ β
as β ← α.

Note that due to the requirement that t is a refinement of h, there are five
possibilities for the valuation of an atom a. Hence, the logic defined by (3)–(7) is
actually a five-valued logic, which is calledN5 in [Pearce 2006]2. When there may be
cause for confusion, we will refer to N5 valuations to denote {h, t}×At → {−1, 0, 1}
mappings. An (N5) valuation V is called an (N5) model of a set of formulas Θ if
for each α ∈ Θ, it holds that V (h, α) = V (t, α) = 1.

Equilibrium logic is obtained from N5 logic by restricting attention to particular
N5 models, which are called equilibrium models. Let Lit be the set of all literals,
i.e., Lit = At ∪ {∼a|a ∈ At}. For a valuation V , let Vh and Vt be the set of literals
that are true in worlds h and t:

Vh = {l ∈ Lit|V (h, l) = 1} Vt = {l ∈ Lit|V (t, l) = 1}

A model is called h-minimal if its here world is as little committing as possible,
given its particular there world3.

2This logic is called N2 in [Pearce 1997].
3In [Pearce 1997] the notion of h-minimality is defined in a slightly different way. The difference

is irrelevant, however, w.r.t. the definition of equilibrium models.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

118 · Steven Schockaert et al.

Definition 1. [Pearce 2006] Let the ordering 4 be defined for two N5 valuations
V and V ′ as V 4 V ′ iff Vt = V ′t and Vh ⊆ V ′h. An N5 model V of a set of formulas
Θ is then called h-minimal if it is minimal w.r.t. 4 among all models of Θ, i.e.,
for every other model V ′ of Θ it holds that either Vt 6= V ′t or Vh 6⊃ V ′h.

Note that minimality refers to the set of literals that are verified by a valuation, and
not the set of atoms. The notion of h-minimality makes the connection with ASP
more explicit: what is true ‘there’ can intuitively be understood as a guess of what
can be derived from available knowledge, whereas what is true ‘here’ can actually
be derived. Recall that in ASP we are interested in the case where the guess about
what can be derived coincides with what can actually be derived. Accordingly,
equilibrium models are h-minimal models whose valuation in h and t coincides.

Definition 2. [Pearce 1997] A h-minimal model V of a set of formulas Θ is
called an equilibrium model if Vh = Vt.

The following result shows that equilibrium logic properly extends answer set pro-
gramming, even when strong negation and disjunctive rules are allowed.

Proposition 1. [Pearce 1997] Let P be an ASP program and S a consistent set
of literals (i.e., a and ∼a cannot be both in S, for any atom in At). Then S is an
answer set of P iff there is an equilibrium model V of P such that S = Vt.

For clarity, we will sometimes talk about Pearce equilibrium models, to avoid con-
fusion with the fuzzy equilibrium models introduced below.

Example 4. Let Θ = {a← not b, b← not a}, then the model V defined by Vt =
Vh = {a, b} is not h-minimal, as witnessed by the model V ′ defined by V ′t = {a, b}
and V ′h = {}. Note that the absence of e.g., both a and ∼a in V ′h implies that
V (h, a) = 0. However, V ′ is not an equilibrium model because V ′t 6= V ′h. It is easy
to see that the only equilibrium models are V ′′ and V ′′′ defined by V ′′t = V ′′h = {a}
and V ′′′t = V ′′′h = {b}.

Example 5. The theory Θ = {(∼ a←), (c← not a), (d← ∼a), (e← not b), (f ←
∼b)} has a unique equilibrium model V which is defined by Vt = Vh = {∼ a, c, d, e}.

2.3 Fuzzy logic

The term fuzzy logic is used with different meanings in the literature. Sometimes
it refers to a theory of approximate reasoning that was initiated by Zadeh [Zadeh
1975]. Here, however, we use fuzzy logic to denote the class of logics, whose se-
mantics are based on truth degrees that are taken from the unit interval [0, 1]. An
important subclass of fuzzy logics are residuated t-norm based logics [Hájek 2001].
These latter logics have a syntax which is similar to classical logic. The semantics
are based on interpretations that map atoms to values from the unit interval [0, 1].
The semantics of logical conjunction are generalized to [0,1] by a class of func-
tions called t-norms: symmetric, associative, increasing [0, 1]2 → [0, 1] mappings
T that satisfy the boundary condition T (1, x) = x for all x ∈ [0, 1]. Given a left-
continuous t-norm T , logical implication can be generalized using the residuation
IT of T , defined by

IT (x, y) = sup{λ|λ ∈ [0, 1] and T (x, λ) ≤ y}
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 119

Table I. Semantics of logical connectives in Gödel logic, product logic and Lukasiewicz logic

respectively.
t-norm t-conorm implicator

Tm(x, y) = min(x, y) Sm(x, y) = max(x, y) ITm (x, y) =

(
1 if x ≤ y

y otherwise

Tp(x, y) = x · y Sp(x, y) = x + y − x · y ITp (x, y) =

(
1 if x ≤ y
y
x

otherwise

Tl(x, y) = max(0, x + y − 1) Sl(x, y) = min(1, x + y) ITl
(x, y) = min(1, 1− x + y)

Note that the first argument of IT corresponds to the antecedent of the implication
and the second argument corresponds to the consequent. An important property
of such implicators is that IT (x, y) = 1 iff x ≤ y, which will be important in
defining the semantics of rules in FASP. In general, by implicator we mean any
[0, 1]2 → [0, 1] mapping I which is decreasing in its first argument, increasing in
its second argument, and which satisfies I(0, 1) = I(0, 0) = I(1, 1) = 1 and I(1, 0).
Writing ⊗ for conjunction4 and → for implication, an interpretation V (i.e., a
mapping from the set of atoms At to [0, 1]) defines a valuation [.]V as follows:

[α]V =

V (α) if α = a for some a ∈ At
0 if α = 0
T ([α1]V , [α2]V) if α = α1 ⊗ α2

IT ([α1]V , [α2]V) if α = α1 → α2

(8)

where α is a propositional formula built from the atoms in At , the constant 0,
and the connectives ⊗ and → in the usual way. In addition, logical disjunction
⊕ and negation ¬ can be introduced as notational abbreviations, choosing α1 ⊕
α2 = ¬(¬α1 ⊗ ¬α2) and ¬α = α → 0. Semantically, disjunction corresponds to
a t-conorm, i.e., a symmetric, associative, increasing [0, 1]2 → [0, 1] mapping S
satisfying the boundary condition S(0, x) = x for all x ∈ [0, 1]. If the considered t-
norm T is continuous, it is well-known that [α1⊗ (α1 → α2)]V = min([α1]V , [α2]V),
a property which is called divisibility. In logics based on a continuous t-norm,
it is thus possible to define an additional conjunction operator that semantically
corresponds to the minimum; we will write this operator as ∧. Similarly, we will
write ∨ for the maximum. Along the same lines, it is also possible to define a
second implication operator by ¬a⊕b; such implications are known as S-implicators.
Important fuzzy logics are Gödel logic, product logic and Lukasiewicz logic, which
are based on the continuous t-norms Tm, Tp and Tl, defined as in Table I. This
table also depicts the corresponding t-conorm and residual implicator. Note that in
Gödel logic, the two conjunctions ⊗ and ∧ coincide, whereas in Lukasiewicz logic,
the two implications coincide.

Gödel logic is intermediate between intuitionistic logic and classical logic, in the
sense that all tautologies from intuitionistic logic are tautologies in Gödel logic,
and all tautologies from Gödel logic are classical tautologies, but not the other
way around. It is interesting to note that an axiomatization of Gödel logic is
obtained by adding to the axioms of intuitionistic logic, the axiom of prelinearity:

4Note that [Hájek 2001] uses & for this conjunction instead of ⊗.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

120 · Steven Schockaert et al.

(α → β) ⊕ (β → α). Intuitively, this axiom forces the set of truth values to be
linearly ordered, which means that we can interpret truth degrees in a numerical
fashion. By adding the following axiom to the axiomatization of Gödel logic, the
three-valued Gödel logic is obtained [Baaz et al. 2003]:

α ∨ (α→ β) ∨ (α⊗ β → γ) (9)

Adding this axiom effectively forces the set of truth values to be at most three. It
turns out that this three-valued Gödel logic is exactly the logic of here-and-there
that we already encountered in Section 2.2.

 Lukasiewicz logic is often used in fuzzy logic applications, because it preserves
many desirable properties from classical logic. Moreover, in contrast to Gödel logic
and product logic, the residual implicator in Lukasiewicz logic is continuous, which
is interesting w.r.t. the robustness of applications. Often, the logic is extended
with arbitrary truth constants from [0, 1] ∩ Q, in which case it is called rational
Pavelka logic. Lukasiewicz logic is closely related to mixed integer programming,
as was first discovered by McNaughton [1951]. Specifically, let α be a formula
in Lukasiewicz logic over the variables {a1, . . . , an}. For any formula α, there
exists a continuous [0, 1]n → [0, 1] function f that maps every (λ1, . . . , λn) from
[0, 1]n to the valuation [α]V of α when V is defined as V (ai) = λi. McNaughton
[1951] showed that a continuous [0, 1]n → [0, 1] function f is definable in this way
iff there exists a finite number of linear functions of the form pi(x1, . . . , xn) =
ci1x1 + · · ·+cinxn+ci with ci1, . . . , c

i
n, c

i in N such that for every (λ1, ..., λn) ∈ [0, 1]n

it holds that f(λ1, ..., λn) = pi(λ1, ..., λn) for some i. As a result of this, checking the
satisfiability of a Lukasiewicz logic formula corresponds to checking the feasibility
of a mixed integer program, i.e., verifying whether a given set of linear inequalities
has a solution, given that some designated variables are required to take an integer
value. Hähnle [1994] has made this link explicit, by providing an algorithm for
translating a Lukasiewicz logic theory into a mixed integer program in a semantics-
preserving way. Finally, note that Lukasiewicz logic is also very close to linear logic
[Girard 1987] (see e.g., [Ciabattoni and Luchi 1997]).

2.4 Fuzzy Answer Set Programs

FASP combines the ideas of ASP with the notion of graded truth from fuzzy logic.
Different variants of FASP have been proposed in the literature; here we consider
a variant that is based on [Janssen et al. 2009]. Let Fn for each n ∈ N be a set of
[0, 1]n → [0, 1] functions that are monotonic in each argument (either decreasing or
increasing), and let F =

⋃
n Fn. Typically, the set F will contain the connectives

from a given fuzzy logic, although other choices may be useful as well (e.g., averaging
operators). From the set F and a set of atoms At , formulas are defined inductively
as follows. Each atom a ∈ At is a formula, as well as each constant5 λ ∈ [0, 1].
Furthermore, if α1, ..., αn are formulas, and f ∈ Fn, then f(α1, ..., αn) is a formula

5When defining the syntax of fuzzy answer set programs, it seems natural to require that constants

are taken from [0, 1] ∩ Q to ensure that the language remains recursively enumerable. To define

the semantics of fuzzy answer set programs in terms of a generalized reduct operation, however,
programs with arbitrary constants from [0, 1] need to be considered from a conceptual point of

view. In practice, however, the language can still be restricted to rational constants.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 121

as well. A (FASP) program is then defined as a set of rules of the form

a← α (10)

where α is a formula and a ∈ At is an atom or a constant. In the latter case, the
rule is called a constraint. If α is a constant from [0, 1], the rule (10) is called a
fact. Note that in contrast to ASP, the body can contain other connectives than
conjunction. In the classical case, this is not needed, since for instance a← b∨c can
be expressed by the two rules a← b and a← c. In FASP, this correspondence only
holds for the maximum t-norm, because, as will become clear below, e.g., a← b⊕l c
generally allows us to derive a stronger lower bound for a than the two rules a← b
and a← c together.

A definite (FASP) program is a FASP program without constraints in which no
functions with decreasing arguments are used. An interpretation V is a mapping
from At to [0, 1]; V is called a model of the rule (10) iff [a]V ≥ [α]V , where V is
extended to a [0, 1]-valued valuation similar to (8). Alternatively, we may interpret
the symbol← as any residual implicator, and say that V is a model of (10) iff [a←
α]V = 1. The restriction to residual implicators is important here, to guarantee
that [a← α]V = 1 iff V (a) ≥ [α]V for an interpretation V . Recall from Section 2.3
that the residual implicator IT of a left-continuous t-norm T indeed satisfies the
property that IT (x, y) = 1 iff x ≤ y for all x, y ∈ [0, 1]. Next, V is called a model of
a program P if it is a model of all rules in P . Intuitively, the fact that V (a) = λ for
a model V means that the truth value of a is at least λ, i.e., truth values in (F)ASP
should be understood as lower bounds on truth values. As in ASP, interpretations
thus correspond to epistemic states rather than possible worlds.

The intuition of the notion of an answer set is as in classical ASP. The answer
set of a definite program is defined as its unique minimal model. Alternatively, it
can be defined as the least fixpoint of an immediate consequence operator [Janssen
et al. 2009]. In general, when functions with decreasing arguments are used, FASP
programs may have several minimal models, not all of which satisfy the intuitive
criterion required of an answer set. To define answer sets of general programs, we
need the notion of negative and positive occurrence of an atom. An atom a by
itself is a positive occurrence of that atom. Furthermore, a positive (resp. negative)
occurrence of a in ei is called positive (resp. negative) in f(e1, ..., en) if f is increasing
in its ith argument, and it is called negative (resp. positive) if f is decreasing in its
ith argument. An interpretation V is an answer set of a FASP program P without
constraints iff it is an answer set of the reduct program PV , which is obtained from
P by replacing all negative occurrences of atoms a by their interpretation V (a).
Finally, if C is a set of constraints, V is an answer set of P ∪ C iff is is an answer
set of P and a model of C.

In the following, we use the subscripts m, p, and l to refer to connectives from
Gödel logic, product logic and Lukasiewicz logic respectively, e.g., →l is the impli-
cation from Lukasiewicz logic. The notations ∧ and ∨ will be used for the minimum
and maximum, i.e., ⊗m = ∧ and ⊕m = ∨. In addition, we will use the Kleene-
Dienes implication, defined by

α→kd β = ¬α ∨ β (11)

for any interpretation V . The semantics of FASP as it is introduced above treats all
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

122 · Steven Schockaert et al.

Fig. 1. Visual representation of the answer sets from Example 6.

occurrences of negation as negation-as-failure. We will therefore use the notation
not for negation, with [not α]V = 1− [α]V .

