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For programs whose data variables range over boolean or finite domains, program verification is

decidable, and this forms the basis of recent tools for software model checking. In this paper, we
consider algorithmic verification of programs that use boolean variables, and in addition, access a

single read-only array whose length is potentially unbounded, and whose elements range over an

unbounded data domain. We show that the reachability problem, while undecidable in general,
is (1) Pspace-complete for programs in which the array-accessing for-loops are not nested, (2)

decidable for a restricted class of programs with doubly-nested loops. The second result establishes

connections to automata and logics defining languages over data words.
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1. INTRODUCTION

Verification questions concerning programs are undecidable in general. However, for
finite-state programs — programs whose data variables range over finite types such
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Pavol Černý, Insitute of Science and Technology Austria, Am Campus 1, A3400 Klosterneuburg,
Austria. Email: pavol.cerny@ist.ac.at

Scott Weinstein, Department of Philosophy, University of Pennsylvania, 249 South 36th Street,
Philadelphia, PA 19104, USA. Email: weinstein@cis.upenn.edu
1Preliminary version of this paper appears in the Proceedings of 18th EACLS Annual Conference

on Computer Science Logic, 2009.
2This research was supported in part by the NSF Cybertrust award CNS 0524059, by the European

Research Council (ERC) Advanced Investigator Grant QUAREM, and by the Austrian Science

Fund (FWF) project S11402-N23.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · Rajeev Alur et al.

as boolean, the number of bits needed to encode a program state is a priori bounded,
and verification questions such as reachability are decidable. This result, coupled
with progress on symbolic techniques for searching the state-space of finite-state
programs, and abstraction techniques for extracting boolean over-approximations
of general programs, forms the basis of recent tools for software model checking [Ball
and Rajamani 2002; Henzinger et al. 2002; Gulavani et al. 2006].

A natural question is then whether it is possible to extend the boolean program
model without losing decidability or worsening computational complexity of the
reachability problem. However, adding integer variables and (Presburger) arith-
metic over integers quickly leads to undecidability of verification problems. One
can therefore investigate the possibility of adding only equality and order tests on
integers to the language. We show that it is possible to extend the model further.

This paper focuses on algorithmic verification of programs that access a single
array. The length of the input array is potentially unbounded. The elements of
the array range over Σ ×D, where Σ is a finite set, and D is a data domain that
is potentially unbounded and totally ordered. The array is thus modeled as a data
word, that is, a sequence of pairs in Σ × D. For example an array that contains
employees’ names, and for each name a tag indicating whether the employee is a
programmer, a manager, or a director, can be modeled by setting D to be the set
of strings, and Σ to be a set with three elements. The program can have Boolean
variables, index variables ranging over array positions, and data variables ranging
over D. The expressions in the program can use constants in D, and equality tests
and ordering over index and data variables. There are no restrictions on operations
on elements of Σ. The programs are built using assignments, conditionals, and
for-loops over the array. Even with these restrictions, one can perform interesting
computational tasks including searching for a specific value, finding the minimum
data value, checking that all values in the array are within specific bounds, or
checking for duplicate data values. For example, Java midlets designed to enhance
features of mobile devices include simple programs accessing the address books, and
our methods can be at the core of an automatic verification tool that certifies their
correctness. In order to analyze programs statically, it is often necessary to check
relationships among values in the array, as well as their relationships to values of
other variables and constants. For example, in the case of indirect addressing, it
is needed to check that all the values in the array fall within certain bounds. For
programs that fall outside the restrictions mentioned above, it is possible to use
abstract interpretation techniques such as predicate abstraction [Graf and Säıdi
1997] to abstract some of the features of the program, and analyze the property of
interest on the abstract program. As the abstract programs are nondeterministic,
we will consider nondeterministic programs.

Our first result is that the reachability problem for programs in which there are
no nested loops is decidable. The construction is by mapping such a program to
a finite-state abstract transition system such that every finite path in the abstract
system is feasible in the original program for an appropriately chosen array. We
show that the reachability problem for programs with non-nested loops is Pspace-
complete, which is the same complexity as that for finite-state programs with only
boolean variables.
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Our second result shows decidability of reachability for programs with doubly-
nested loops with some restrictions on the allowed expressions. The resulting
complexity is non-elementary, and the interest is mainly due to the theoretical
connections with the recently well-studied notions of automata and logics over
data words [Bojańczyk et al. 2006; Björklund and Schwentick 2007; Kaminski and
Francez 1994]. Among different kinds of automata over data words that have been
studied, data automata [Bojańczyk et al. 2006] emerged as a good candidate defi-
nition for the notion of regularity for languages on data words. A data automaton
first rewrites the Σ-component to another finite alphabet Γ using a nondetermin-
istic finite-state transducer, and then checks, for every data value d, whether the
projection obtained by deleting all the positions in which the data value is not
equal to d, belongs to a regular language over Γ. In order to show decidability of
the reachability problem for programs with doubly nested loops, we extend this
definition as follows: An extended data automaton first rewrites the data word as
in case of data automata. For every data value d, the corresponding projection
contains more information than in case of data automata. It is obtained by replac-
ing each position with data value different from d by the special symbol 0. The
projection is required to be in a regular language over Γ ∪ {0}. We prove that
the reachability problem for extended data automata can be reduced to emptiness
of multicounter automata (or equivalently, to Petri nets reachability), and is thus
decidable. We then show that a program containing doubly-nested loops can be
simulated, under some restrictions, by an extended data automaton. Relaxing these
restrictions leads to undecidability of the reachability problem for programs with
doubly-nested loops.

Analyzing reachability problem for programs brings a new dimension to investi-
gations on logics and automata on data words. We establish some new connections,
in terms of expressiveness and decidability boundaries, between programs, logics,
and automata over data words. Bojańczyk et al. [Bojańczyk et al. 2006] consider
logics on data words that use two binary predicates on positions of the word: (1)
an equivalence relation ≈, such that i ≈ j if the data values at positions i and j
are equal, and (2) an order ≺ which gives access to order on data values, in addi-
tion to standard successor (+1) and order < predicates over the positions. They
show that while the first order logic with two variables, FO2(≈, <,+1), is decidable,
introducing order on data values causes undecidability, that is, FO2(≈,≺, <,+1)
is undecidable. In this context, our result on programs with non-nested loops is
perhaps surprising, as we show that the undecidability does not carry over to these
programs, even though they access order on the data domain and have an arbitrary
number of index and data variables.

2. PROGRAMS

In this section, we define the syntax and semantics of programs that we will consider.
Let D be an infinite set of data values. We will consider domains D equipped with
equality (D,=), or with both equality and linear order (D,=, <). Let Σ be a finite
set of symbols. An array is a data word w ∈ (Σ × D)∗. The program can access
the elements of the array via indices into the array.
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2.1 Syntax

The programs have one array variable A. Boolean variables are defined by the fol-
lowing grammar: bvar ::= b, b1, b2, .... Index variables are defined by the
following grammar: indvar ::= p, p1, p2, ... and range over N. Loop vari-
ables are defined by the following grammar: loopvar ::= i, j, i1, i2, ...

and range over N. We make a distinction between loop and index variables because
loop variables cannot be modified outside of the loop header. Data variables are
defined by the following grammar: datavar ::= v, v1, v2, ... and range over
D. Constants in D are defined by the grammar: dconst ::= c, c1, c2, ...,
and constants in Σ are defined by the grammar sconst ::= s, s1, s2, ....

Index expressions IE are defined by the following grammar:

IE ::= indvar | loopvar

Data expressions DE are of the form:

DE :: = datavar | dconst | A[IE].d

where A[IE].d accesses the data part of the array.
Σ-expressions SE are of the form:

SE :: = sconst | A[IE].s

where A[IE].s accesses the Σ part of the array.
Boolean expressions are defined by the following grammar:

B :: = true | false | bvar

| B and B | not B

| IE = IE | IE < IE

| DE = DE | DE < DE

| SE = SE

The programs are defined by the grammar:

P :: = skip

| { P }
| bvar:=B | indvar:=IE | datavar:=DE

| if B then P else P

| if * then P else P

| for loopvar:=1 to length(A) do P

| P;P

The commands include a nondeterministic conditional. We consider nondeter-
ministic programs in this paper, in order to enable modeling of abstracted programs.
Software model checking techniques [Graf and Säıdi 1997; Ball and Rajamani 2002;
Henzinger et al. 2002] often rely on predicate abstraction. For example, if the orig-
inal program contains an assignment of the form b := E, where E is a complicated
expression that falls out of scope of the intended analysis, the assignment is ab-
stracted into a nondeterministic assignment to b. This is modeled as if * then

b:=true else b:=false in the language presented here.
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2.2 Semantics

A global state of a program is a valuation of its boolean, loop, index and data
variables, as well as of its array variable. We denote global states by g, g1, and the
set of global states by G. For a boolean, index, loop or data variable v, we denote
the value of v by g[v]. The value of the array variable A is a word w ∈ (Σ ×D)∗.
It is denoted by g[A]. The length of the array at global state g is denoted by l(g[A])
and evaluates to the length of w. Note that the length and the contents of the array
do not change over the course of the computation.

Semantics of boolean expressions (index, data and Σ expressions respectively)
is a given by a partial function [[B]] from G to B. For index expressions, [[IE]] is
a partial function from G to N. For data expressions, [[DE]] is a partial function
from G to D. For Σ-expressions, [[SE]] is a partial function from G to Σ. The
semantics of an expression is not defined only when there is an out-of-bounds array
access. For example, in a state g where g[A] is a word of length 10 and g[p] is 20,
the semantics of the expression A[p].d is undefined. The semantics of commands
is defined as a relation on G, [[P]] ⊆ G×G.

— (g, g) ∈ [[skip]], for all g in G

— (g, g′) ∈ [[v:=E]], iff g′ = g[v← [[E]](g)], for any assignment.

— (g, g′) ∈ [[if B then P1 else P2]] iff [[B]](g) = true and (g, g′) ∈ [[P1]] or
[[B]](g) = false and (g, g′) ∈ [[P2]].

— (g, g′) ∈ [[if * then P1 else P2]] iff (g, g′) ∈ [[P1]] or (g, g′) ∈ [[P2]].

— (g, g) ∈ [[for i1:=1 to length(A) do P]] iff l(g[A]) = 0.

— (g, g′) ∈ [[for i1:=1 to length(A) do P]] iff l(g[A]) > 0 and there exist
g1, g2, . . . , gl+1, where l = l(g[A]), such that g1 = g, gl+1 = g′, and for all i
such that 1 ≤ i ≤ l, we have that there exists a g′i+1, such that (gi, g

′
i+1) ∈ [[P]]

and gi+1 = g′i+1[i1← i+ 1].

— (g, g′) ∈ [[P1;P2]] iff there exists g′′ such that (g, g′′) ∈ [[P1]] and (g′′, g′) ∈ [[P2]].

Given a program, a global state is initial if either i) the array variable contains a
nonempty word, all boolean variables are set to false, all index and loop variables
are set to 1, and all data variables are set to the same value as the first element of
the array; or ii) the array variable contains an empty word, all boolean variables
are set to false, all index and loop variables are set to 1, and all data variables are
set to a constant cD ∈ D. The intention is that the only unspecified part of the
initial state, the part that models input of the program, is the array.

For programs we have defined, where the only iteration allowed is over the array,
the termination is guaranteed. Therefore for all initial global states gI there exists
a global state g such that (gI , g) ∈ [[P]].

2.3 Restricted fragments

We classify programs using the nesting depth of loops. We denote programs with
only non-nested loops by ND1, programs with nesting depth at most 2 by ND2,
etc. Restricted-ND2 programs are programs with nesting depth at most 2, that
do not use index or data variables, and do not refer to order on data or indices.
Furthermore, a key restriction, such that if it is lifted, the reachability problem
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b:=true;

for i:= 1 to length(A) do {
if A[i].d < v then b:=false

else skip;

v := A[i].d

}

Fig. 1.

b:=false;

for i:= 1 to length(A) do {
for j:= 1 to length(A) do

if (A[i].d = A[j].d) then {
if (not (i = j)) then b:=true

else skip

} else skip

}

Fig. 2.

becomes undecidable, is a restriction on the syntax of the code inside the inner
loop. Let P1 be the code inside an inner loop, and let i be the loop variable of
the outer loop and let j be the loop variable for the inner loop. P1 must be of the
following form: if A[i].d=A[j].d then P2 else P3. Furthermore, P3 cannot
refer to A[j], i.e. it does not contain occurrences of A[j].d or A[j].s.

2.4 Examples

We present two illustrative examples for the classes of programs we defined.

Example 2.1. Figure 1 shows an ND1 program that tests whether the array is
sorted. It uses one data variable called v (note that by definition of the semantics,
v is initialized to the same value as the first element of the array).

Example 2.2. The Restricted-ND2 program in Figure 2 tests whether there is a
data value that appears twice in the array.