Example 6. Using FASP, a continuous variant of the graph coloring problem
could easily be defined. Assume that a weighted graph is given, where edge weights
are in [0, 1] and specified by facts of the form

edge(a, b)← 0.3 (12)

The problem now consists of assigning a grey value to each node, such that the
distance between the grey values of adjacent nodes is at least as high as the cor-
responding edge weight. It is not hard to see that for a given interpretation V , it
holds that [(x →l y) ⊗l (y →l x)]V = 1 − |V (x) − V (y)|, where →l and ⊗l are the
implication and conjunction from Lukasiewicz logic. Indeed, assume for example
that V (x) ≤ V (y), then [x→l y]V = 1 and [(x→l y)⊗l (y →l x)]V = [y →l x]V =
1− V (y) + V (x) = 1− |V (x)− V (y)|, and similar for the case where V (x) > V (y).
The graph coloring problem could then be expressed as follows:

black(X)← not white(X) (13)
white(X)← not black(X) (14)

sim(X,Y)← (black(X)→l black(Y))⊗l (black(Y)→l black(X)) (15)
0← edge(X,Y)⊗l sim(X,Y) (16)

The first two rules express that a node is black to the degree that it is not white.
This introduces the required non-determinism, providing the possibility to generate
all solutions for which V (black(n)) = 1 − V (white(n)) for all nodes n. The third
rule then calculates the degree to which two nodes are similar. This degree is used in
the last rule, which filters out all solutions in which edge(n1, n2)⊗l sim(n1, n2) > 0,
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 123

which is equivalent to |black(n1) − black(n2)| < edge(n1, n2). Note the similarity
between this FASP program and the ASP program for graph coloring in Example 2.
Again the first part of the program generates all possible color assignments, and the
second part restricts the allowed assignments to those in which adjacent nodes have
a different color. Figure 1 provides a visual representation of the answer sets, in
the specific case where a and b are the only nodes, and their edge weight is specified
by the fact (12). Note that from the values of black(a) and black(b) the values of
the remaining atoms can easily be found.

3. FUZZY EQUILIBRIUM LOGIC

We are now ready to present our fuzzy equilibrium logic. After introducing the
logic itself in Section 3.1, Section 3.2 presents a detailed analysis of the relationship
between fuzzy equilibrium logic on the one hand, and Pearce equilibrium logic
and FASP on the other. Finally, in Section 3.3, a number of illustrative examples
are provided of fuzzy equilibrium logic formulas, clarifying how various types of
information can be expressed.

3.1 Definition

In the equilibrium logic of Pearce (and in N5), a third truth value, 0, is used to
allow for underspecified valuations. This third truth value from equilibrium logic
should not be confused with the use of 0 in fuzzy logic, where it stands for complete
falsity. When moving from boolean to fuzzy truth degrees, underspecified valuations
can be defined by assigning an interval of truth degrees to atoms, as opposed to
a precise degree from [0, 1]. For example, −1 from equilibrium logic corresponds
to the degenerate interval [0, 0], while 1 corresponds to [1, 1] and the third truth
value 0 corresponds to [0, 1]. The restriction that the valuation in the there-world
should be more specific than the valuation in the here-world then translates to
the requirement that the interval assigned to an atom in t should be contained in
the interval assigned to it in h. Thus we define a (fuzzy N5) valuation V as a
mapping from {h, t} × At to (possibly degenerate) subintervals of [0, 1] such that
V (h, a) ⊇ V (t, a), where At is a set of atoms as before. For V (w,α) = [u, v], we
write V −(w,α) to denote the lower bound u and V +(w,α) to denote the upper
bound v. Next, we propose a semantics for complex formulas. For a constant
λ ∈ [0, 1] ∩ Q, we define V (h, λ) = V (t, λ) = [λ, λ]. Furthermore, the semantics
for strong negation, conjunction, and disjunction follows naturally from the given
setting (w ∈ {h, t}):

V (w,∼α) = [1− V +(w,α), 1− V −(w,α)] (17)

V (w,α⊗ β) = [V −(w,α)⊗ V −(w, β), V +(w,α)⊗ V +(w, β)] (18)

V (w,α⊕ β) = [V −(w,α)⊕ V −(w, β), V +(w,α)⊕ V +(w, β)] (19)

where we have used the notation ⊗ both for the logical connective and the t-norm
that implements it, for the ease of presentation (and similar for ⊕). For instance,
the minimal degree to which the conjunction α⊗β is known to be satisfied in world
w is obtained by conjunctively combining the minimal degrees to which α and β are
known to be satisfied in that world. Similarly, the truth value of ∼α is minimized
by considering the maximal value of α, which is indeed the smallest value that ∼α

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

124 · Steven Schockaert et al.

can take, given what is known about the possible values of α. In contrast, the idea
of negation-as-failure is essentially to take an optimistic attitude, taking as truth
value for not α the highest value possible. Indeed, in the boolean case, not α is true
unless α is known to be true. A first idea might be to evaluate not α in each world
w by the degenerate interval V (w,not α) = [1−V −(w,α), 1−V −(w,α)]. However,
this would violate the assumption that t is a refinement of h, as it might be the
case that 1 − V −(h, α) > 1 − V −(t, α). This observation corresponds to the fact
that we need to guess a solution in ASP before rules with negation-as-failure can
be evaluated. Thus we arrive at:

V (h,not α) = [1− V −(t, α), 1− V −(h, α)] (20)

V (t,not α) = [1− V −(t, α), 1− V −(t, α)] (21)

where in both worlds, the lower bound on the truth value of not α is based on the
valuation in t. This is in accordance with a reading of not α as “we will not be
able to establish α”. The upper bound V +(h,not α) is defined as 1 − V −(h, α),
rather than the alternative 1− V −(t, α), which is in accordance with the fact that
in N5 logic, a valuation V is a model of ∼not α iff it is a model of ∼∼α. Indeed,
(20) ensures that V −(h,∼not α) = V −(h,∼∼α) = V −(h, α), and in particular that
V −(h,∼not α) = 1 iff V −(h,∼∼α) = 1.

To generalize the semantics of an implication (i.e., a rule) α → β, note that
the condition (V (w′, α) = 1) ⇒ (V (w′, β) = 1), from N5 logic, can be general-
ized as V −(w′, α) → V −(w′, β) = 1 for a suitable implicator →, noting that e.g.,
V (w′, α) = 1 in N5 logic corresponds to V (w′, α) = [1, 1] in our setting. Hence, the
degree to which the condition ∀w′ ≥ h . (V (w′, α) = 1)⇒ (V (w′, β) = 1) is satisfied
could be measured by the degree min

(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

adhering to the common practice of generalizing universal quantification by the in-
fimum in fuzzy logics. Similarly, the condition “V (w,α) = 1 and V (w, β) = −1”,
from N5 logic, is violated iff V (w,α) = 1⇒ V (w, β) 6= −1, which can be measured
by the degree V −(w,α)→ V +(w, β). We obtain:

V (h, α→ β) = [min
(
V −(h, α)→ V −(h, β), V −(t, α)→ V −(t, β)

)
,

V −(h, α)→ V +(h, β)] (22)

V (t, α→ β) = [V −(t, α)→ V −(t, β), V −(t, α)→ V +(t, β)] (23)

In analogy with FASP, we will sometimes write a rule α→ β as β ← α. In contrast
to FASP, however, every rule in fuzzy equilibrium logic is tied to a particular
residual implicator. When this choice of implicator is important, we will use a
subscript (e.g. α←l β corresponds to a rule whose semantics is defined in terms of
the Lukasiewicz implicator).

As in FASP, in practice it is sometimes convenient to use functions that do
not directly correspond to logical connectives. In general, if f is an arbitrary
(m + r)-ary function which is increasing in its first m arguments and decreasing
in its r last arguments, we may define (writing f(α1, ..., βr) as a shorthand for
f(α1, ..., αm, β1, ..., βr))

V −(h, f(α1, ..., βr)) = f(V −(h, α1), ..., V −(h, αm), V −(t, β1), ..., V −(t, βr)) (24)

V +(h, f(α1, ..., βr)) = f(V +(h, α1), ..., V +(h, αm), V −(h, β1), ..., V −(h, βr)) (25)
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 125

V −(t, f(α1, ..., βr)) = f(V −(t, α1), ..., V −(t, αm), V −(t, β1), ..., V −(t, βr)) (26)

V +(t, f(α1, ..., βr)) = f(V +(t, α1), ..., V +(t, αm), V −(t, β1), ..., V −(t, βr)) (27)

which is in accordance to how the semantics of negation-as-failure not is defined
in terms of fuzzy logic negation. Note that there is a difference in the semantics of
an implication when we see the implication as a rule, in which case the semantics
are given by (22)–(23), and when we see it as a function with a decreasing and an
increasing argument, in which case the semantics are given by (24)–(27). In this
paper, we will always treat occurrences of implications as rules. Alternatively, the
semantics of f may be defined as

V −(h, f(α1, ..., βr)) = f(V −(h, α1), ..., V −(h, αm), V +(h, β1), ..., V +(h, βr))

V +(h, f(α1, ..., βr)) = f(V +(h, α1), ..., V +(h, αm), V −(h, β1), ..., V −(h, βr))

V −(t, f(α1, ..., βr)) = f(V −(t, α1), ..., V −(t, αm), V +(t, β1), ..., V +(t, βr))

V +(t, f(α1, ..., βr)) = f(V +(t, α1), ..., V +(t, αm), V −(t, β1), ..., V −(t, βr))

which is in accordance to how the semantics of strong negation ∼ is defined in
terms of fuzzy logic negation. Unless otherwise specified, we will assume that the
semantics given by (24)–(27) are adopted, which is in accordance to the semantics
that are used in FASP. In general, however, both types of semantics may be of
interest.

A valuation V is a (fuzzy N5) model of a set of formulas Θ if for every α in Θ,
V −(h, α) = 1, which also implies V +(h, α) = V −(t, α) = V +(t, α) = 1.

Example 7. We may wonder which of the axioms from N5 logic remain tau-
tologies in the setting of fuzzy N5 models. Recall that the axiomatization of the
logic of here-and-there consists of the axioms of intuitionistic logic and one addi-
tional axiom that forces the number of truth degrees to be at most three. Clearly,
this latter axiom cannot be satisfied in a fuzzy setting. However, it holds that every
fuzzy N5 valuation is a model of the following formulas (corresponding to axioms
of intuitionistic logic):

(α⊗l β)→l α α→l (α⊕l β)
(α⊗l β)→l β β →l (α⊕l β)

(α→l not β)→l (β →l not α) α→l (β →l α)
not (α→l α)→l β

The validity of these formulas w.r.t. fuzzy N5 valuations can be easily shown from
the fact that these are all valid formulas in Lukasiewicz logic. However, the following
formulas (again corresponding to axioms of intuitionistic logic) are neither valid in
 Lukasiewicz logic nor in fuzzy equilibrium logic:

(α→l (β →l γ))→l ((α→l β)→l (α→l γ))
(α→l β)→l ((α→l γ)→l (α→l (β ⊗l γ)))
(α→l β)→l ((α→l γ)→l ((α⊕l β)→l γ))

Hence what we lose w.r.t. intuitionistic logic, from a proof-theoretic point of view,
is related to distributivity. When choosing other fuzzy logic connectives, different

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

126 · Steven Schockaert et al.

axioms from intuitionistic logic will be retained. To get the axioms from N5 logic,
6 additional axioms are added, which govern the behavior of strong negation. All of
these axioms remain valid w.r.t. the Lukasiewicz connectives, i.e. every fuzzy N5
valuation is a model of the following formulas:

∼(α→l β)↔l α⊗l ∼β ∼∼α↔l α

∼(α⊗l β)↔l ∼α⊕l ∼β ∼not α↔l α

∼(α⊕l β)↔l ∼α⊗l ∼β ∼a→l not a

where a is an atom from At and α↔l β is a shorthand for (α→l β)⊗l (β →l α).

Analogous to models in Pearce equilibrium logic, fuzzy equilibrium models are mod-
els which are in some sense minimal, and which assign the same value to literals in
both worlds.

Definition 3. Let the ordering 4 be defined for two fuzzy N5 valuations V and
V ′ as V 4 V ′ iff V (t, a) = V ′(t, a) and V (h, a) ⊇ V ′(h, a) for all a ∈ At. A fuzzy
N5 model V of a set of fuzzy equilibrium logic formulas Θ is then called h-minimal
if it is minimal w.r.t. 4 among all models of Θ.

Note that h-minimal fuzzyN5 models are those that are least committing, i.e., those
whose valuation in the here-world corresponds to the largest possible interval.

Definition 4. An h-minimal fuzzy N5 model V of a set of formulas Θ is a
(fuzzy) equilibrium model if V (h, a) = V (t, a) for all a in At.

3.2 Relationship to existing frameworks

To see the connection between fuzzy equilibrium models and Pearce equilibrium
models, it is useful to observe that the interval [0, 1] in fuzzy N5 valuations takes
the role of 0 (undecided) in N5 valuations, whereas the degenerate intervals [0, 0]
and [1, 1] take the role of respectively −1 (false) and 1 (true).

Proposition 2. Let Θ1 be a set of equilibrium logic formulas, and let Θ2 be the
set of fuzzy equilibrium logic formulas obtained from Θ1 by replacing conjunction,
disjunction and implication by respectively some t-norm ⊗, t-conorm ⊕ and im-
plicator →. Furthermore, let V1 be an N5 valuation, and let V2 be the fuzzy N5
valuation obtained from V1 by replacing −1, 0 and 1 by respectively [0, 0], [0, 1] and
[1, 1]. It holds that V1 is an N5 model of Θ1 iff V2 is a fuzzy N5 model of Θ2.

Note that the previous proposition is valid for any t-norm, t-conorm and implicator.

Corollary 1. Let Θ1, Θ2, V1 and V2 be as in Proposition 2. If V2 is a fuzzy
equilibrium model of Θ2, then V1 is a Pearce equilibrium model of Θ1.

Proposition 3. Let Θ be a set of formulas that are built from the constant 0,
the atoms from At, and the connectives ⊗m, ⊕m, ∼, not and →kd. If a fuzzy N5
valuation V is an h-minimal model of Θ, it holds that V (h, a) ∈ {[0, 0], [1, 1], [0, 1]}
for every atom a.

Corollary 2. Let Θ1 be a set of equilibrium logic formulas, and let Θ2 be the
set of fuzzy equilibrium logic formulas obtained from Θ1 by replacing conjunction,
disjunction and implication by respectively ⊗m, ⊕m and →kd. Furthermore, let
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 127

V1 be an N5 valuation, and let V2 be the fuzzy N5 valuation obtained from V1

by replacing −1, 0 and 1 by respectively [0, 0], [0, 1] and [1, 1]. If V1 is a Pearce
equilibrium model of Θ1, then V2 is a fuzzy equilibrium model of Θ2.

The above results teach us that the set of Pearce equilibrium models of a theory
Θ coincides with its set of fuzzy equilibrium models, provided that logical connec-
tives are interpreted in a particular way. As a result, all problems that can be
modeled using Pearce equilibrium logic can straightforwardly be modeled in fuzzy
equilibrium logic as well, thus showing that fuzzy equilibrium logic is a proper
generalization of Pearce equilibrium logic. It is interesting to note that the choice
of fuzzy connectives in Proposition 3 and Corollary 2 is important. In particular,
when other fuzzy connectives are considered, the counterparts of Pearce equilib-
rium theories can have additional fuzzy equilibrium models, as illustrated in the
following example.