2.5 Program verification

Our results on decidability of reachability for ND1 and Restricted-ND2 can be applied
to assertion checking. Consider assertions of the form assert ϕ, where ϕ is a
propositional formula over boolean variables of the program. If such an assertion
appears in the program, it can be checked as follows: introduce a new boolean
variable f (which is set to false initially, as all the other boolean variables), and
replace the assert statement by the assignment f := ϕ. The assertion holds in
all executions of the program if and only if a boolean state where f == true is
reachable.

More generally, the results on decidability of reachability are applicable if the
assertion for a program P is expressed as a program of the same class (ND1 and
Restricted-ND2) as P . This is illustrated in the next example.

Example 2.3. We consider a simple array accessing program Min that scans
through an array to find a minimal data value. It has one index variable, p, and it
is an ND1 program, as it does not contain nested loops. By the definition of program
semantics, p is initialized to 1.

for i:= 1 to length(A) do {
if A[i].d < A[p].d then p := i

}
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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The correctness requirement for this program is that the index p points to a
minimal element, that is ∀ i: A[i].d ≥ A[p].d. Verifying the correctness of the
program can be reduced to checking reachability, as the requirement itself can be
expressed as a program:

b:= true;

for i:= 1 to length(A) do {
if A[i].d < A[p].d then {p := i}

}
for i:= 1 to length(A) do {
if A[i].d < A[p].d then {b:=false}

}

We can now ask a reachability question: Does the control reach the end of the
program in a state where b == false holds?

We show that the reachability problem for programs with non-nested loops is
Pspace-complete, which is the same complexity as that for finite-state programs
with only boolean variables. The latter is the basis of successful software verification
tools, and therefore can suggest that, coupled with abstraction techniques, our
decision procedure can potentially be the basis of a software model checking tool
that better handles data structures with potentially unbounded size.

3. REACHABILITY

Boolean states. A boolean state is a valuation of all the boolean variables of a
program. For a given global state g, the corresponding boolean state is denoted by
bool(g). For any boolean variable b of the program, we have that bool(g)[b] = g[b].
We denote boolean states by m,m1 and the set of boolean states by M .

Reachability. Given a program P, a boolean state m is reachable if and only if
there exists an initial global state gI and a global state g such that (gI , g) ∈ [[P]]
and bool(g) = m. The reachability problem is to determine, for a given program
P and a given boolean state m, whether m is reachable. In this section, we show
that reachability is decidable (Pspace-complete) for programs with only non-nested
loops (ND1-programs).

Local states. We will use a notion of a local state. Given a program, a local state
is a valuation of all its boolean, index, loop, and data variables, as well as the values
of array elements corresponding to index and loop variables. For each index and
loop variable v, local states have an additional variable Av that stores the value of
the array element at position given by v. The main difference between local and
global states is that local states do not contain a valuation of the array, the local
states only store a finite number of values from the unbounded domain D.

For a given global state g, we denote the corresponding local state by loc(g). For
any variable v of the program, we have that loc(g)[v] = g[v]. If v is an index or a
loop variable, we also have that loc(g)[Av] = [[A[v]]](g). We denote local states by
q, q1, and the set of local states by Q. A local state q is initial if there exists an
initial global state gI such that loc(gI) = q.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Normal form. In order to simplify the presentation of proofs of the decidability
results, we will first translate the programs into a normal form. A program is in
normal form if the branches of if statements do not contain loops.

We define a translation function norm(P), that given a program P returns an
equivalent program in normal form. We use an auxiliary function assume(B, P),
and we set norm(P) = assume(true, P). The function assume(B, P) is defined
inductively as follows:

—assume(B, skip) = skip.

—assume(B, v:=E) = if B then v := E else skip,
if B is not true, and v:=E otherwise.

—assume(B, if B1 then P1 else P2) =
b := B1;
assume(B and b, P1);
assume(B and (not b), P2),
where b is a new boolean variable

—assume(B, if * then P1 else P2) =
if ∗ then b := true else b := false;
assume(B and b, P1);
assume(B and (not b), P2),
where b is a new boolean variable

—assume(B, for i1:=1 to length(A) do P) =
for i1:=1 to length(A) do assume(B, P).

—assume(B, P1;P2) =
assume(B, P1);assume(B, P2).

The program norm(P) has more variables than the program P. However, intu-
itively the programs norm(P) and P compute the same function on the common
variables. We now formalize this notion.

Let P be a program, let G be its set of global states and let V be its set of
variables. Similarly, let G′ and V ′ be the sets of states and variables of a program
P’. Furthermore, we will assume that V ⊆ V ′. We define a relation ∼V,V ′ as
follows. We have that [[P]] ∼V,V ′ [[P’]] if and only if for all g′1, g

′
2 ∈ G′ it holds that

(g′1, g
′
2) ∈ [[P’]] iff (πV,V ′(g′1), πV,V ′(g′2)) ∈ [[P]], where πV,V ′ : G′ → G as follows:

πV,V ′(g′) = g iff g and g′ agree on variables from V .

Lemma 3.1. Let P be a program, let V be its set of variables, and let V ′ be the
set of variables of norm(P). We have that [[P]] ∼V,V ′ [[norm(P)]]. Furthermore,
the nesting depth of loops is the same in norm(P) as it is in P. The number of
boolean variables in norm(P) increased by at most the number of if statements in
P. If P is an ND1 (Restricted-ND2) program, then norm(P) is an ND1 (Restricted-ND2)
program.

Proof. Let B be a boolean expression. Let vars(P) (vars(B)) denote the set of
variables in P (B). We assume that vars(P) ∩ vars(B) is empty.

Claim: [[assume(B, P)]] ∼V,V ′ [[if B then P else skip]].
We prove the claim by induction on the structure of the program P. If P is skip

or v:=E, the claim follows easily. The inductive cases are similar to each other; we
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present the case of the loop construct.
Let P be the program for i1:=1 to length(A) do P1 else skip. Let V be

the set of variables and G the set of global states of if B then P else skip. Let
V ′ be the set of variables of assume(B, P) and G′ its set of states. Let us now
suppose that there are two states g′1, g

′
2 ∈ G′ such that (g′1, g

′
2) ∈ [[assume(B, P)]].

By definition, we have (g′1, g
′
2) ∈ [[for i1 := 1 to length(A) do assume(B, P1)]].

By definition of the semantics of for-loops, we obtain that there exist states
h1, h2, . . . , hl+1 ∈ G′, where l = l(g′1[A]), such that h1 = g′1, hl+1 = g′2, and for
all i such that 1 ≤ i ≤ l, we have that there exists a h′i+1, such that (hi, h

′
i+1) ∈

[[assume(B, P1)]] and hi+1 = h′i+1[i1 ← i + 1]. We now use induction hypothe-
sis for the program P1 to obtain that there exist states k1, k2, . . . , kl+1 ∈ G, such
that (a) πV,V ′(ki) = hi, (b) (ki, k

′
i+1) ∈ [[if B then P1 else skip]], (c) ki+1 =

k′i+1[i1 ← i + 1]. This implies that there exist states g1, g2 ∈ G such that
(g1, g2) ∈ [[for i1 := 1 to length(A) do {if B then P1 else skip}]], πV,V ′(g1) =
g′1, and πV,V ′(g2) = g′2. The last step consists in showing that
(g1, g2) ∈ [[if B then {for i1 := 1 to length(A) do P1} else skip]].

The claim above implies that we have that [[norm(P)]] ∼V,V ′ [[P]]. The proofs of
the other parts of the lemma are by simple structural induction.

The following theorem is one of the two main results of the paper. It states that
the reachability problem for ND1 programs is Pspace-complete, where the size of
the input is the size of the program.

Theorem 3.2. Reachability for ND1 programs is decidable. The problem is
Pspace-complete.

We start by describing the structure of the proof. First, the semantics of a
program P in terms of a transition system T whose states are (tuples of) local
states. Intuitively, this is not surprising, as an ND1 program P that contains only
one loop (e.g. for i1:=1 to length(A) do P1) can be seen as a transition system
whose states are local states of P and which processes an input word in Σ×D, with
each iteration consuming one symbol of the word (by applying P1). For sequential
composition of loops, a product construction (augmented with some bookkeeping)
is used.

The transition system T is still an infinite-state system, as its states store values
from D. Therefore, we construct a finite state system Tα that abstracts away the
infinite part of the local states, that is, the values of index, loop and data variables.
The abstract state transition system Tα keeps only order and equality information
on the index, loop and data variables. More precisely, Tα stores an ec-order, that
is, a total order on equivalence classes of a set. (We define the notion of ec-order
formally below.) Let IV be the set of index and loop variables of P. Let DV be
the set of data variables of P. An abstract state is a tuple (m,SI ,SD), where m is
a boolean state in M , SI is an ec-order on IV and SD is an ec-order on DV ∪ IV .
An abstract state represents a set of local states. For example, if a program has
an index variable p1, a loop variable i1 and a data variable v1, a possible abstract
state is (m, p1 < i1, p1 = i1 < v1). This abstract state represents a set of concrete
states whose boolean state is m, and the value of p1 is less than the value of i1, the
value of the array at position p1 is the same as the value of the array at position
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i1, which is less than the value of v1.
We show that reachability of a boolean state m can be decided on the abstract

system, in the sense that m is reachable in T if and only if it is reachable in Tα. (A
boolean state m is reachable in Tα iff there exist SI and SD such that (m,SI ,SD)
is reachable in Tα.) The main part of the proof shows that every finite path in the
abstract transition system Tα is feasible in the concrete transition system T .

The first idea for a proof might be to show that the abstraction defines a bisim-
ulation between abstract and concrete transition systems. However, this is not the
case. We present a simple counterexample. Let us consider a program P and let
us focus on two data variables v1 and v2. Let q1 be a local state such that its
boolean component is m, the value of v1 at q is 5 and the value of v2 at q is 6. The
abstract state corresponding to r1, rα1 is thus (m,SI ,SD), where SD , the ec-order
on data and index variables, includes v1 < v2. Furthermore, let us suppose that
the program is such that the abstract state rα1 can transition (in a way that does
not change the values of v1 and v2) to an abstract state rα2 that requires that an-
other data variable v3 has a value greater than the value of v1, but smaller than
the value of v2. Note now that the concrete state r1 cannot transition to any state
that would correspond to the order on data variables required by rα2 , because there
is no value between 5 and 6.

In a key part of the proof, we show that if an abstract state rα2 is reachable from
rα1 , then there exists a state r1 (abstracted by rα1 ) and a state r2 (abstracted by rα2 )
such that r2 is reachable from r1. The main idea for proof by induction is that we
can choose r1 in such a way that the gaps between values are large enough. More
precisely, if (1) rα1 requires that e.g. v1 > v2 for two data variables v1 and v2 and
(2) rα2 is reachable from rα1 in k steps, then it is sufficient to choose r1 such that
there are at least 2k − 1 elements between v1 and v2.

We note that the proof applies to arbitrary linear orders (i.e. dense or not)
on unbounded domains. The proof only requires (as explained in the previous
paragraph) the existence of strictly increasing sequences of elements of unbounded
length.

Remark. In order to simplify the presentation of the proof, we make two assump-
tions: first, we assume that the length of the array is non-zero. (In the case the
length of the array is zero, the program effectively contains no loops, and reach-
ability can be computed in time polynomial in number of variables.) Second, we
assume that there are no constants in D in the programs. At the end of this sub-
section, we will explain how the proof that follows can be extended to programs
with constants from D.

We now present the proof according to the above outline.

Transition system semantics. We show that for programs that contain only non-
nested loops and are in normal form, the semantics [[P]] can be represented by a
triple (e, T, f), where T = (R, δ ⊆ R× (Σ×D)×R,F ) is a transition system whose
set of states is R. The set F ⊆ R is the set of final states. The transition relation
δ will simulate executions of the loops that appear in the program. Its input will
be, in addition to a state from R, also a pair (a, d) from (Σ×D) representing the
current element of the input array. The relation e is a subset of Q × R and the
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relation f is a subset of F × Q. The relation e will represent the loop-free part
of the program before the first non-nested loop, and the relation f will represent
the loop-free part of the program after the last non-nested loop. Recall that for
program in normal form, loops do not appear in branches of if statements.

We define a function [[P]]t which for loop-free programs returns a binary relation
over Q, and returns a triple (e, T, f) for programs that contain non-nested loops.
For a loop command we use the relation representing the (loop free) body of the
loop to construct a transition system. For sequential composition of commands, a
product construction augmented with some bookkeeping is used. Consider the case
of two sequentially composed loops that iterate through the array: the transition
system is a product of the transition systems defined by the two loops, and the
bookkeeping part ensures that the second loop starts from a state where the first
loop finished.

Construction of [[P]]t. For the following commands P: skip, v := E, if B then

P1 else P2, if * then P1 else P2, [[P]]t is defined by

[[P]]t = {(loc(g), loc(g′))|(g, g′) ∈ [[P]]}.