Example 8. Let Θ1 = {a ← not b, b ← not a} and Θ2 = {a ←l not b, b ←l

not a}. The set Θ1 has two equilibrium models V1 and V2, defined by V1(w, a) =
V2(w, b) = 1 and V1(w, b) = V2(w, a) = 0 for w ∈ {h, t}. Moreover, a fuzzy N5
valuation V is a model of Θ2 iff

(V −(h, a←l not b) = 1) ∧ (V −(h, b←l not a) = 1)

⇔ min(V −(h, a)←l V
−(h,not b), V −(t, a)←l V

−(t,not b)) = 1

∧min(V −(h, b)←l V
−(h,not a), V −(t, b)←l V

−(t,not a)) = 1

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(t, a) ≥ 1− V −(t, b)

∧ V −(h, b) ≥ 1− V −(t, a) ∧ V −(t, b) ≥ 1− V −(t, a)

⇔ V −(h, a) ≥ 1− V −(t, b) ∧ V −(h, b) ≥ 1− V −(t, a)

Thus we find that for every λ in [0, 1], the fuzzy N5 valuation V defined by V (t, a) =
V (h, a) = [λ, 1] and V (t, b) = V (h, b) = [1− λ, 1] is a fuzzy equilibrium model.

Moreover, when other connectives than the ones from Proposition 3 are used, some
of the equilibrium models of an equilibrium logic theory Θ1 may not be preserved
when moving to fuzzy equilibrium logic.

Example 9. Let Θ1 = {a ∨ b ∨ b}, and Θ2 = {a ⊕l b ⊕l b}. The valuation
V2 that was defined in Example 8 is an equilibrium model of Θ1. In contrast, the
corresponding fuzzy N5 valuation V defined by V (w, a) = [0, 1] and V (w, b) = [1, 1]
is not a fuzzy equilibrium model of Θ2. Indeed, it is easy to see that the fuzzy N5
valuation W , defined by W (w, a) = [0, 1], W (h, b) = [0.5, 1] and W (t, b) = [1, 1], is
a model of Θ2 as well, which means that V is not h-minimal.

When translating Pearce equilibrium logic theories into fuzzy equilibrium logic, it
is thus important to add constraints that limit valuations to the intervals [0, 0],
[1, 1] and [0, 1]. One possibility to ensure this is to choose the connectives from
Proposition 3 and Corollary 2. Another possibility would be to choose arbitrary t-
norms, t-conorms and implicators, but add additional formulas to limit valuations.
One possibility would be to add formulas of the form a ← (a > 0) and ∼a ←
(∼a > 0) for each a ∈ At (see Section 3.3 below). Now we turn to the relationship
between fuzzy equilibrium logic and fuzzy answer set programming. Recalling that

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

128 · Steven Schockaert et al.

rules in FASP can be modeled using any residual implicator, FASP programs can
be seen as special instances of fuzzy equilibrium theories. In general, however,
fuzzy equilibrium logic is more sensitive to syntax than FASP. For example, while
a← not not b and a← b are different in fuzzy equilibrium logic, such a distinction
cannot be made in FASP. To show how fuzzy equilibrium logic generalizes FASP, it
is thus important to choose the right syntactic encoding. In particular, and without
lack of generality, we may assume that a FASP program consists of rules of the form

a← f(a1, ..., an; b1, ..., bm) (28)

where f is increasing in the first n arguments and decreasing in the last m argu-
ments. A rule such as (28) can be interpreted as a fuzzy equilibrium logic formula,
by replacing ← by an arbitrary residual implicator, and defining the semantics of
f as in (24)–(27).

Proposition 4. Let P be a FASP program, where rules are of the form (28) and
are interpreted in fuzzy equilibrium logic by replacing ← by an arbitrary residual
implicator. Assume furthermore that all constants occurring in P are taken from
[0, 1] ∩ Q. Let V be a fuzzy N5 valuation, and let W be the interpretation defined
by W (a) = V −(t, a) for all a ∈ At. If V is a fuzzy equilibrium model of P , then W
is an answer set of P .

Proposition 5. Let P be as in Proposition 4, and let W be an interpreta-
tion. Furthermore, let V be the fuzzy N5 valuation defined by V (h, a) = V (t, a) =
[W (a), 1] for all a ∈ At. If W is an answer set of P then V is a fuzzy equilibrium
model of P .

Hence, whenever the syntax of fuzzy equilibrium theories is restricted to what can
be expressed in FASP, the fuzzy equilibrium models coincide with the answer sets.
Hence, fuzzy equilibrium logic is also a proper generalization of FASP. Fuzzy equi-
librium logic has the practical advantage over FASP that more syntactic constructs
can be used, including nested rules, negations in front of complex formulas, etc., as
well as the theoretical advantage of having a model-theoretic semantics. In addition
to these advantages, which are analogous to the advantages of Pearce equilibrium
logic over ASP, fuzzy equilibrium logic has the additional advantage over FASP
that it poses less restrictions on the type of connectives that can be adopted. In
particular, while rules in FASP are modeled using residual implicators, any type of
implicator could be used in fuzzy equilibrium logic.

3.3 Examples of useful constructs

Not all of the syntactic constructs that can be specified in fuzzy equilibrium logic
have an intuitive meaning. Practical applications of fuzzy equilibrium logic could
result either by restricting attention to those constructs that do have an intuitive
meaning, or by using fuzzy equilibrium logic as an interlingua to define non-standard
extensions to FASP (e.g., analogous to how the semantics of aggregates in ASP are
naturally expressed using Pearce equilibrium logic [Ferraris 2005]). In this section,
however, we provide some examples of how fuzzy equilibrium logic formulas may
provide a useful generalization of FASP rules. In particular, we first show how two
standard techniques for encoding problems in classical answer set programming,
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 129

viz. generate-and-test and saturation, can be generalized to the fuzzy equilibrium
setting. Then we discuss how techniques for partial rule satisfaction in FASP can
easily be implemented using fuzzy equilibrium logic.

3.3.1 Generate-and-test. A common approach to encode NP-complete problems
in answer set programming consists of writing a program that consists of two parts.
In the first part, all possible candidate solutions are generated, while the second
part tests which of these candidates constitutes an actual solution. For instance,
(13)–(14) are used to guess a grey level assignment, while (15)–(16) are used to
verify whether it constitutes a valid graph coloring. The idea of guessing a solution
typically means that certain variables may take an arbitrary value.

In the graph coloring example, a candidate solution is guessed using sets of formu-
las of the form Θ = {a←l not b, b←l not a}. As we know from Example 8, the fuzzy
equilibrium models of Θ are such that V −(h, a) = V −(t, a) = 1 − V −(h, b) = 1 −
V −(t, b) = λ for an arbitrary λ ∈ [0, 1], while V +(h, a) = V +(h, b) = 1 = V +(t, a) =
V +(t, b) = 1. By considering Θ′ = Θ ∪ {∼b ←l not (∼a),∼a ←l not (∼b)} we ob-
tain a theory whose fuzzy equilibrium models are of the form V (h, a) = [λ, λ] and
V (h, b) = [1− λ, 1− λ].

Although the previous construction can be extended from 2 formulas involving
2 variables to n formulas involving n variables, for n ≥ 2, often we just want to
assert that a single variable can take an arbitrary truth value. In fuzzy equilibrium
logic, we can express this using a formula of the form a ⊕l ∼a. Indeed, the fuzzy
equilibrium models of that formula are of the form V (h, a) = V (t, a) = [λ, λ] for an
arbitrary λ ∈ [0, 1]. Writing a⊕l∼a thus means that a can freely take any value from
[0, 1]. In the graph coloring example, this means that we no longer need the artificial
predicate white, as we can simply write black(X) ⊕l ∼black(X) to guess the grey
level of each node X. Using the maximum (i.e., the Gödel disjunction) instead of the
 Lukasiewicz disjunction, we can state that a can take any value from {0, 1}, which
is useful when some variables in the problem under consideration are continuous
(fuzzy) and others are boolean. Specifically, we have that V −(h, a ∨ ∼a) = 1 iff
either V −(h, a) = 1 or V −(h,∼a) = 1, which means V (h, a) = [0, 0] or V (h, a) =
[1, 1]. More generally, it is possible in fuzzy equilibrium logic to assert that a takes
a value from any given, finite discrete domain. For example, to assert that a takes
one of the values {0, 1

3 ,
2
3 , 1}, we can use the formula a ∨ ∼a ∨ α 1

3
∨ α 2

3
, where

α p
q

= (a←l
p
q) ∧ (∼a←l

q−p
q).

To write the second part of the fuzzy equilibrium logic theory, where candidate
solutions are tested, it is possible to use constraint rules, as in (F)ASP, or to simply
state that certain formulas should be satisfied. In addition to constraints with a
logical flavor, in many application domains it is useful to refer to constraints with
a numerical flavor. A typical example is verifying whether the truth value of some
formula α is greater than some constant, or verifying whether the truth value of
some formula α is greater than the truth value of another formula β. To this end,
we consider formulas of the form

a←l (α > β)

where > is interpreted as a {0, 1}-valued function which maps to 1 if the inequality
holds and to 0 otherwise, i.e., we have V −(h, α > β) = 1 iff V −(h, α) > V −(t, β),

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

130 · Steven Schockaert et al.

and V −(t, α > β) = 1 iff V −(t, α) > V −(t, β). Such strict inequalities are extremely
useful in practice, e.g., a rule w ←l (w > 0) effectively turns w into a binary atom
which evaluates to either 0 or 1.

Example 10. To illustrate the use of generate-and-test in fuzzy equilibrium logic,
let us consider the linear assignment problem, where n tasks have to be assigned to
n agents such that no two agents are assigned the same task. Let ki,j ∈ [0, 1]
be the cost associated with assigning agent i to task j, and assume that all costs
are normalized such that

∑
i,j ki,j ≤ 1. The problem we consider here is deciding

whether there exists a matching whose total cost is at most λ ∈ [0, 1]. Let us con-
sider the fuzzy equilibrium logic theory, which contains the following formulas for
all 1 ≤ i, i1, i2 ≤ n with i1 6= i2:

in(i, 1) ∨ ... ∨ in(i, n) (29)
c(i, j)←l in(i, j)⊗l ki,j (30)

c←l c(1, 1)⊕l ...⊕l c(1, n)⊕l c(2, 1)⊕l ...⊕l c(n, n) (31)
0←l in(i1, j)⊗l in(i2, j) (32)
0←l (c > λ) (33)

The fuzzy equilibrium models of this theory are exactly the matchings whose overall
cost is at most λ. The generate-part of the theory are the rules of the form (29),
where the intuition is that in(i, j) is true iff agent i is assigned task j. Since
the maximum is used in these rules, in each fuzzy equilibrium model there will be
exactly one j for which V (h, in(i, j)) = V (t, in(i, j)) = [1, 1], whereas for all j′ 6= j,
it holds that V (h, in(i, j′)) = V (t, in(i, j′)) = [0, 1]. The rules (30)–(31) are used
to calculate the cost that corresponds to the matching. Finally, incorrect matchings
are eliminated by testing in (32) that no two agents are assigned the same task, and
in (33) that the overall cost is indeed at most λ.

3.3.2 Saturation. The generate-and-test technique is useful in situations where a
configuration must be found that satisfies certain constraints. Sometimes, however,
we need to find a configuration which is optimal in some sense. In Example 10,
for instance, we may be interested in finding the matching which minimizes the
cost, rather than finding any matching whose cost is below a predefined threshold.
This can be accomplished using a saturation technique, which is also commonly
used in classical disjunctive logic programming (see e.g., for some typical examples
[Eiter et al. 1997]). The idea is to guess a solution, as in the generate-and-test
methodology, and then consider a second solution whose values are saturated unless
its cost is lower than the first solution. We illustrate the technique using the
following example.

Example 11. Consider the problem of finding an optimal matching in the set-
ting of Example 10. We consider a fuzzy equilibrium logic theory which consists of
the formulas (29)–(32), together with formulas of the following form:

in’(i, 1) ∨ ... ∨ in’(i, n) (34)
c′(i, j)←l in’(i, j)⊗l ki,j (35)

c′ ←l c
′(1, 1)⊕l ...⊕l c′(1, n)⊕l c′(2, 1)⊕l ...⊕l c′(n, n) (36)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 131

w ←l in’(i1, j)⊗l in’(i2, j) (37)
w ←l c

′ ≥ c (38)
in’(i, j)←l w (39)
c’(i, j)←l w (40)

c′ ←l w (41)
0←l not w (42)

The idea is that formulas (29)–(32) are first used to guess an optimal matching,
while formulas (34)–(38) are used to find a counterexample to the claim that the
first matching were optimal. Due to (37)–(38), we have that w is true (to degree 1)
unless a valid counterexample was found. If w is indeed true, (39)–(41) cause the
atoms occurring in (34)–(37) to saturate, i.e. to become true to degree 1. As fuzzy
equilibrium models are least committing models, by definition, this means that in
any fuzzy equilibrium model, the atoms in’(i, j) will correspond to a counterexample
unless no counterexample exists. Finally, (42) encodes the constraint that there
should not be a counterexample for the solution encoded by the atoms in(i, j). As
a result, in any fuzzy equilibrium model, the valuation of the atoms in(i, j) encodes
an optimal matching.

While the saturation technique is perhaps less intuitive at first glance, this same
pattern can be used in many application domains. Moreover, the way it is used
in fuzzy equilibrium logic is entirely analogous to the way it is used in disjunctive
ASP (see e.g., [Eiter et al. 1997] for more illustrations of this technique). In Section
4 the saturation technique will be used to find strong Nash equilibria and to find
abductive explanations in Lukasiewicz logic.

3.3.3 Conditional rules. Another interesting feature of fuzzy equilibrium logic
is the use of nested rules. Nested rules of the form (α← β)← γ are useful to encode
that the validity of the rule α← β is conditional on γ. Formally, however, for many
types of implication, this formula has the same fuzzy N5 models as6 α← β⊗ γ for
a particular conjunction ⊗. Indeed, it is not hard to show that

V −(h, (α← β)← γ) = min((V −(h, α)← V −(h, β))← V −(h, γ),

(V −(t, α)← V −(t, β))← V −(t, γ))

V −(h, α← β ⊗ γ) = min(V −(h, α)← V −(h, β)⊗ V −(h, γ),

V −(t, α)← V −(t, β)⊗ V −(t, γ))

Moreover, it is well-known that for the residual implicator IT induced by a left-
continuous t-norm T , it holds that IT (x, IT (y, z)) = IT (T (x, y), z) for all x, y, z ∈
[0, 1], from which we can conclude that (α← β)← γ and α← β⊗γ have the same
fuzzy N5 models as soon as ⊗ and← are interpreted by T and IT respectively. On
the other hand, a rule such as α← (β ← γ) cannot straightforwardly be expressed
in FASP. In this latter case, the truth of α is asserted to be conditional on the
satisfaction of the rule β ← γ. The rule β ← γ itself is not actually asserted to

6Throughout the paper, we let ⊗ and ⊕ have priority over←, and we let ∼ and not have priority

over ⊗ and ⊕; for instance, ∼a← b⊕ not c is the same as (∼a)← (b⊕ (not c)).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

132 · Steven Schockaert et al.

hold, however. For instance, the only fuzzy equilibrium model V of {c, a← (b← c)}
is given by V (w, a) = V (w, b) = [0, 1] and V (w, c) = [1, 1] for w ∈ {h, t}, i.e., the
truth of c is not sufficient to derive that b is true.