Note that for the conditionals, we have that P1 and P2 are loop-free. For loops
and sequential composition we have the following, where ◦ denotes composition of
relations.

—[[for i1:=1 to length(A) do P]]t = (e, (Q, δ,Q), f), where e and f are identity
relations on Q, and (q, (a, d), q′) ∈ δ if there exists a local state q′′ ∈ Q such that
(q, q′′) ∈ [[P]]t and q′ = q′′[i1 = i+ 1, Ai1 = (a, d)], where i = q[i1]. (Note that P

is loop free.)

—[[P1;P2]]t is defined as follows:
(1) If [[P1]]t = f1 and [[P2]]t = f2, then [[P1;P2]]t = f2 ◦ f1.
(2) If [[P1]]t = f1 and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t = ((e2 ◦ f1), T2, f2).
(3) If [[P1]]t = (e1, T1, f1) and [[P2]]t = f2, then [[P1;P2]]t = (e1, T1, (f2 ◦ f1)).
(4) If [[P1]]t = (e1, T1, f1) and [[P2]]t = (e2, T2, f2), then [[P1;P2]]t = (e, T, f),

where the components are defined as follows. Let T1 = (R1, δ1, F1) and
T2 = (R2, δ2, F2). The transition system T = (R, δ, F ) is defined by: R =
R1 × R2 × R2, ((r1, r2, r3), (a, d), (r′1, r

′
2, r
′
3)) ∈ δ iff (r1, (a, d), r′1) ∈ δ1, r2 =

r′2, and (r3, (a, d), r′3) ∈ δ2. A state (r1, r2, r3) is in F if and only if r1 ∈ F1,
r3 ∈ F2, and (r1, r2) ∈ (e2 ◦ f1). The function e is defined in the following
way: (q, (r1, r2, r3)) ∈ e if and only if r2 = r3 and (q, r1) ∈ e1. For the
function f , we have ((r1, r2, r3), q) ∈ f if (r1, r2, r3) ∈ F and (q, r3) ∈ f2.

We now show that [[P]]t = (e, T, f) captures the semantics of P.
Given a transition system T = (R, δ, F ), where δ is a subset of R× (Σ×D)×R,

we extend the definition of δ to words in (Σ × D)∗. We define a relation δ∗ on
R × (Σ × D)∗ × R as follows: for w = w1 . . . wl we have that (r, w, r′) ∈ δ∗ iff
∃r1, . . . rl+1 such that r = r1, r′ = rl+1 and for all i such that 1 ≤ i ≤ l we have
that (ri, wi, ri+1) ∈ δ.

Given a word w in (Σ×D)∗, we say that A state q2 is reachable from q1 in [[P]]t

iff either (i) [[P]]t = e and (q1, q2) ∈ e or (ii) [[P]]t = (e, T, f), T = (R, δ, F ) and there
exist r1, r2 ∈ R such that (q1, r1) ∈ e, (r2, q2) ∈ f , and (r1, w, r2) ∈ δ∗. A boolean
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state m is reachable in [[P]]t if there exist an initial local state qI , a local state q
such that bool(q) = m and q is reachable from qI in [[P]]t.

Lemma 3.3. Given a program P, a boolean state m is reachable if and only if m
is reachable in [[P]]t.

Proof. We prove the following inductive claim. The lemma immediately follows.
Claim: A local state q2 is reachable from q1 in [[P]]t if and only if there exist states

g1 and g2 such that loc(g1) = q1, loc(g2) = q2, and (g1, g2) ∈ [[P]].
The proof of the claim is by induction on the structure of the program P. For the

commands skip, v := E, if B then P1 else P2, if * then P1 else P2 and
for i1:=1 to length(A) do P, the lemma follows directly from the definition of
[[P]]t.

Let us consider the inductive case, the sequential composition, i.e. P is P1;P2. We
prove the left-to-right implication, i.e. we assume that a local state q2 is reachable
from q1 in [[P]]t. Let us assume that [[P1]]t = (e1, T1, f1) and [[P1]]t = (e2, T2, f2)
(This is the case when both P1 and P2 contain loops. The other cases are simpler.)
If q2 is reachable from q1 in [[P]]t, then by construction of [[P]]t, there exists a state
qm, such that qm is reachable from q1 in [[P1]]t and q2 is reachable from qm in [[P2]]t.
By applying induction hypothesis twice, we obtain that there exist states g1, gm
and g2 such that loc(g1) = q1, loc(gm) = qm, loc(g2) = q2, and (g1, gm) ∈ [[P1]]
and (gm, g2) ∈ [[P2]]. Using the definition of [[P1;P2]], we obtain that (g1, g2) is in
[[P]], which concludes the proof of left-to-right implication. The proof of the other

implication is similar.

Furthermore, if [[P]]t = (e, T, f) and T = (R, δ, F ), we have that R = Q2k−1,
where k is the number of loops in P, as it can easily be shown that sequential
composition is associative.

Abstract transition system. We fix a program P for the rest of this subsection. Let
[[P]]t be (e, T, f), where T = (R, δ, F ), and R = Q2k−1. We show that we can find
a finite state system Tα (and corresponding relations eα and fα) such that we can
reduce reachability in T to reachability in Tα. The main idea in the construction
of the abstract transition system is that it will keep track of only the order of index
and data variables, not their values.

We will need an abstract version of the set Q. First, we define the notion of
ec-order on a set of variables V . An ec-order ρ = (≡ρ, <ρ) is a pair where the
first component is an equivalence relation on V , and the second component is a
total order on equivalence classes of ≡ρ. For variables v1, v2, we write v1 <ρ v2,
if v1 belongs to an equivalence class c1, v2 belongs to an equivalence class c2, and
c1 <ρ c2. For example, if V = {v1, v2, v3}, all variables have a defined value, then
a possible ec-order on V can be represented as v1 ≡ρ v3 <ρ v2.

Let IV be the set of index and loop variables of P. Let DV be the set of data
variables of P. An abstract state is a tuple (m,SI ,SD), where m is a boolean state
in M , SI is an ec-order on IV and SD is an ec-order on DV ∪ IV . For example,
if a program has an index variable p1, a loop variable i1 and a data variable d1, a
possible abstract state is (m, p1 <SI i1, p1 ≡SD i1 <SD d1). This means that the
program is in a boolean state m, p1 is less than i1, and A[p1] is equal to A[i1]

and is less than d1. Let Qα be the set of abstract states.
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We will also need an abstract version of R, the set of states of T . We consider
sets IV R and DV R, where there are 2k − 1 copies of each variable. Let SIR be an
ec-order on IV R and let SDR be an ec-order on DV R ∪ IV R. We will consider the
set U = M2k−1. Let Rα be the set of abstract states of the form (u,SIR,SDR),
where u is in U .