Along similar lines, we could consider formulas of the form a ∨ (α ← β) that
essentially express that the rule α ← β is optional, with the atom a encoding
whether or not the rule was satisfied. This could be useful to encode constraints
such as “at least 4 among the following set of rules should be satisfied”, or even
“rule r1 can only be satisfied when rule r2 is not satisfied”. More generally, such a
kind of formulas allow us to easily simulate the idea of aggregated fuzzy ASP from
[Janssen et al. 2009].

4. ILLUSTRATIVE EXAMPLES

4.1 Strong equivalence

In Pearce equilibrium logic, two forms of equivalence can be considered. First,
two sets of equilibrium logic formulas Θ1 and Θ2 are called equivalent iff Θ1 and
Θ2 have the same equilibrium models. Second, Θ1 and Θ2 are called strongly
equivalent iff Θ1 and Θ2 have the same N5 models. Clearly, strong equivalence
implies equivalence. The notion of strong equivalence was studied in [Lifschitz et al.
2001], where it was shown that Θ1 and Θ2 are strongly equivalent iff Θ1∪Ψ and Θ2∪
Ψ are equivalent for every set of equilibrium logic formulas Ψ. This characterization
makes it clear why strong equivalence might be important for practical applications,
e.g., to find sound techniques for rewriting answer set programs into a form that
can be more easily implemented. This result can be extended to the setting of fuzzy
equilibrium logic. In particular, we have the following proposition.

Proposition 6. Let Θ1 and Θ2 be two sets of fuzzy equilibrium logic formulas.
The fuzzy N5 models of Θ1 and Θ2 coincide iff for every set of fuzzy equilibrium
logic formulas Ψ, Θ1 ∪Ψ and Θ2 ∪Ψ have the same fuzzy equilibrium models.

As an example of how Proposition 6 could be useful, we consider the use of strict
inequalities:

Θ1 = {c←l (a > b)} (43)

Such formulas are often very useful in applications, but they are not supported by
the implementation that we will introduce in Section 5.4. However, the following
theory only uses Lukasiewicz connectives, and is supported by this implementation:

Θ2 = {c←l a⊗l not b, c←l c⊕l c} (44)

We have that Θ2 is strongly equivalent to Θ1, as any fuzzy N5 valuation V is a
model of Θ1 or Θ2 iff

(V −(h, a) ≤ V −(t, b) or V −(h, c) = 1) and (V −(t, a) ≤ V −(t, b) or V −(t, c) = 1)

This means that whenever we want to use a strict inequality in the body of a rule, we
may simply replace the rule of the form (43) by rules of the form (44). Alternatively,
using the Kleene-Dienes implicator, (43) can even be simulated using only a single
rule:

c←kd a⊗l not b
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 133

In the same way, in many applications, we would like to write rules such as
c ← (a ≥ b). Unfortunately, such rules cannot straightforwardly be simulated,
although formulas of the form c ∨ (a ≥ b) may be simulated as c ∨ (a← not not b).
Indeed, both formulas are strongly equivalent as they are satisfied by a valuation
V iff either V −(h, c) = 1 or V −(h, a) ≥ V −(t, b).

4.2 Strong Nash Equilibria

As an illustration of how fuzzy equilibrium logic can be used in the context of
declarative problem solving, we present a technique to find strong Nash equilibria,
a problem which is known to be ΣP2 -complete [Gottlob et al. 2005]. Nash equilibria
are one of the most fundamental notions from game theory. Assume that a finite
set of players p1, ..., pn is given, and for each player pi a set of actions Ai. A choice
of actions (a1, ..., an) ∈ A1 × ... × An is called a global strategy. Let µi be an
A1× ...×An → R function representing the utility (or desirability) to player pi of a
certain global strategy. A global strategy A = (a1, ..., an) is called a (pure) strong
Nash equilibrium if there does not exist a non-empty K ⊆ {1, ..., n} and a global
strategy A′ = (a′1, ..., a

′
n) such that

(1) for all i /∈ K it holds that ai = a′i; and
(2) µi(A) < µi(A′) for each i in K.

In other words, a global strategy is a strong Nash equilibrium if there cannot be a
coalition of players that is able to (strictly) improve the current situation of each
of its members, without help of others.

Often, the set of actions that players can choose from is assumed to be finite.
Here we allow an infinite number of actions, which can be encoded as a [0, 1]-valued
parameter a. Moreover, we assume that each utility function µi can be represented
as a formula from Lukasiewicz logic, such that the truth value [µi(a1, ..., an)]M
for a given interpretation M corresponds to the utility of the global strategy
(M(a1), ...,M(an)). This restriction is rather general, encompassing all scenar-
ios where the number of actions is finite, and essentially those where utility func-
tions are piecewise linear. For the ease of presentation, we rewrite µi(a1, ..., an)
using a function of the form (24)–(27). In particular, let Ui be the function
which is increasing in all of its arguments and which satisfies µi(a1, ..., an) =
Ui(a1, ..., an; 1− a1, ..., 1− an).

Now we construct a set of fuzzy equilibrium logic formulas Θ such that the fuzzy
equilibrium models of Θ are exactly the strong Nash equilibria that correspond
to the given utility functions. For each i in {1, ..., n}, Θ contains the following
formulas:

ai ⊕l ∼ai (45)

c−i ⊕m c+i (46)

d−i ⊕l d
+
i (47)

e+
i ←l (ai ⊗m c−i)⊕m (d+

i ⊗m c+i) (48)

e−i ←l (∼ai ⊗m c−i)⊕m (d−i ⊗m c+i) (49)

Intuitively, on the first line a strong Nash equilibrium (a1, ..., an) is guessed. The
use of the Lukasiewicz t-conorm ensures that in every fuzzy N5 model V , it holds

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

134 · Steven Schockaert et al.

that V (h, ai) = V (t, ai) = [λi, λi] for some λi ∈ [0, 1]. To verify that we have indeed
found a strong Nash equilibrium, a coalition is guessed, defined by the indices c+i
and c−i ; the former intuitively means that player i belongs to the coalition, and
the latter that i does not. Note that c−i and c+i correspond to crisp properties. By
using the maximum, V (h, c−i) and V (h, c+i) will either be [0, 1] or [1, 1] in h-minimal
fuzzy N5 models. Next, the strategies of the users in the coalition are guessed: e+

i

corresponds to the new strategy for player i, whereas e−i corresponds intuitively
to its negation (i.e., complement with 1). For players outside the coalition this
value e+

i is simply ai, whereas for players in the coalition e+
i corresponds to a new

value d+
i . To check whether the coalition and strategies that have been guessed

constitute a counterexample of the assumption that (a1, ..., an) were a strong Nash
equilibrium, the following formulas are added:

w ←l ((c−1 ⊗m ...⊗m c−n)←kd (α1 ⊗m ...⊗m αn)) (50)

w ←l e
−
i ⊗l e

+
i (51)

w ←l c
−
i ⊗l c

+
i (52)

w ←l (w > 0) (53)

where αi is used as an abbreviation of

(Ui(e+
1 , ..., e

+
n ; e−1 , ..., e

−
n) > Ui(a1, ..., an;∼a1, ...,∼an))⊕m c−i (54)

The expression αi encodes whether player i is either outside the coalition or was able
to improve her utility, i.e., αi is true when player i does not prevent the coalition
that was guessed to be a counterexample. Analogous to the simulation of rules
with strict inequalities in Section 4.1, (54) can be simulated using Lukasiewicz logic
connectives as

(Ui(e+
1 , ..., e

+
n ; e−1 , ..., e

−
n)⊗l not (Ui(a1, ..., an;∼a1, ...,∼an)))⊕m c−i

observing that the formulas αi only appear in the body of the Kleene-Dienes impli-
cator. Intuitively, the atom w is then true whenever the coalition that was guessed
does not correspond to a counterexample. The rule (50) ensures that w is true
unless none of the players prevent the coalition from being a counterexample, and
the coalition is not empty, while (51) and (52) verify whether the coalition itself is
valid, e.g., that no player can be simultaneously inside and outside of the coalition.
Finally, (53) ensures that w takes a boolean value, i.e., as soon as w can be derived
to a non-zero degree, this rule ensures that w is derived to degree 1.

Finally, we need to ensure that all guesses of coalitions and corresponding strate-
gies are tried, rather than just one. In other words, that a fuzzy equilibrium model
can only satisfy V −(h,w) = 1 when there are no counterexamples. Specifically,
using the saturation technique, the following formulas are added:

d−i ←l w d+
i ←l w (55)

c−i ←l w c+i ←l w (56)
0←l notw (57)

Thus, when (e+
1 , ..., e

+
n) does not correspond to a counterexample, all atoms different

from ai are intuitively made true. As a result, in h-minimal models V , we may
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 135

only have V −(h,w) > 0 if there are no counterexamples. This is the reason why we
needed atoms such as c−i and d−i to simulate the negation of other atoms. Because
of this saturation technique, an h-minimal model V may only satisfy V −(h,w) = 1
if there does not exist any counterexample. When there is a counterexample, we will
have V −(h,w) = 0, and because of the last rule, V cannot be a fuzzy equilibrium
model in such a case. We can show the following proposition.

Proposition 7. A global strategy (λ1, ..., λn) is a strong Nash equilibrium iff Θ
has a fuzzy equilibrium model V such that V −(t, ai) = λi.

Several relationships between answer set programming and Nash equilibria are al-
ready known [Foo et al. 2005; De Vos and Vermeir 2004], although existing ap-
proaches do not consider strong Nash equilibria nor continuous strategies. Inter-
estingly, an implementation of Nash equilibria using mixed integer programming
was proposed in [Sandholm et al. 2005]. Finally note that finding mixed strategy
equilibria would require a rather different approach. For instance, rather than using
the graded nature of fuzzy equilibrium logic to allow for continuous strategies, we
may think of using graded propositions to encode probabilities for a finite number
of strategies.

4.3 Fuzzy abductive reasoning

In this section, we consider the problem of logical abduction, which has mainly
been studied in classical propositional logic [Eiter and Gottlob 1995] and logic
programming [Eiter et al. 1997]. In particular, given a propositional theory T over
the set of atoms At , a set of hypotheses (or explanations) H ⊆ At , a set of possible
manifestations M ⊆ At , with H ∩M = ∅, and a set of observed manifestations
O ⊆ M , the goal is to find a set S ⊆ H such that S ∪ T is consistent and S ∪
T |= O. In propositional logic, checking the existence of an abductive explanation
(existence), as well as deciding whether some h ∈ H belongs to some abductive
explanation (relevance) is ΣP2 complete, while deciding if some h ∈ H belongs to
all abductive explanations (necessity) is ΠP

2 complete. It is interesting to note that
these complexity results remain identical when abductive explanations are defined
as subset-minimal sets S that satisfy the two aforementioned conditions. Other
types of minimality requirements (e.g., subsets of minimal cardinality) give rise to
problems of slightly higher complexity [Eiter and Gottlob 1995]. When entailment
relations from logic programming are considered, problems that are complete for
complexity classes up to the fourth level of the polynomial hierarchy are obtained
[Eiter et al. 1997].

Now we consider a natural extension of abductive reasoning to Lukasiewicz logic
and, more generally, rational Pavelka logic. Let T be a set of formulas from rational
Pavelka logic over the set of atoms At . Let H ⊆ At be a set of possible hypotheses,
and let M ⊆ At be a set of possible manifestations, with H ∩M = ∅. In addition
a fuzzy subset O of M is available, where for each m in M , O(m) ∈ [0, 1] is the
intensity to which manifestation m was observed. The problem we consider is to
find a fuzzy subset S ⊆ H such that S ∪ T is consistent (i.e., has at least one
model) and S ∪ T |= O, where we identify a fuzzy set X of atoms with the set
of formulas {X(a) → a|a ∈ At , X(a) > 0} for notational convenience; recall that
W |= λ → a in Lukasiewicz logic iff W (a) ≥ λ. For instance, S ∪ T |= O means

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

136 · Steven Schockaert et al.

that for every model W of T such that W (e) ≥ S(e) for all e ∈ H, it holds that
W (m) ≥ O(m) for all m ∈M . Again we call S an abductive explanation for O, and
we can consider three important decision problems: checking the existence of an
abductive explanation (existence), deciding if there is an abductive explanation S
such that S(h) ≥ λ (λ-relevance), and deciding whether S(h) ≥ λ for all abductive
explanations (λ-necessity).

Proposition 8. The existence and λ-relevance problems in Lukasiewicz logic
and rational Pavelka logic are ΣP2 hard; the λ-necessity problem is ΠP

2 hard.

Although Lukasiewicz logic provides a natural setting for abductive reasoning, it
has not yet been widely considered in this context. However, in [Medina et al. 2001]
a procedural semantics is provided for abduction from multi-valued logic programs
(which may be based on Lukasiewicz logic among others). In addition, fuzzy and
possibilistic versions of the abductive model of Reggia et al. [1985] has already
been considered [Dubois and Prade 1995]. Finally, the problem of fuzzy abductive
reasoning has also received some attention from the point of view of approximate
reasoning [Yamada and Mukaidono 1995; Mellouli and Bouchon-Meunier 2003]. In
our setting, a theory T encodes how the input and output variables of a continuous
system are related to each other, and the problem of abduction consists of finding
possible values of the unknown input parameters, given the values of the observed
output parameters.

We now construct a fuzzy equilibrium theory Θ = Θ1∪Θ2∪Θ3 to find abductive
explanations. The set Θ1 contains the “generate” part of the program, i.e., Θ1 is
used to guess an abductive explanation S for O. To test whether the fuzzy set S
effectively is an abductive explanation, two conditions need to be considered which
are respectively encoded in Θ2 and in Θ3. Specifically, Θ2 is used to verify that
S ∪ T is consistent, and Θ3 is used to verify that S ∪ T |= O.

4.3.1 Guessing an abductive explanation. The set Θ1 contains the following for-
mulas:

Θ1 ={se ⊕l ∼se|e ∈ H} (58)
∪ {ce ← se|e ∈ H} (59)
∪ {ve ← se|e ∈ H} (60)

Intuitively (58) guesses an abductive explanation S, where se represents the value
of S(e) for e ∈ H. It is not hard to see that any fuzzy N5 model of Θ will satisfy
V (h, se) = V (t, se) = [λe, λe] for some λe ∈ [0, 1] and e ∈ H. The atoms ce and ve in
(59) and (60) intuitively correspond to two copies of atom e, which will respectively
be used to test whether S is consistent with T and whether S ∪ T |= O.

4.3.2 Testing consistency. A set of formulas Θ2 will be used to ensure that only
fuzzy sets S which are consistent with T are considered as abductive explanations.
Here and below, we assume that T does not contain any implications and that T
is in negation-normal form. This can be accomplished by virtue of the following
properties, which are valid in Lukasiewicz logic and rational Pavelka logic

[a→l b]W = [∼a⊕l b]W (61)
[∼(a⊗l b)]W = [(∼a)⊕l (∼b)]W (62)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 137

[∼(a⊕l b)]W = [(∼a)⊗l (∼b)]W (63)

for any interpretation W . Furthermore, the requirements on T can easily be en-
forced in polynomial time, hence they do not pose any theoretical restrictions. For
a formula α in Lukasiewicz logic, we write ξ(α) to denote the corresponding fuzzy
equilibrium logic formula, where all occurrences of atom a are replaced by ca, and
occurrences of negation in α are interpreted as strong negation (∼) in ξ(α). The
set Θ2 is then defined by

Θ2 = {ξ(α)|α ∈ T}

Lemma 1. Let the fuzzy set S in H be given by S(e) = λe for all e ∈ H. It
holds that S is consistent with T iff Θ1 ∪ Θ2 has a fuzzy N5 model V such that
V (h, se) = V (t, se) = [λe, λe] for all e ∈ H.