The abstraction function αQ : Q→ Qα can be defined straightforwardly: αQ(q) =
(m,SI ,SD) iff bool(q) = m and for all index and loop variables p1, p2, we have
that p1 <SI p2 iff q[p1] < q[p2], and p1 ≡SI p2 iff q[p1] = q[p2]. The definition is
similar for SD . We present the case of one index variable p1 and one data variable
v1. We have that p1 <SD v1 iff [[A[p1]]] < q[v1], and p1 = v1 iff [[A[p1]]] = q[v1].
The abstraction function αR : R→ Rα is defined similarly.

We now define the abstract transition system. More precisely, we define [[P]]α =
(eα, Tα, fα) using [[P]]t as follows: Let Tα = (Rα, δα, Fα). The transition relation
δα ⊆ Rα × Rα is defined in a standard way: δα(rα1 , r

α
2 ) iff there exist r1, r2 and a

pair (a, d) ∈ (Σ×D)∗, such that (r1, (a, d), r2) ∈ δ and α(r1) = rα1 and α(r2) = rα2 .
The set Fα of final states is defined as follows: rα ∈ Fα iff there exists r ∈ F and
α(r) = rα. The relation δα∗ denotes the transitive closure of δα. Given a relation
e on Q×R, we define its abstract version eα on Qα×Rα similarly to the definition
of the abstract transition relation. Also, given a relation f on R×Q, we define its
abstract version fα on Rα ×Qα.

The following lemma is the key part of the proof. It relates reachability of a
boolean state in the abstract and concrete systems.

Lemma 3.4. For all rα1 , r
α
2 in Rα,we have that δα∗(rα1 , r

α
2 ) if and only if there

exist r1, r2 ∈ R and a word w ∈ (Σ ×D)∗ such that α(r1) = rα1 , α(r2) = rα2 , and
δ∗(r1, w, r2).

Proof. It is straightforward to prove that if there exist r1, r2 and w such that
α(r1) = rα1 , α(r2) = rα2 , and δ∗(r1, w, r2) then δα∗(rα1 , r

α
2 ). We only need to apply

the definition of δα inductively.
The proof of the other implication uses induction on the length of the path

from rα1 to rα2 that witnesses δα∗(rα1 , r
α
2 ). We will also need the following notion:

The relation Gap(r, o) holds for r ∈ R and o ∈ N iff for all data variables (and
values pointed to by index variables) v1, v2, we have that if r[v1] > r[v2], then
the cardinality of the set {d ∈ D | r[v1] > d > r[v2]} is greater than or equal
to o. Furthermore, if the set D has a minimal element b, we require that for all
data variables (and values pointed to by index variables) v1, we have that the
cardinality of the set {d ∈ D | r[v1] > d > m} is greater than or equal to o. There
is an analogical requirement for the case when D has a maximal element.

The relation δαk (rα1 , r
α
2 ) is defined as follows: δαk (rα1 , r

α
2 ) if there exists a state

rα3 ∈ Rα such that δα(rα1 , r
α
3 ) and δαk−1(rα3 , r

α
2 ) for k > 1; and δα1 = δα.

We will prove the following inductive claim: If δαk (rα1 , r
α
2 ), then for all r1 such

that αR(r1) = rα1 and Gap(r1, 2
k − 1), there exists r2 and a word w ∈ (Σ × D)k,

such that (r1, w, r2) ∈ δ, and αR(r2) = rα2 .
The base case, where k = 0 is straightforward. For the inductive case, sup-

pose that δαk (rα1 , r
α
2 ). Then there exists a state rα3 ∈ Rα such that δα(rα1 , r

α
3 ) and

δαk−1(rα3 , r
α
2 ). Let r1 be such that α(r1) = rα1 and Gap(r1, 2

k − 1). (It is easy
to show that such r1 exists for all rα1 .) We need to find a state r3 ∈ R and a
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pair (a, d) ∈ Σ × D such that (i) (r1, (a, d), r3) ∈ δ, (ii) αR(r3) = rα3 and (iii)
Gap(r3, 2

k−1 − 1).
Informally, the transition can require that the data value d of the current position

(the position pointed to by the loop variable) has to be between two stored values,
but as Gap(r1, 2

k − 1) holds, we can always choose d such that we ensure that
Gap(r3, 2

k−1 − 1). More precisely, we construct r3 as follows: By definition of δα,
there exists r′3, and a pair (a′, d′) such that the properties (i) and (ii) hold for these
values. Let us now compare the value d′ with the data values of r1. Let Data(r) be
the set of data values that appear in the valuation of data variables given by a state
r. Let r11, r

2
1, . . . , r

z
1 be all the distinct data values in Data(r1). Let us assume that

rj1 < rj+1
1 , for all j. We now proceed by case analysis. First, if d′ is equal to one

of the values r11, r
2
1, . . . , r

z
1 , then the property (iii) holds for r′3, and (a′, d′). This is

because in this case, Data(r3) ⊆ Data(r1). Second, let us consider the case where
there exists j such that rj1 < d′ < rj+1

1 . In this case, we consider the data value

d such that the cardinality of {d′′ ∈ D | d > d′′ > rj1]} is greater than or equal to

2k−1− 1, and the cardinality of {d′′ ∈ D | rj+1
1 > d′′ > d]} is also is greater than or

equal to 2k−1−1. Finding such a value d is possible, as we have that Gap(r1, 2
k−1).

Let us now consider a′, d and r3 such that (r1, (a
′, d), r3) ∈ δ (such an r3 exists, as

we have (r1, (a
′, d′), r′3) ∈ δ). We now have that all three properties (i), (ii), and

(iii) hold for a′, d and r3, because Data(r3) \ {d} ⊆ Data(r1), and because of how
d was chosen. The value d is chosen analogically if d′ is smaller (greater) then the
smallest (greatest) value in the set Data(r1).

As we constructed r3 such that the property (iii) holds, we can conclude by using
induction hypothesis for δαk−1(rα3 , r

α
2 ).

A boolean state m is reachable in [[P]]α if there exists an initial state gI , an
abstract state qαI such that α(loc(gI)) = qαI , and states qα2 ∈ Qα, rα1 , r

α
2 ∈ Rα such

that (qαI , r
α
1 ) ∈ eα, δα∗(rα1 , r

α
2 ), (rα2 , q

α
2 ) ∈ fα, and bool(qα2 ) = m.

The next lemma follows from Lemmas 3.3 and 3.4.

Lemma 3.5. Given a program P, a boolean state m is reachable if and only if it
is reachable in [[P]]α.

As noted above, we presented the proof for programs without constants in D.
The proof can be extended to programs with constants in a straightforward way:
Let c1 be the smallest and let c2 be the greatest constant that a given program
P uses. The abstract system [[P]]α will need to track the values between c1 and c2
precisely, and track only the order between the stored values for values less than
c1 or greater than c2. The resulting system will thus still have a finite number of
states (the number of states will be polynomial in the largest constant c2).

Proof (of Theorem 3.2). Using Lemma 3.5, we reduce the reachability prob-
lem for ND1 programs to a reachability problem in a finite state system. Reachability
in a finite state system is in Nlogspace. This means that the reachability problem
for ND1-programs is in Pspace, as the number of states in Tα is exponential in the
number of variables in the program. Furthermore, given two abstract states, rα1
and rα2 , one can decide (in polynomial time in the number of variables), whether
the tuple (rα1 , r

α
2 ) is in δα.
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In order to show that the problem is Pspace-hard, we can reduce Succinct-
Reachability (see [Papadimitriou 1994]) to our reachability problem. Note that the
resulting instance will use only boolean variables, not data or index variables.

A succinct representation of a graph with n nodes, where n = 2b is a power
of two, is a Boolean circuit C with 2b input gates. The graph represented by C,
denoted GC is defined as follows: The nodes of GC are {1, 2, . . . , n}. And [i, j]
is an edge of GC if and only if C accepts the binary representation of the b-bit
integers i and j as inputs. The Succinct-Reachability problem is as follows: given
a succinct representation of a graph, and a vertex r represented as a b-bit integer,
is r reachable from vertex 1?

Given a succinct representation of a graph GC by a circuit C, we construct a
program P as follows: P consists of a single loop over an input array. The body of
the loop nondeterministically encodes the edges of GC , using 2b boolean variables.
More precisely, there are b variables encoding the current vertex, and in the body
of the loop there is a program that can be described on a higher level as follows:
(i) nondeterministically choose vertex j followed by (ii) if (current == i and C[i,j])
then current = j. Each execution of the body of the loop thus amounts to traversing
one edge of the graph. Furthermore, at the end of the body of the loop, there is
a test whether the execution reached vertex r. If the test succeeds, a a specific
boolean state m is entered. In m, a boolean variable f is set to true and all the
other variables are set to false. The ND1-program can be constructed in polynomial
time given the circuit C. The state m is reachable if and only if the vertex r is
reachable in GC . This completes the proof of the lower bound.

4. PROGRAMS, AUTOMATA AND LOGICS ON DATA WORDS

In this section, we will examine the decidability boundary for array-accessing pro-
grams, and compare the expressive power of these programs to that of logics and
automata on data words. We will show that the reachability problem for Restricted-
ND2 programs is decidable, and that it is undecidable for full ND2 programs. We
start by reviewing the results on automata and logics on data words, as these will
be needed for the decidability proof. We will reduce the reachability problem for
Restricted-ND2 programs to the nonemptiness problem of extended data automata,
a new variation of data automata. The latter is a definition intended to correspond
to the notion of regular automata on finite words.

4.1 Background

We briefly review the results on automata and logics on data words from [Bojańczyk
et al. 2006]. Recall that a data word is a sequence of pairs Σ×D. A data language
is a set of data words. Let w be a data word (a1, d1)(a2, d2) . . . (an, dn). The string
str(w) = a1a2 . . . an is called the string projection of w. Given a data language
L, we write str(L) to denote the set {str(w) | w ∈ L}. A class is a maximal set
of positions in a data word with the same data value. Let S(w) be the set of all
classes of the data word w. For a class X in S(w) with positions i1 < . . . < ik, the
class string str(w,X) is ai1 . . . aik .

Data automata. A data automaton (DA) A = (G,C) consists of a transducer
G and a class automaton C. The transducer G is a nondeterministic finite-state
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letter-to-letter transducer from Σ to Γ and C is a finite-state automaton on Γ. A
data word w = (a1, d1)(a2, d2) . . . (an, dn) is accepted by a data automaton A if
there is an accepting run of G on the string projection of w, yielding an output
string b = b1 . . . bn, and for each class X in S(w′), the class automaton C accepts
str(w′, X), where w′ = w′1 . . . w

′
n is defined by w′i = (bi, di), for all i such that

1 ≤ i ≤ n. Given a DA A, L(A) is the language of data words accepted by A. The
nonemptiness problem for data automata is decidable. The proof is by reduction
to a computationally complex problem, the reachability problem in Petri nets.

Logics on data words. We define logics whose models are data words. We consider
two predicates on positions in a data word whose definition also involves the data
values at these positions. The predicate i ≈ j is satisfied if both positions i and
j have the same data value. The predicate i ≺ j is satisfied if the data value
at position i is smaller than the data value at position j. Furthermore, standard
successor (+1) and order (<) predicates on positions in a data word are used. We
consider first order logic with k variables, denoted by FOk. Similarly, EMSOk

stands for FOk formulas preceded by a number of existential quantifications over
sets of word positions.

The results in this paragraph are from [Bojańczyk et al. 2006]. Let us first
consider logics that use the ≈ predicate and not the ≺ predicate. We first note that
for a first order logic FO(≈, <,+1) satisfiability is undecidable, even if we restrict
the number of variables to three. If we restrict the number of variables to two, the
logic becomes decidable, and the proof is by reduction to the nonemptiness problem
of data automata. The decidability naturally extends to existentially quantified
second order monadic logic with two first order variables, denoted by EMSO2(≈
,+1,⊕1). Moreover, EMSO2(≈,+1,⊕1) is precisely equivalent in expressive power
to data automata. The predicate ⊕1 denotes the class successor, and i ⊕ 1 = j is
satisfied if i and j are two successive positions in the same class of the data word.
Furthermore, the logic EMSO2(≈, <,+ω,⊕1) is included in EMSO2(≈,+1,⊕1).
The symbol +ω represents all predicates of the form +k, k ∈ N, i.e. the logic
includes all predicates i+ 2 = j, i+ 3 = j, etc.

Example 4.1. Consider the following data automaton A. The transducer of A
computes the identity function, i.e. it accepts all words and its output string is the
same as its input string. The class automaton ensures, for each class, that the class
contains exactly one occurrence of a, one occurrence of b and one occurrence of c.
For A, we have that str(L(A)), the set of string projections, is exactly the set of
all words over {a, b, c} that contain the same number of as, bs, and cs.