4.3.3 Testing entailment. Finally, a set of formulas Θ3 will be used to verify
that only fuzzy sets S for which S ∪ T |= O are considered. For α ∈ T , we write
ξ′′(α) for the formula which is obtained from α by replacing all occurrences of
positive literals a by va and all occurrences of negative literals ¬a by va. Let us
write T ′ = {ξ′′(α)|α ∈ T}. Each model of T corresponds to a fuzzy N5 model of
T ′ and vice versa, as made explicit in the following lemma.

Lemma 2. Let V be a fuzzy N5 model of T ′ such that V −(h, va)+V −(h, va) ≤ 1
for all a ∈ At. The [0, 1]-valued interpretation W defined by W (a) = V −(h, va) for
all a ∈ At is a model of T . Conversely if W is a model of T , the fuzzy N5 valuation
V defined by V (h, va) = V (t, va) = W (a) and V (h, va) = V (t, va) = 1−W (a) is a
fuzzy N5 model of T ′.

We now define the set Θ3 as follows

Θ3 ={ξ′′(α)|α ∈ T} (64)

∪ {w ←
∧
a∈M

(va ≥ O(a))} (65)

∪ {w ← va ⊗l va|a ∈ At} (66)
∪ {w ← (w > 0)} (67)
∪ {va ← w|a ∈ At} (68)
∪ {va ← w|a ∈ At} (69)
∪ {0← notw} (70)

Intuitively, by adding the formulas (64), a model W of S∪T is guessed. To check
whether the entailment S∪T |= O is valid, we need to verify whether W (a) ≥ O(a)
in any such model W . To implement this intuition, we again use the saturation
method. In particular, an atom w is used which is considered to be true (to degree
1) whenever the model that was guessed does not constitute a valid countermodel
for S ∪ T |= O. In particular, (65) ensures that w is true to degree 1 whenever the
model that was guessed is actually a model of O as well. In addition, (66)–(67)
ensure that w is true to degree 1 when the condition from Lemma 2 is not satisfied,
i.e., when the guess that was made about the atoms va and va does not actually

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

138 · Steven Schockaert et al.

correspond to a model W of T . Finally, (68)–(70) implement the actual saturation,
ensuring that only valuations V in which V −(h,w) = 1, corresponding to the
scenario where no countermodel for S ∪ T |= O exists, can be fuzzy equilibrium
models. We thus arrive at the following result.

Proposition 9. Let H, O, T , and M be defined as before. Let the fuzzy set
S in H be defined by S(e) = λe for all e ∈ H. It holds that S is an abductive
explanation for O w.r.t. T iff Θ = Θ1 ∪ Θ2 ∪ Θ3 has a fuzzy equilibrium model V
such that V (h, se) = V (t, se) = [λe, λe] for all e ∈ H.

5. COMPLEXITY AND IMPLEMENTATION

Throughout this section, we assume that the set of connectives in F is limited to
∼, not , ⊗l, ⊕l, →l, ⊗m, ⊕m and →kd, i.e., the connectives that can be expressed
in Lukasiewicz logic (but considering the two types of negation).

5.1 Hardness

We consider three main reasoning tasks: (i) verifying whether a set of fuzzy equi-
librium formulas has at least one fuzzy equilibrium model, (ii) verifying whether
the truth value of a particular atom is within certain bounds in at least one of these
models, and (iii) verifying whether the truth value of a particular atom is within
certain bounds in all of these models. These three tasks are the counterparts of
the problems known as existence, set-membership and set-entailment in disjunctive
logic programming, which are respectively complete for the complexity classes ΣP2 ,
ΣP2 and ΠP

2 [Eiter and Gottlob 1993]. Recall that ΣP2 is the set of problems that
can be solved in polynomial time on a non-deterministic Turing machine with an
NP oracle, i.e., ΣP2 = NPNP, while ΠP

2 is the set of problems whose complement
is in ΣP2 . In the following, we will show that moving from equilibrium logic (or
disjunctive logic programming) to fuzzy equilibrium logic does not increase the
computational complexity for the three aforementioned problems. First, however,
we establish the following hardness results.

Proposition 10. Let Θ be a set of fuzzy equilibrium logic formulas. The prob-
lem of deciding whether Θ has a fuzzy equilibrium model is ΣP2 -hard.

Proposition 11. Let Θ be a set of fuzzy equilibrium logic formulas, and let
µ, λ ∈ [0, 1] ∩ Q with µ ≤ λ. The problem of deciding whether V (t, a) ⊆ [µ, λ], for
a ∈ At, in at least one fuzzy equilibrium model V of Θ is ΣP2 -hard.

Proposition 12. Let Θ be a set of fuzzy equilibrium logic formulas, and let
µ, λ ∈ [0, 1] ∩ Q with µ ≤ λ. If [µ, λ] 6= [0, 1], the problem of deciding whether
V (t, a) ⊆ [µ, λ], for a ∈ At, in all fuzzy equilibrium models V of Θ is ΠP

2 -hard.

Proving the corresponding membership results is complicated by the fact that,
unlike in approaches based on classical logic, not all fuzzy N5 models can be guessed
in polynomial time on a non-deterministic Turing machine. In some model V ,
for instance, it might be the case that V (h, a) = [pq , 1] with p and q co-prime
integers such that the binary representation of q requires a number of bits which is
exponential in the size of the input (or worse). Indeed, even a simple theory such
as {a←l not b, b←l not a} already has an infinite number of answer sets. However,
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 139

as explained in the following, it is possible to restrict attention to models that can
be guessed in polynomial time.

5.2 Structure of the solution space

Next, we analyze the geometrical structure underlying the fuzzy equilibrium models
of a given set of formulas Θ, with the aim of gaining further insight into the nature
of fuzzy equilibrium logic and of proving the membership results corresponding to
the decision problems that were considered in Propositions 10–12. This approach
is in line with existing work on (the complexity of) reasoning in Lukasiewicz logic
[Mundici 1987; Aguzzoli and Ciabattoni 2000], which is often based on geometrical
arguments.

5.2.1 Characterizing fuzzy N5 models using mixed integer programs. Let Θ be
a set of formulas in fuzzy equilibrium logic. Under the given restrictions on the
connectives in F , it is straightforward to construct a theory PΘ in rational Pavelka
logic, such that there is a one-on-one correspondence between the fuzzy N5 models
of Θ and the models of PΘ. Specifically, for each atom a appearing in Θ, we may
consider the atoms a−h , a+

h , a−t and a+
t , which intuitively correspond to the values

V −(h, a), V +(h, a), V −(t, a) and V +(t, a). Let us define A−h = {a−h |a ∈ At} and
similar for A+

h , A−t and A+
t . For each atom a, the set PΘ should contain the formulas

a−h → a−t , a−t → a+
t and a+

t → a+
h , which encode the requirement that V −(h, a) ≤

V −(t, a) ≤ V +(t, a) ≤ V +(h, a). This already ensures that for every model M
of PΘ, we may define a fuzzy N5 valuation V as V (h, a) = [M(a−h),M(a+

h)] and
V (t, a) = [M(a−t),M(a+

t)]. To restrict attention to models of PΘ that correspond
to fuzzy N5 models of Θ, by recursively applying the definitions (17)–(23) to each
formula α from Θ, it is straightforward to find a formula fα in rational Pavelka logic
such that whenever V is a fuzzy N5 model of Θ, the interpretation M defined by
M(a−h) = V −(h, a), M(a+

h) = V +(h, a), M(a−t) = V −(t, a) and M(a+
t) = V +(t, a)

is a model of fα and vice versa. This procedure is illustrated in the next example.

Example 12. Let Θ = {a⊕ b, c←l not a}. A fuzzy N5 valuation V is a model
of α = a ⊕ b iff V −(h, a) ⊕ V −(h, b) = 1, and a model of β = c ←l not a iff
((1− V −(t, a))→ V −(h, c))⊗m ((1− V −(t, a))→ V −(t, c)) = 1. We thus obtain

fα = a−h ⊕ b
−
h fβ = (¬a−t → c−h)⊗m (¬a−t → c−t)

and

PΘ = {a−h → a−t , a
−
t → a+

t , a
+
t → a+

h , b
−
h → b−t , b

−
t → b+t , b

+
t → b+h ,

c−h → c−t , c
−
t → c+t , c

+
t → c+h , fα, fβ}

Recall that a linear program is a set of expressions of the form λ1x1 + ...+λnxn ≤
λ0, where λ0, ..., λn ∈ Q and x1, ..., xn are variables from a given set X, together
with a linear objective function of the form ν0+ν1x1+...+νnxn to be maximized (or
minimized). We will call a mapping σ from X to R a solution of the linear program
Γ if it satisfies all inequalities (in the sense that e.g., λ1σ(x1) + ...+λnσ(xn) ≤ λ0);
σ will be called an optimal solution if it is a solution that maximizes the objective
function. A mixed integer program is a linear program, together with additional
constraints of the form xi ∈ N, i.e., certain variables may be required to take an

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

140 · Steven Schockaert et al.

integer value in any solution. The special case where all variables are constrained
to be integers is often called integer programming.

Using a polynomial procedure explained in [Hähnle 1994], it is possible to con-
struct a mixed integer program ΓΘ over a set of variables X ⊇ A−h ∪A

+
h ∪A

−
t ∪A+

t ,
such that for every solution σ of ΓΘ, the restriction of σ to the variables A−h ∪A

+
h ∪

A−t ∪ A+
t is a model of PΘ, and conversely, every model of PΘ can be extended to

a solution of ΓΘ. The number of variables n = |X| is polynomial in the size of PΘ,
and thus also polynomial in the size of Θ.

5.2.2 Geometrical characterization of fuzzy equilibrium models. Recall that a
polyhedron is the intersection of a finite number of half-spaces. A facet of a poly-
hedron is the intersection of the polyhedron with one of its bounding hyperplanes;
a face of a polyhedron is defined recursively as either the polyhedron itself or one
of the faces of its facets. A face of dimension 0 is also called a vertex. Each so-
lution of ΓΘ can be identified with a point of the n-dimensional Euclidean space,
by assigning each of the variables from X to one of the n dimensions. For the ease
of presentation, we will identify points from Rn with the X → R mappings they
represent. Accordingly, we will write p(x) to denote the value of x in the mapping
corresponding to point p.

Geometrically, the solutions of ΓΘ correspond to the union of a finite number of
polyhedra, each of which is bounded by the unit hypercube [0, 1]n. Due to a result
by Aguzzoli [2000], we know that the coordinates of the vertices of these polyhedra
are rational numbers of the form q1

q2
such that the binary representation of q1 and

q2 is polynomial in the number of variable occurrences in PΘ (i.e., the value of q2

is at most exponential).
To characterize which points in the solution space of ΓΘ correspond to h-minimal

models, let us extend the ordening 4 from Definition 3 to points p and q from [0, 1]n,
by defining p 4 q if for all a ∈ At it holds that p(a−t) = q(a−t), p(a+

t) = q(a+
t),

p(a−h) ≤ q(a−h) and p(a+
h) ≥ q(a+

h). Note that when Vp and Vq are the fuzzy N5
valuations corresponding to p and q, it holds that p 4 q iff Vp 4 Vq.

Lemma 3. Let H ⊆ [0, 1]n be a polyhedron, let M ⊆ H be the points that are
minimal w.r.t. 4. Furthermore let F be a face of H and let p be an interior point
of F . If p ∈M then it holds that F ⊆M .

From this lemma, it follows that the set of 4-minimal points of a polyhedron
corresponds to the union of one or more of its faces. Let us denote by D(H) the
set of points that are dominated by a polyhedron H, i.e.

p ∈ D(H)⇔ ∃q ∈ H . q 4 p

Recall that the convex hull cvx(V) of a set of points V = {p1, ..., pn} is given by
cvx(V) = {

∑
i λipi |λi ≥ 0,

∑
i λi = 1}; it is the smallest convex set that contains

all the points in V . As the following lemma expresses, the set D(H) is itself a
polyhedron, with vertices that have a representation which is polynomial in the
size of Θ.

Lemma 4. Let H be a polyhedron and let V be the set of vertices of H. Let V ∗

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 141

be the set of all points p such that for some q ∈ V , it holds that

p(x) ∈

{q(x), 1} if x ∈ A−h
{q(x), 0} if x ∈ A+

h

{q(x)} if x ∈ A−t ∪A+
t

{0, 1} otherwise

(71)

It holds that D(H) ∩ [0, 1]n is equal to the convex hull of V ∗.

In general, the set M of h-minimal fuzzy N5 models of Θ corresponds to a finite
union of sets of the form

⋂
j Gj \

⋃
iD(Hi) where each Gj is the face of a certain

polyhedron, and each Hi is one of the polyhedra in the solution space of ΓΘ. Indeed,
each point which is 4-minimal among the points of each of the polyhedra in which
it occurs is either h-minimal, or dominated by a point from another polyhedron.
The fuzzy equilibrium models of Θ are then geometrically characterized as the
intersection of M with the polyhedron E defined by

p ∈ E ⇔ ∀a ∈ At . p(a−h) = p(a−t) ∧ p(a+
h) = p(a+

t)

Note that M ∩E (or even M) is not a topologically closed set in general. However,
its topological closure cl(M∩E) corresponds to the finite union of polyhedra, whose
vertices have coordinates with a polynomial binary representation. This means that
the centre-of-gravity of the vertices of these polyhedra, which belong to M ∩E and
thus correspond to fuzzy equilibrium models, are also polynomially representable.

5.3 Membership

From the discussion in Section 5.2, it follows that if Θ has at least one fuzzy
equilibrium model, we can guess a fuzzy equilibrium model V in polynomial time
on a non-deterministic machine. Moreover, we can verify that V is indeed a fuzzy
equilibrium model as follows. First, note that we can verify in polynomial time
that V is a fuzzy N5 model of Θ, and that V (t, a) = V (h, a) for all a in At . Next,
to verify that V is h-minimal, let ΓVΘ be the linear relations that are obtained from
ΓΘ by instantiating all variables of the form a−t and a+

t by respectively V −(t, a)
and V +(t, a). From the theory of mixed integer programming, we know that a
point p minimizing

∑
a p(a

−
h) −

∑
a p(a

+
h) can be found in NP [Schrijver 1998].

Using the fact that p(a−h) ≤ V −(t, a) and p(a+
h) ≥ V +(t, a), it is clear that V

is h-minimal iff for this particular point p it holds that
∑
a p(a

−
h) −

∑
a p(a

+
h) =∑

a V
−(t, a)−

∑
a V

+(t, a). Hence, we have established the following result.

Proposition 13. Let Θ be a set of fuzzy equilibrium logic formulas. The prob-
lem of deciding whether Θ has a fuzzy equilibrium model is in ΣP2 .

We can also prove the following membership results.

Proposition 14. Let Θ be a set of fuzzy equilibrium logic formulas. The prob-
lem of deciding whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ At, in at least
one fuzzy equilibrium model V of Θ is in ΣP2 .

Proposition 15. Let Θ be a set of fuzzy equilibrium logic formulas. The prob-
lem of deciding whether V (t, a) ⊆ [µ, λ], for 0 ≤ µ ≤ λ ≤ 1 and a ∈ At, in all fuzzy
equilibrium models V of Θ is in ΠP

2 .
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

142 · Steven Schockaert et al.

Hence, the main reasoning tasks are in the same complexity class as their counter-
parts in (disjunctive) answer set programming.

Another problem that might be of interest is determining a fuzzy equilibrium
model of a given set Θ which minimizes the value V −(h, a). However, such a fuzzy
equilibrium model might not exist, which is related to the observation that the
set M ∩ E, defined above, is not topologically closed. For instance, V is a fuzzy
equilibrium model of the following set of formulas iff V (h, a) = V (t, a) = [λ, λ] for
any λ > 0, and V (h, b) = V (t, b) = [1, 1]:

Θ = {a⊕l ∼a, b←l a, b←l b⊕l b, 0←l not b}

5.4 Implementation

We show in this section how bilevel mixed integer programming (biMIP; [Moore
and Bard 1990]) can be used to find a fuzzy equilibrium model of a set of formulas
Θ, if one exists. Bilevel mixed integer programming is a form of mathematical
programming involving two agents, called the leader and the follower. Let X l

and Xf be two disjoint sets of variables, and let Γ be a set of linear inequalities
over the variables in X l ∪Xf . Furthermore, let F (X l, Xf) and f(X l, Xf) be two
linear expressions in these variables. Intuitively, the leader attempts to minimize
F (X l, Xf) while the follower attempts to minimize f(X l, Xf). To accomplish this,
the leader can only control the variables in X l whereas the follower controls the
variables in Xf . Furthermore, the leader first has to fix the values of the variables
in X l, and the follower subsequently fixes the values of the variables in Xf ; note
that some variables are designated to be integers and others to be real numbers (as
in classical MIP). The leader must thus choose the particular solution of X l which
minimizes F (X l, Xf), knowing only that the variables Xf will be assigned a value
such that f(X l, Xf) is minimized.

Once the leader has fixed a partial solution σl, mapping the variables X l to their
values, finding a partial solution σf (which maps the variables Xf to their values),
is simply a matter of solving a mixed integer program, called the follower’s program:

Φ(σl) = argmin
σf

f(σl(X l), σf (Xf)) with σl ∪ σf a solution of Γ

where the set Φ(σl) contains all solutions σf for which the linear expression f(X l, Xf)
is minimized; note that we write σl ∪ σf for the solution of Γ defined by σl and
σf , and we write f(σl(X l), σf (Xf)) for the value of f(X l, Xf) under that solution.
The actual optimization problem, i.e., the leader’s program, is then given by

argmin
σl

F (σl(X l), σf (Xf)) with σf ∈ Φ(σl)

When Φ(σl) contains more than one solution, different variants may be conceived,
including an optimistic variant (in which the solution minimizing F (σl(X l), σf (Xf))
is chosen among those in Φ(σl)) and a pessimistic variant (in which the solution
maximizing F (σl(X l), σf (Xf)) is chosen). While the issue of developing scalable
solvers for biMIP is still an active area of research (see e.g., [Saharidis and Ierapetri-
tou 2009] for a recent contribution), some prototypes are nonetheless available7.

7One example is the YALMIP toolbox for Matlab, available from http://users.isy.liu.se/

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 143

Now we turn to the problem of finding a fuzzy equilibrium model of a set of
formulas Θ. Let ΓΘ be the corresponding set of linear inequalities whose solutions
correspond to the fuzzy N5 models of Θ, as before. Let At = {a−t |a ∈ At} ∪
{a+
t |a ∈ At} and Ah = {a−h |a ∈ At} ∪ {a+

h |a ∈ At}. The fuzzy equilibrium
models of Θ correspond to those solutions σ of ΓΘ in which σ(a−h) = σ(a−t) and
σ(a−t) = σ(a+

t) for all a ∈ At , such that there is no other solution σ′ of ΓΓ for
which σ′(a−t) = σ(a−t), σ′(a+

t) = σ(a+
t), σ′(a−h) ≤ σ(a−h) and σ′(a+

h) ≥ σ(a+
h) for

all a in At , and moreover either (i) σ′(a−h) < σ(a−t) and σ′(a+
h) ≥ σ(a+

t), or (ii)
σ′(a−h) ≤ σ(a−t) and σ′(a+

h) > σ(a+
t) for some a in At . Hence, fuzzy equilibrium

models are found by choosing the values of a−t and a+
t , for each atom a, such

that
∑
a∈At(a

−
t − a−h) + (a+

h − a
+
t) is minimized, knowing that the values of the

remaining variables are subsequently chosen such that
∑
a∈At a

−
h − a

+
h is minimal.

This corresponds to a bilevel MIP program, where the leader’s program is

argmin
σt

∑
a∈At

(σt(a−t)− σh(a−h)) + (σh(a+
h)− σt(a+

t)) with σh ∈ Φ(σt)

and the follower’s program is

Φ(σt) = argmin
σh

∑
a∈At

σh(a−h)− σh(a+
h) with σt ∪ σh a solution of ΓΘ

and where σt defines the value of the variables in At and σh defines the values of
the remaining variables. Note that it does not matter which variant of biMIP is
considered, as Φ(σt) will be a singleton whenever σt defines a fuzzy equilibrium
model, in which case σh is the unique solution satisfying

∑
a∈At σ

h(a−h)−σh(a+
h) =∑

a∈At σ
t(a−t)− σt(a+

t).

Proposition 16. Let Θ be a set of fuzzy equilibrium logic formulas, and let Λ
be the corresponding bilevel program, as defined above. If σ is a solution of Λ such
that σ(a−h) = σ(a−t) and σ(a+

h) = σ(a+
t) for all a ∈ At, it holds that the fuzzy N5

valuation V defined by V (h, a) = [σ(a−h), σ(a+
h)] and V (t, a) = [σ(a−t), σ(a+

t)] is a
fuzzy equilibrium model of Θ. Moreover, if σ(a−h) 6= σ(a−t) or σ(a+

h) 6= σ(a+
t) for

some a ∈ At, it holds that Θ has no fuzzy equilibrium models.

Finally, note that finding a fuzzy equilibrium model V for which V (h, a) ∈ [µ, λ] can
easily be accomplished by adding two formulas to Θ and applying the procedure
from Proposition 16; see the proof of Proposition 14 for more details.

Although the syntactic restrictions that we assumed are sufficient for many ap-
plications, rules of the form c← (a ≥ b) cannot be simulated using the Lukasiewicz
logic connectives, as we discussed already in Section 4.1, and hence they are not
readily supported by the proposed implementation method. On the other hand,
it is not hard to see that using rules of the form c ← (a ≥ b) does not increase
the computational complexity. Indeed, applying the analysis of Section 5.2 in the
presence of such rules yields a set of constraints ΓΘ which may contain strict in-
equalities as well as weak inequalities. This has no influence, however, on the proof
of the membership results. Although many solvers cannot cope with strict inequal-
ities directly, they can be handled indirectly, e.g., by replacing a linear constraint

johanl/yalmip/

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

144 · Steven Schockaert et al.

such as a > b by a ≥ b + ε for a sufficiently small ε > 0, or by using solvers
that can cope with disequalities. In this way, a reasoner for fuzzy equilibrium logic
based on Gödel logic may also be implemented. Regarding the product t-norm, re-
call that reasoning in product logic can be reduced to Mixed Integer Quadratically
Constrained Programming (MIQCP) [Bobillo and Straccia 2007]. Hence, we might
implement a reasoner for fuzzy equilibrium logic based on product logic using the
bilevel version of MIQCP.

6. RELATED WORK

A variety of approaches to fuzzy answer set programming have been proposed in
recent years, which mainly differ in terms of the types of connectives they allow, the
way in which they handle partial satisfaction of rules, and the truth lattices that are
used [Damásio et al. 2004; Damásio and Pereira 2001; Damasio and Pereira 2003;
Janssen et al. 2009; Lukasiewicz and Straccia 2007; Straccia 2006; Van Nieuwen-
borgh et al. 2007]. Most approaches generalize either the fixpoint definition or the
minimal model definition of answer sets (stable models), although [Van Nieuwen-
borgh et al. 2007] generalizes a definition in terms of unfounded sets. Regarding
expressive power, typically only rules with literals in the head are considered. One
exception is [Lukasiewicz and Straccia 2007] which allows disjunctions of literals in
the head of a rule to define a hybridization of FASP with fuzzy description logics. In
a quite different context, multi-valued ASP with disjunctions in the head are used in
[Sakama and Inoue 1995], as a vehicle to deal with inconsistencies in classical ASP.
However, none of these existing approaches can deal with the syntactic flexibility
that is provided by (fuzzy) equilibrium logic (e.g., nested rules, negation-as-failure
in front of arbitrary formulas, etc.).

The FASP paradigm essentially allows the programmer to encode problems in
continuous domains. Hence, fuzzy equilibrium logic and FASP are not about mod-
eling uncertainty, nor about commonsense reasoning. Other extensions of logic
programming have been proposed, with the purpose of modeling uncertain rules,
based on probability theory [Dekhtyar and Subrahmanian 1997; Lukasiewicz 1998],
possibility theory [Nicolas et al. 2006; Bauters et al. 2010] and belief functions [Wan
2009]. Although these approaches are conceptually very different from FASP, due
to its capability of modeling continuous phenomena, uncertainty features can often
be encoded in FASP [Damásio and Pereira 2000]. In a broader perspective, fuzzy
rules have mainly be studied in the areas of fuzzy control and commonsense reason-
ing [Mamdani and Assilian 1975; Tanaka and Sugeno 1992; Dubois and Prade 1996;
Perfilieva et al. 2011]. In this context, fuzzy rules are often called (fuzzy) if-then
rules, and they are used for interpolative reasoning, which has proven a fruitful
way for implementing controllers of non-linear systems. Despite their reliance on
fuzzy set theory, fuzzy if-then rules thus have little in common with FASP, a crucial
difference being that reasoning with fuzzy if-then rules is based on manipulating
fuzzy sets of more or less plausible values of variables. However, in [Bauters et al.
2010] it is shown how reasoning with fuzzy if-then rules can be approximated in
a possibilistic extension of FASP. Furthermore, some authors have looked at for-
malisms that combine features of logic programming with inference based on fuzzy
if-then rules [Baldwin et al. 1995; Cao 2000].
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 145

In [Janssen et al. 2008], an implementation of a restricted variant of FASP is
presented, in which the heads of rules are constrained to be atoms, and the bodies
to be conjunctions of literals. With the exception of [Janssen et al. 2008], to the
best of our knowledge, our paper presents the first implementation of a variant of
fuzzy answer set programming with an infinite number of truth values. When only
a finite number of truth values is considered, the problem of finding answer sets of
FASP programs can be reduced to the setting of classical ASP. In [Van Nieuwen-
borgh et al. 2007], for instance, an implementation of finite-valued FASP is proposed
which is based on DLVHEX. When restricted to finite domains, however, FASP is
no longer suitable to model phenomena that are inherently continuous; in such a
case, FASP programs may still be useful as a compact way of encoding particular
kinds of classical ASP programs. Having a finite number of degrees is also enough
to deal with degrees of belief that are assigned by an expert. Such degrees occur
for instance in possibilistic answer set programming, which is closely related to
fuzzy answer set programming under the Gödel semantics [Bauters et al. 2010]. In
the special case where the only connective appearing in the bodies of rules is some
fixed left-continuous t-norm, FASP programs are similar in spirit to systems of
fuzzy relation equations, for which various solution strategies exist [Sanchez 1976;
Perfilieva 2004]. Converting a FASP program to a corresponding system of fuzzy
relation equations, however, seems only feasible when the dependency graph of the
program contains no positive loops (see [Janssen et al. 2008] for more details). To
our knowledge, our paper has established the first link between answer set pro-
gramming (or equilibrium logic) and bilevel programming. Interestingly, however,
bilevel programming can be seen as a special case of mathematical programming
with equilibrium constraints [Colson et al. 2005], the latter being a version of mathe-
matical programming in which variational inequalities appear as constraints. While
mathematical programming with equilibrium constraints is not directly related to
logic programming, it is often used to find game theoretic equilibria [Hobbs et al.
2000; Pang and Fukushima 2005].

Another line of related work is the study of formal multi-valued and fuzzy log-
ics. Most work in this area extends classical propositional or predicate logic [Hájek
2001]. One exception is [Takeuti and Titani 1984], where a fuzzy version of intu-
itionistic logic is proposed, which corresponds, in fact, to the infinite-valued first-
order Gödel logic [Baaz and Zach 2000]. It is interesting to note that the fuzzy
versions of here-and-there logic and Nelson logic that are proposed in this paper
are fuzzy versions of logics that are already multi-valued. However, the intuitive
meaning of truth degrees in fuzzy logics and in (extensions) of intermediate logics
is entirely different. Indeed, while here-and-there logic and Nelson logic use differ-
ent truth degrees to encode different attitudes towards the notion of truth (e.g.,
constructively true vs. not constructively false), fuzzy logics use partial truth to
model gradual phenomena.

Finally, equilibrium logic has also been extended in other ways. In [Pearce and
Valverde 2004; 2008], for instance, a first-order version of equilibrium logic is devel-
oped, while in [Cabalar et al. 2006] a variant of equilibrium logic is introduced to
characterize and generalize the well-founded [Van Gelder et al. 1991] and p-stable
semantics [Przymusinski 1991] of logic programs. As shown in [Ferraris 2005], it is

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

146 · Steven Schockaert et al.

possible to characterize the equilibrium logic semantics using a reduct operation on
propositional theories, which generalizes the Gelfond-Lifschitz reduct. This brings
the formulation of equilibrium logic closer to how logic programming semantics
are usually defined. It is shown in [Truszczynski 2010] how adapting the afore-
mentioned reduct formulation of equilibrium logic leads to a generalization of the
FLP semantics (which deals with recursive aggregates [Faber et al. 2004]) and the
supported-model semantics [Marek and Subrahmanian 1992] of logic programs.

7. CONCLUDING REMARKS

We have proposed fuzzy equilibrium logic as a proper generalization of both equi-
librium logic in the sense of Pearce and fuzzy answer set programming. The overall
computational complexity of the main reasoning tasks was shown to be at the
second level of the polynomial hierarchy, which is the same as for Pearce equilib-
rium logic and for disjunctive ASP. This shows that adding fuzziness to answer set
programming does not, in general, imply an increase in the computational complex-
ity. For practical reasoning, we have proposed an implementation based on bilevel
mixed integer programming, which is more general and conceptually simpler than
existing implementations of fuzzy answer set programming.

From a theoretical point of view, the model-theoretic nature of the fuzzy equilib-
rium logic semantics provides a convenient vehicle to study the properties of fuzzy
answer set programming, and to gain further insight into its behavior (e.g., the
meaning of negation-as-failure in a fuzzy setting). In this paper, in addition to
establishing the first complexity results for FASP, we have also shown how fuzzy
equilibrium logic can be used to determine whether two FASP programs are strongly
equivalent.

From an application point of view, fuzzy equilibrium logic seems a suitable can-
didate for modeling many types of search problems in continuous spaces. This was
illustrated using two practical examples: finding strong Nash equilibria, and find-
ing abductive explanations from fuzzy logic theories. In this sense, the relationship
between fuzzy equilibrium logic and mathematical programming is analogous to
the relationship between answer set programming (or constraint satisfaction) and
the boolean SAT problem, where different choices for the fuzzy logic connectives
give rise to different variants of mathematical programming. Indeed, while there
is a long tradition in building efficient solvers for a variety of mathematical pro-
gramming techniques, many real-world problems are difficult to directly encode as
mathematical optimization problems. Encoding these problems in fuzzy equilib-
rium logic may provide a more intuitive alternative, while still offering the power
of mathematical programming for finding the required solutions. Finally note that
the intuitive appeal of fuzzy equilibrium logic, for applications, may be further en-
hanced by introducing new constructs, on top of the basic syntax, to capture often
recurring aspects of problem specification. A similar situation presents itself in
classical ASP, where e.g., the introduction of aggregates has allowed a considerably
simpler specification of many problems.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 147

Acknowledgments

Steven Schockaert was funded as a postdoctoral fellow of the Research Foundation
– Flanders (FWO), and Jeroen Janssen was funded by a joint Research Foundation
– Flanders project.

APPENDIX: PROOFS

Proof of Proposition 2

The proof is provided in the online appendix.

Proof of Corollary 1

The proof is provided in the online appendix.

Proof of Proposition 3

The proof is provided in the online appendix.

Proof of Corollary 2

The proof is provided in the online appendix.

Proof of Proposition 4

The proof is provided in the online appendix.

Proof of Proposition 5

The proof is provided in the online appendix.

Proof of Proposition 6

Clearly, if the fuzzy N5 models of Θ1 and Θ2 coincide, it also holds that the fuzzy
equilibrium models of Θ1 ∪ Ψ and Θ2 ∪ Ψ coincide, for all Ψ. Conversely, assume
that Θ1 has a fuzzy N5 model V which is not a model of Θ2. We show that there
exists some Ψ such that the fuzzy equilibrium models of Θ1 ∪Ψ and Θ2 ∪Ψ do not
coincide.

Let us define the fuzzy N5 valuation V ′ as V ′(h, a) = V ′(t, a) = V (t, a) for every
atom a. Clearly, the fact that V is a model of Θ1 implies that V ′ is also a model of
Θ1, which follows from the observation that for any fuzzy equilibrium logic formula
α, V −(h, α) ≤ V −(t, α).

(1) First assume that V ′ is not a fuzzy N5 model of Θ2. In that case, we may define
Ψ = {a←l V

′−(t, a)|a ∈ At} ∪ {∼a←l 1− V ′+(t, a)|a ∈ At}. Clearly, V ′ is an
h-minimal model of Ψ, and thus a fuzzy equilibrium model of Θ1 ∪Ψ, whereas
V ′ is by assumption not a model of Θ2 and a fortiori not a fuzzy equilibrium
model of Θ2 ∪Ψ.

(2) Now assume that V ′ is a fuzzy N5 model of Θ2, which entails that V 6= V ′.
Let us use α as an abbreviation of the following formula:∨

a∈At

(a⊗l (1− V −(h, a))) ∨
∨
a∈At

(∼a⊗l V +(h, a))

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

148 · Steven Schockaert et al.

Note that for any valuation V ′′, it holds that V ′′(h, α) > 0 iff V ′′−(h, a) >
V −(h, a) or V ′′+(h, a) < V +(h, a) for some a ∈ At . Now let us define the
program Ψ as follows:

Ψ ={a←l (a⊕l α) ∧ V −(t, a) | a ∈ At} (72)

∪ {∼a←l (∼a⊕l α) ∧ V −(t,∼a) | a ∈ At} (73)

∪ {a←l V
−(h, a) | a ∈ At} (74)

∪ {∼a←l V
−(h,∼a) | a ∈ At} (75)

By simple inspection, we can see that V ′ is a model of Ψ and thus, using
the assumption that V ′ is a model of Θ2, we find that V ′ is also a model of
Θ2 ∪ Ψ. We show that V ′ is moreover a fuzzy equilibrium model of Θ2 ∪ Ψ.
Suppose that V ′′ was also a fuzzy N5 model with V ′′ 4 V ′ and V ′′ 6= V ′.
Since V is not a model of Θ2 while V ′′ is a model, it must be the case that
V 6= V ′′, which together with the fact that V ′′ is a model of (74)–(75) means
that for some a ∈ At either V −(h, a) < V ′′−(h, a) or V +(h, a) > V ′′+(h, a).
In other words, we have that V ′′−(h, α) > 0. However, because V ′′ is a model
of (72)–(73), this would mean that V ′′−(h, a) ≥ V −(t, a) = V ′−(h, a) and
V ′′−(h,∼a) ≥ V −(t,∼a) = V ′−(h,∼a) for all a. Hence, we would have V ′ 4
V ′′, contradicting the assumption that V ′′ 4 V ′ and V ′′ 6= V ′. Hence V ′ is a
fuzzy equilibrium model of Θ2 ∪Ψ.
To complete the proof, it suffices to show that V ′ cannot be a fuzzy equilibrium
model of Θ1 ∪ Ψ. This follows immediately from the fact that V 4 V ′ and
V 6= V ′, together with the observation that V is a model of Θ1∪Ψ (V is a model
of Θ1 by assumption; the fact that V is a model of Ψ can straightforwardly be
checked).

Proof of Proposition 7

The proof is provided in the online appendix.

Proof of Proposition 8

The proof is provided in the online appendix.

Proof of Lemma 1

The proof is provided in the online appendix.

Proof of Lemma 2

The proof is entirely analogously to the proof of Lemma 1.

Proof of Proposition 9

The proof is provided in the online appendix.

Proof of Proposition 10

We show ΣP2 -hardness by reduction from the existence problem of disjunctive logic
programming, which is ΣP2 -complete [Eiter and Gottlob 1993]. let P1 be an arbi-
trary disjunctive logic program. From Corollaries 1 and 2 we know that there exists
a fuzzy equilibrium theory P2 such that there is a one-to-one correspondence of the
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 149

equilibrium models (i.e., the consistent answer sets) of P1 and the fuzzy equilibrium
models of P2. Hence P1 has a consistent answer set iff P2 has a fuzzy equilibrium
model.

Proof of Proposition 11

Let Θ be any set of fuzzy equilibrium logic formulas, and let a be an atom which
does not occur in Θ. Now consider the set Θ′ which contains all formulas from Θ,
together with:

µ→l a (1− λ)→l ∼a

It is easy to see that any valuation V is a model of these latter formulas iff V (h, a) ⊆
[µ, λ]. Now let V be a fuzzy equilibrium model of Θ. Since a does not occur in Θ, it
holds that V (w, a) = [0, 1]. Clearly, the mapping V ′ defined by V ′(h, a) = V ′(t, a) =
[µ, λ] and V ′(h, b) = V ′(t, b) = V (h, b) for all b 6= a is an equilibrium model of Θ′.
Conversely, if V ′ is an equilibrium model of Θ′, then V ′(w, a) = [µ, λ] and the
mapping V defined by V (h, a) = V (t, a) = [0, 1] and V (h, b) = V (t, b) = V ′(h, b)
for b 6= a is a fuzzy equilibrium model of Θ. Hence, we have that Θ has a fuzzy
equilibrium model iff Θ′ has a fuzzy equilibrium model in which V (h, a) ⊆ [µ, λ].
Hence, as deciding whether the former holds is ΣP2 -hard by Proposition 10, also
deciding the latter is ΣP2 -hard.

Proof of Proposition 12

The proof is analogous to the proof of Theorem 3.7 from [Eiter and Gottlob 1993].
Consider a set of fuzzy equilibrium logic formulas Θ, and let a be an atom which
does not occur in Θ. Now consider the set Θ′ = Θ∪{a→l a}. Clearly, in any fuzzy
equilibrium model of Θ, it holds that V (w, a) = [0, 1], hence any fuzzy equilibrium
model of Θ is also a model of Θ′. Moreover, if µ > 0 or λ < 1, it holds that
V (h, a) = [0, 1] 6⊆ [µ, λ]. Hence, we have that Θ has a fuzzy equilibrium model iff
Θ′ has a fuzzy equilibrium model in which V (h, a) 6⊆ [µ, λ]. Since deciding whether
Θ has a fuzzy equilibrium model is ΣP2 -hard, the stated follows.

Proof of Lemma 3

Let q 6= p be a point from F and assume that q were not 4-minimal. Then there
exists an r ∈ M such that r 4 q with r 6= q. This means r(x) = q(x) for all x in
A−t ∪ A+

t , r(x) ≤ q(x) for all x ∈ A−h and r(x) ≥ q(x) for all x ∈ A+
h . Hence, for

any point s and ε > 0, it also holds that s + ε−→qr 4 s, as adding ε−→qr amounts to
decrease s(x) for some x ∈ A−h and increase s(x) for some x ∈ A+

h .

(1) Assume that r ∈ F . As p is an interior point, there would be an ε > 0 such
that p + ε · −→qr belongs to F , which would contradict the assumption that p
corresponds to an h-minimal model.

(2) If r /∈ F , we find that p+ ε · −→qr would not belong to F for any ε > 0. Because
polyhedra are convex and p is an internal point of F , however, there would still
be some ε > 0 for which p+ε·−→qr belongs to the polyhedron, again contradicting
the assumption that p corresponds to an h-minimal model. Indeed, for each
ε > 0 we may a consider the line Lε through the points r and p+ ε · −→qr. As p
is an internal point of F , for ε sufficiently small, the line Lε intersects the face

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

150 · Steven Schockaert et al.

F at some point p′. Since p′ and q are both in H, we find that p+ ε · −→qr ∈ H
from the convexity of H.

Proof of Lemma 4

First, note that clearly, the points from [0, 1]n that are dominated by a fixed point
q from V are exactly those that are in the convex hull of the points p that satisfy
condition (71). We now show that the points from [0, 1]n that are dominated by
any point from H are those that are in the convex hull of V ∗.

(1) Let r ∈ D(H). Then there is a point q from H such that q 4 r. Since polyhedra
are convex by definition, the point q can be written as a convex combination
of the vertices of H, i.e., q =

∑m
i=1 λivi, where we assume V = {v1, ..., vm},

and λ1, ..., λm ∈ [0, 1] are such that λ1 + ... + λm = 1. We need to show
that r =

∑
i µiwi where all points wi belong to the convex hull of V ∗ and∑

i µi = 1. If r = q, we may simply choose λi = µi and vi = wi, as all vertices
of H belong to the convex hull of V ∗. Now suppose that q(x) 6= r(x) (which
means x /∈ X \(A−t ∪A+

t)). For instance, assume that x = a−h (the proof for the
cases where x ∈ A+

h and x ∈ X \ (A−h ∪A
+
h ∪A

−
t ∪A+

t) is entirely analogous), in
which case we have q(a−h) < r(a−h). For each vertex vi of H, we may consider
the point v∗i defined by v∗i (a−h) = 1 and v∗i (y) = vi(y) for all y 6= a−h . Clearly
the points v∗1 , ..., v

∗
m belong to the convex hull of V ∗. Now define the point q′

as (note that q(a−h) < 1 follows from q(a−h) < r(a−h))

q′(x) =
1− r(a−h)
1− q(a−h)

q(x) +
r(a−h)− q(a−h)

1− q(a−h)
(
∑
i

λiv
∗
i (x))

Note that q′ is a convex combination of points that are in the convex hull of
V ∗. Furthermore, using the fact that

∑
i λiv

∗
i (a−h) =

∑
i λi = 1, we find

q′(a−h) =
1− r(a−h)
1− q(a−h)

· q(a−h) +
r(a−h)− q(a−h)

1− q(a−h)
=
r(a−h)− q(a−h)r(a−h)

1− q(a−h)
= r(a−h)

while for y 6= a−h , we have q′(y) = q(y). If q′ = r, the proof is complete.
Otherwise, there is an x /∈ X \ (A−t ∪ A+

t) such that q′(x) 6= r(x) and we may
simply repeat the argument.

(2) Let q be a point in the convex hull of V ∗. It holds that q can be written as
a convex combination of the form

∑
λiwi where wi ∈ V ∗. Moreover, for each

wi ∈ V ∗ there is some w′i ∈ V such that w′i 4 wi. We immediately find that
q′ =

∑
λiw

′
i is a point of H and q′ 4 q.

Proof of Proposition 14

Membership in ΣP2 is easily shown, using the following algorithm: guess a fuzzy N5
model V of Θ (in polynomial time), verify that it is a fuzzy equilibrium model (using
one call to the NP oracle), and that it satisfies the requirement V (t, a) ⊆ [µ, λ]
(constant time). The fact that a fuzzy equilibrium model V can be guessed in
polynomial time, follows from the fact that the intersection of cl(M ∩ E), with
M and E defined as in Section 5.3, with the half-spaces defined by a−t ≥ µ and
a+
t ≤ λ is still the finite union of polyhedra whose vertices have a polynomial binary

representation.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 151

Here, we also present an alternative proof, which reduces this problem to the
problem from Proposition 13. In particular, it can easily be verified that Θ has
some fuzzy equilibrium model V satisfying V (t, a) ⊆ [µ, λ] iff Θ′ has at least one
answer set, where

Θ′ = Θ ∪ {not a→l (1− µ), not (∼a)→l λ}

Indeed, it is straightforward to verify that

V −(h, not a→l (1− µ)) = 1⇔ µ ≤ V −(t, a)

V −(h, not (∼a)→ λ) = 1⇔ V +(t, a) ≤ λ

Since µ ≤ V −(t, a) and V +(t, a) ≤ λ only constrain the world t, and not h, they
act as constraints, requiring that a takes a truth value from [µ, λ], but without
providing support for it.

Proof of Proposition 15

To show membership in ΠP
2 , we provide a ΣP2 algorithm which decides whether Θ

has at least one fuzzy equilibrium model V for which V (t, a) 6⊆ [λ, µ]. In particular,
it suffices to guess a fuzzy N5 model V of Θ (in polynomial time), verify that it
is a fuzzy equilibrium model (using one call to the NP oracle), and that it satisfies
the requirement V (t, a) 6⊆ [µ, λ] (constant time). The fact that a fuzzy equilibrium
model V can be guessed in polynomial time, follows from the fact that the closure
of the intersection of M ∩E, with M and E defined as in Section 5.3, and the open
half-space defined by a−t < µ is still the finite union of polyhedra whose vertices
have a polynomial binary representation. Similarly, the closure of the intersection
of M∩E with the open half-space defined by a+

t > λ is the finite union of polyehdra
whose vertices have a polynomial binary representation.

Proof of Proposition 16

Assume that σ is a solution of Λ such that σ(a−h) = σ(a−t) and σ(a+
h) = σ(a+

t)
for all a ∈ At , but that the corresponding fuzzy N5 model V were not a fuzzy
equilibrium model of Θ. However, V is a fuzzy N5 model of Θ by construction,
since σ = σt ∪ σh is solution of ΓΘ. Moreover, the fact that σ(a−h) = σ(a−t) and
σ(a+

h) = σ(a+
t) holds teaches us that V (h, a) = V (t, a) for every a in At , which is

only possible if V is not h-minimal (observing that V was assumed not to be a fuzzy
equilibrium model). Therefore there exists a fuzzy N5 model V ′ of Θ such that
V ′(t, a) = V (t, a) and V (h, a) ⊆ V ′(h, a) for all a ∈ At , while V (h, a0) ⊂ V ′(h, a0)
for a particular a0 ∈ At . Now let σ′ be the solution of ΓΘ corresponding to V ′, with
σ′t and σ′h respectively the restrictions to At and Ah. We immediately find that
σt = σ′t while

∑
a∈At σ

h(a−h)−σh(a+
h) >

∑
a∈At σ

′h(a−h)−σ′h(a+
h), a contradiction,

since σh was supposed to be a solution minimizing
∑
a∈At a

−
h − a

+
h .

Assume that there is a solution σ of Λ such that σ(a−h) 6= σ(a−t) or σ(a+
h) 6=

σ(a+
t) for some a ∈ At , while Θ has some fuzzy equilibrium model V ′. Let σ′ be

the solution of ΓΘ corresponding to V ′ and let σt, σh, σ′t and σ′h be as before.
Then

∑
a∈At(σ

′t(a−t)− σ′h(a−h)) + (σ′h(a+
h)− σ′t(a+

t)) = 0 while
∑
a∈At(σ

t(a−t)−
σh(a−h)) + (σh(a+

h)− σt(a+
t)) > 0, a contradiction since σ is a solution minimizing∑

a∈At(a
−
t − a−h) + (a+

h − a
+
t).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

152 · Steven Schockaert et al.

REFERENCES

Aguzzoli, S. and Ciabattoni, A. 2000. Finiteness in infinite-valued Lukasiewicz logic. Journal
of Logic, Language, and Information 9, 5–29.

Baaz, M., Ciabattoni, A., and Fermüller, C. 2003. Hypersequent calculi for Gödel logics —

a survey. Journal of Logic and Computation 13, 6, 835–861.

Baaz, M. and Zach, R. 2000. Hypersequents and the proof theory of intuitionistic fuzzy logic.

In Computer Science Logic, P. Clote and H. Schwichtenberg, Eds. Vol. 1862. Springer Berlin /

Heidelberg, 187–201.

Baldwin, J. F., Martin, T. P., and Pilsworth, B. W. 1995. Fril - Fuzzy and Evidential

Reasoning in Artificial Intelligence. John Wiley & Sons, Inc., New York, NY, USA.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press.

Bauters, K., Schockaert, S., De Cock, M., and Vermeir, D. 2010. Possibilistic answer set
programming revisited. In Proceedings of the 26th Conference on Uncertainty in Artificial

Intelligence.

Bauters, K., Schockaert, S., Janssen, J., De Cock, M., and Vermeir, D. 2010. Towards
possibilistic fuzzy answer set programming. In Proceedings of the 13th International Workshop

on Non-monotonic Reasoning (NMR).

Bobillo, F. and Straccia, U. 2007. A fuzzy description logic with product t-norm. In In
Proceedings of the 16th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007).

652–657.

Cabalar, P., Odintsov, S., Pearce, D., and Valverde, A. 2006. Analysing and extending well-

founded and partial stable semantics using partial equilibrium logic. In Logic Programming.

Lecture Notes in Computer Science, vol. 4079. 346–360.

Cao, T. H. 2000. Annotated fuzzy logic programs. Fuzzy Sets and Systems 113, 2, 277 – 298.

Chagrov, A. and Zakharyaschev, M. 1997. Modal Logic. Oxford University Press.

Ciabattoni, A. and Luchi, D. 1997. Two connections between linear logic and Lukasiewicz
logics. In Proceedings of the 5th Kurt Gödel Colloquium on Computational Logic and Proof

Theory. Springer-Verlag, 128–139.

Colson, B., Marcotte, P., and Savard, G. 2005. Bilevel programming: A survey. 4OR: A

Quarterly Journal of Operations Research 3, 87–107.

Damásio, C. V., Medina, J., and Ojeda-Aciego, M. 2004. Sorted multi-adjoint logic programs:
termination results and applications. In Proceedings of the 9th European Conference on Logics

in Artificial Intelligence (JELIA’04). Springer-Verlag, 260–273.

Damásio, C. V. and Pereira, L. M. 2000. Hybrid probabilistic logic programs as residuated logic
programs. In Proceedings of the 7th European Workshop on Logics in Artificial Intelligence

(JELIA’00). 57–72.

Damásio, C. V. and Pereira, L. M. 2001. Antitonic logic programs. In Proceedings of the 6th
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’01).

Springer-Verlag, 379–392.

Damasio, C. V. and Pereira, L. M. 2003. An encompassing framework for paraconsistent logic

programs. Journal of Applied Logic 3, 67–95.

De Vos, M. and Vermeir, D. 2004. Extending answer sets for logic programming agents. Annals
of Mathematics and Artificial Intelligence 42, 103–139.

Dekhtyar, A. and Subrahmanian, V. S. 1997. Hybrid probabilistic programs. In Proceedings
of the Fourteenth International Conference on Logic Programming (ICLP’97). 391–405.

Dubois, D., Ostasiewicz, W., and Prade, H. 2000. Fuzzy sets: History and basic notions . In
Fundamentals of Fuzzy Sets , D. Dubois and H. Prade, Eds. The Handbooks of Fuzzy Sets

Series. Kluwer Academic Publishers, 21–124.

Dubois, D. and Prade, H. 1995. Fuzzy relation equations and causal reasoning. Fuzzy Sets and

Systems 75, 2, 119 – 134.

Dubois, D. and Prade, H. 1996. What are fuzzy rules and how to use them. Fuzzy Sets and

Systems 84, 2, 169–185.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 153

Dubois, D. and Prade, H. 2001. Possibility theory, probability theory and multiple-valued logics:

A clarification. Annals of Mathematics and Artificial Intelligence 32, 1, 35–66.

Eiter, T. and Gottlob, G. 1993. Complexity results for disjunctive logic programming and

application to nonmonotonic logics. In Proceedings of the International Logic Programming
Symposium. 266–278.

Eiter, T. and Gottlob, G. 1995. The complexity of logic-based abduction. Journal of the
ACM 42, 1, 3–42.

Eiter, T., Gottlob, G., and Leone, N. 1997. Abduction from logic programs: Semantics and

complexity. Theoretical computer science 189, 1-2, 129–177.

Eiter, T., Gottlob, G., and Mannila, H. 1997. Disjunctive datalog. ACM Transactions on

Database Systems 22, 3, 364–418.

Faber, W., Leone, N., and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic programs:

Semantics and complexity. In Logics in Artificial Intelligence. Lecture Notes in Computer
Science, vol. 3229. 200–212.

Ferraris, P. 2005. Answer sets for propositional theories. In LPNMR, C. Baral, G. Greco,
N. Leone, and G. Terracina, Eds. Lecture Notes in Computer Science, vol. 3662. Springer,

119–131.

Foo, N., Meyer, T., and Brewka, G. 2005. LPOD answer sets and Nash equilibria. In Advances

in Computer Science - ASIAN 2004. Lecture Notes in Computer Science, vol. 3321. 3198–3199.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference and Symposium on Logic Programming.

1081–1086.

Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1–102.

Gottlob, G., Greco, G., and Scarcello, F. 2005. Pure Nash equilibria: hard and easy games.
Journal of Artificial Intelligence Research 24, 357–406.

Hähnle, R. 1994. Many-valued logic and mixed integer programming. Annals of Mathematics
and Artificial Intelligence 12, 231–264.

Hájek, P. 2001. Metamathematics of Fuzzy Logic (Trends in Logic). Springer.

Hobbs, B., Metzler, C., and Pang, J.-S. 2000. Strategic gaming analysis for electric power

systems: an mpec approach. IEEE Transactions on Power Systems 15, 2, 638 –645.

Janssen, J., Heymans, S., Vermeir, D., and De Cock, M. 2008. Compiling fuzzy answer set

programs to fuzzy propositional theories. In Proceedings of the 24th International Conference

on Logic Programming (ICLP08). 362–376.

Janssen, J., Schockaert, S., Vermeir, D., and De Cock, M. 2009. General fuzzy answer set

programs. In Proceedings of the 8th International Workshop on Fuzzy Logic and Applications
(WILF). 352–359.

Lifschitz, V., Pearce, D., and Valverde, A. 2001. Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2, 4, 526–541.

Lin, F. and Zhao, Y. 2004. ASSAT: computing answer sets of a logic program by sat solvers.

Artificial Intelligence 157, 1-2, 115–137.

Lukasiewicz, T. 1998. Probabilistic logic programming. In Proceedings of the 13th European
Conference on Artificial Intelligence (ECAI’98). 388–392.

Lukasiewicz, T. and Straccia, U. 2007. Tightly integrated fuzzy description logic programs
under the answer set semantics for the semantic web. In Proceedings of the First International
Conference on Web Reasoning and Rule Systems (RR’07). 289–298.

Mamdani, E. and Assilian, S. 1975. An experiment in linguistic synthesis with a fuzzy logic
controller. International Journal of Man-Machine Studies 7, 1, 1 – 13.

Marek, W. and Subrahmanian, V. S. 1992. The relationship between stable, supported, default
and autoepistemic semantics for general logic programs. Theoretical Computer Science 103, 2,

365 – 386.

McNaughton, R. 1951. A theorem about infinite-valued sentential logic. Journal of Symbolic
Logic 16, 1–13.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

154 · Steven Schockaert et al.

Medina, J., Ojeda-Aciego, M., and Vojtáš, P. 2001. Multi-adjoint logic programming with

continuous semantics. Lecture Notes in Computer Science 2173, 351–364.

Medina, J., Ojeda-Aciego, M., and Vojtáš, P. 2001. A multi-adjoint logic approach to abduc-

tive reasoning. In Logic Programming. Lecture Notes in Computer Science, vol. 2237. 269–283.

Mellouli, N. and Bouchon-Meunier, B. 2003. Abductive reasoning and measures of similitude
in the presence of fuzzy rules. Fuzzy Sets and Systems 137, 1, 177 – 188.

Moore, J. and Bard, J. 1990. The mixed integer linear bilevel programming problem. Operations

Research 38, 5, 911–921.

Mundici, D. 1987. Satisfiability in many-valued sentential logic is NP-complete. Theoretical
Computer Science 52, 145–153.

Nicolas, P., Garcia, L., Stéphan, I., and Lefèvre, C. 2006. Possibilistic uncertainty handling

for answer set programming. Annals of Mathematics and Artificial Intelligence 47, 1-2, 139–
181.

Pang, J.-S. and Fukushima, M. 2005. Quasi-variational inequalities, generalized nash equilibria,

and multi-leader-follower games. Computational Management Science 2, 21–56.

Pearce, D. 1997. A new logical characterisation of stable models and answer sets. In NMELP

’96: Selected papers from the Non-Monotonic Extensions of Logic Programming. 57–70.

Pearce, D. 2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47, 3–41.

Pearce, D. and Valverde, A. 2004. Towards a first order equilibrium logic for nonmonotonic
reasoning. In Logics in Artificial Intelligence. Lecture Notes in Computer Science, vol. 3229.

147–160.

Pearce, D. and Valverde, A. 2008. Quantified equilibrium logic and foundations for answer set
programs. In Logic Programming. Lecture Notes in Computer Science, vol. 5366. 546–560.

Perfilieva, I. 2004. Fuzzy function as an approximate solution to a system of fuzzy relation

equations. Fuzzy Sets and Systems 147, 3, 363 – 383.

Perfilieva, I., Dubois, D., Prade, H., Esteva, F., Godo, L., and Hodáková, P. 2011.

Interpolation of fuzzy data: Analytical approach and overview. Fuzzy Sets and Sys-

tems doi:10.1016/j.fss.2010.08.005.

Przymusinski, T. 1991. Stable semantics for disjunctive programs. New Generation Computing 9,

401–424.

Reggia, J., Nau, D., Wang, P., and Peng, H. 1985. A formal model of diagnostic inference.

Information Sciences 37, 227–285.

Saharidis, G. and Ierapetritou, M. 2009. Resolution method for mixed integer bi-level linear

problems based on decomposition technique. Journal of Global Optimization 44, 29–51.

Sakama, C. and Inoue, K. 1995. Paraconsistent stable semantics for extended disjunctive pro-
grams. Journal of Logic and Computation 5, 265–285.

Sanchez, E. 1976. Resolution of composite fuzzy relation equations. Information and Con-

trol 30, 1, 38 – 48.

Sandholm, T., Gilpin, A., and Conitzer, V. 2005. Mixed-integer programming methods for

finding nash equilibria. In Proceedings of the 20th national conference on Artificial intelligence.
495–501.

Schockaert, S., Janssen, J., Vermeir, D., and Cock, M. 2009. Answer sets in a fuzzy equi-
librium logic. In Proceedings of the 3rd International Conference on Web Reasoning and Rule

Systems. 135–149.

Schrijver, A. 1998. Theory of linear and integer programming. John Wiley & Sons Inc.

Straccia, U. 2006. Annotated answer set programming. In Proceedings of the 11th International
Conference on Information Processing and Management of Uncertainty in Knowledge-Based

Systems, (IPMU’06).

Straccia, U., Ojeda-Aciego, M., and Damásio, C. V. 2009. On fixed-points of multivalued
functions on complete lattices and their application to generalized logic programs. SIAM Jour-

nal on Computing 38, 5, 1881–1911.

Takeuti, G. and Titani, S. 1984. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory.

The Journal of Symbolic Logic 49, 3, 851–866.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Fuzzy Equilibrium Logic: Declarative Problem Solving in Continuous Domains · 155

Tanaka, K. and Sugeno, M. 1992. Stability analysis and design of fuzzy control systems. Fuzzy

Sets and Systems 45, 2, 135 – 156.

Truszczynski, M. 2010. Reducts of propositional theories, satisfiability relations, and general-
izations of semantics of logic programs. Artificial Intelligence In Press.

Van Gelder, A., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM 38, 3, 619–649.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D. 2007. Computing fuzzy answer sets
using DLVHEX. In Proceedings of the 23rd international conference on Logic programming.

449–450.

Van Nieuwenborgh, D., De Cock, M., and Vermeir, D. 2007. An introduction to fuzzy answer

set programming. Annals of Mathematics and Artificial Intelligence 50, 3-4, 363–388.

Wan, H. 2009. Belief logic programming. In Logic Programming, P. Hill and D. Warren, Eds.

Lecture Notes in Computer Science, vol. 5649. 547–548.

Yamada, K. and Mukaidono, M. 1995. Fuzzy abduction based on lukasiewicz infinite-valued

logic and its approximate solutions. In International Joint Conference of the Fourth IEEE
International Conference on Fuzzy Systems and The Second International Fuzzy Engineering

Symposium. 343–350.

Zadeh, L. A. 1975. The concept of a linguistic variable and its application to approximate
reasoning – I. Information Sciences 8, 3, 199 – 249.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