4.2 Extended data automata

Position-preserving class string Note that the class automaton does not know
the positions of symbols in the word w. The symbols from other classes have simply
been erased. However, let us consider a program with a doubly-nested loop:

for i:= 1 to length(A) do

for j:= 1 to length(A) do {
if (A[i].d=A[j].d) then P1 else P2

}
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The inner loop of the program scans the array from left to right and and mod-
ifies the state in two different ways (given by P1 and P2), depending on whether
(A[i].d=A[j].d) holds or not. The inner loop tests (A[i].d=A[j].d) and can
thus be seen operating in a similar setting as the class automaton of a DA. The
analogy does not quite work, because the class string is obtained by simply erasing
all positions from other classes, whereas the inner loop scans the whole array. We
thus define an extension of the notion of class string and a corresponding extension
of the class automaton.

Given a data word w ∈ (Σ × D)∗, a position-preserving class string pstr(w,X)
is a string over Σ ∪ {0}. (We assume that 0 /∈ Σ.) Let w = w1w2 . . . wn, let i be a
position in w, and let wi be (ai, di). The string v = pstr(w,X) has the same length
as w, and for vi we have that vi = ai iff i ∈ X, and vi = 0 otherwise. That is, for
each position i which does not belong to X, the symbol from Σ at the position i is
replaced by 0.

An extended data automaton (EDA) E = (G,C) consists of a transducer G and
a class automaton C. The transducer G is a finite-state letter-to-letter trans-
ducer from Σ to Γ and C is a finite-state automaton over Γ ∪ {0}. A data word
w = w1 . . . wn is accepted by the EDA E if there is an accepting run of G on the
string projection of w, yielding an output string b = b1 . . . bn, and for each class
X in S(w′), the class automaton C accepts pstr(w′, X), where w′ = w′1 . . . w

′
n is

defined as follows: w′i = (bi, di), for all i such that 1 ≤ i ≤ n. Given an EDA E ,
L(E) is the language of data words accepted by E .

Example 4.2. We consider L, a language of data words defined by the following
property: A data word w is in L iff for every class X in S(w), we have that between
every two successive positions in the class, there is exactly one position from another
class. We show that there exists an EDA E = (G,C) such that L(E) = L. The
transducer G computes the identity function. The class automaton C is given by
the following regular expression: 0∗(Σ0)∗0∗. It is easy to see that E accepts L.

We first note that for each DAA, it is easy to find an EDA E such that L(E) = L(A).
We just modify the class automaton C, by adding the tuple (q, 0, q), for each q,
to the transition relation. This means that on reading 0 the state of the class
automaton does not change.

We will also show in this section that for each EDA E we can find an equivalent
DA A. This might not be obvious at a first glance, as class automata of DAs do
not get to see the distances between positions in a class. Indeed, we show that the
language from Example 4.2 cannot be captured by a deterministic DA. However,
we show that EMSO2(≈,+1,⊕1) and EDAs are expressively equivalent, and since
EMSO2(≈,+1,⊕1) and DAs are also expressively equivalent, we conclude that for
every EDA there exists a DA that accepts the same language. Showing that for
every EDA there exists an equivalent EMSO2(≈,+1,⊕1) formula also establishes
that non-emptiness is decidable for EDAs. However, the proof of decidability of
satisfiability of EMSO2(≈,+1,⊕1) formulas is rather involved. We present a direct
proof for decidability of emptiness for EDAs, as it gives an intuitive reason why
emptiness is decidable for EDAs. This is the second main result of the paper.
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Fig. 3. A connected component of a graph C0 corresponding to an EDA E

Theorem 4.3. Given an EDA E, it is decidable whether L(E) = ∅.

Proof. Given an EDA E , we construct a multicounter automaton V , such that
L(E) is empty if and only if L(V ) is empty. The emptiness problem is decidable
for multicounter automata. The proof in [Bojańczyk et al. 2006] of decidability
of emptiness of data automata also uses reduction to emptiness of multicounter
automata. We extend the reduction.

We start by describing a more operational view of EDAs. Let E = (G,C) be an
EDA, let G be defined by a tuple (QG,Σ,Γ, δG, q

G
0 ,

FG), and let C be defined by a tuple (QC ,Γ, δC , q
C
0 , FC). A run of an EDA on

a data word w is a function % from positions in w to tuples of the form (q, o, c),
where q ∈ QG is a state of the transducer G, o (a symbol from Γ) is the output of the
transducer, and c is a function from S(w) toQC , the set of states of C. Furthermore,
we require that % is consistent with δG and δC , the transition functions of G and
C. We define %(0) to be (qG0 , γ, λX.q

C
0 ), i.e. the transducer and all the copies of the

class automaton are in initial states. Furthermore, for each position i, %(i) is equal
to (q′, o′, c′) if and only if wi = (a, d), %(i− 1) = (q, o, c) and (i) (q′, o′) ∈ δG(q, a),
(ii) for the unique X such that i ∈ X we have c′(X) ∈ δC(c(X), o′), (iii) for X such
that i /∈ X we have c′(X) ∈ δC(c(X), 0).

A run is accepting iff %(n) = (q, o, c), q is a final state of G and for all X in S(w),
we have that c(X) is a final state of C.

Let us consider the class automaton C. Without loss of generality, we suppose
that C is a complete deterministic automaton on Γ ∪ {0}. The transition function
δC defines a directed graph C0 with states of C as vertices and 0-transitions as
edges, i.e. there is an edge (p1, p2) in C0 if and only if δC(p1, 0) = p2. Every vertex
in C0 has exactly one outgoing edge (and might have multiple incoming edges).
Therefore, each connected component of C0 has exactly one cycle. A vertex is
called cyclic if it is part of a cycle, and it is called non-cyclic otherwise. It is easy
to see that each connected component is formed by the cyclic vertices and their
0-ancestors. An example of a connected component is in Figure 3. The vertex
labeled q6 is cyclic, its ancestors q9, q10, q11 are non-cyclic.

The graph C0 consists of a number of connected components. We denote these
components by Cj0 , for j ∈ [1..k], where k is the number of the components. Let
W be the set of all non-cyclic vertices. For each non-cyclic vertex v, let D(v) be
defined as follows: D(v) = d for non-cyclic vertices connected to a cycle, where d
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is the length of the unique path connecting v to the closest cyclic vertex. For the
graph C0, we define D(C0) to be maxv∈W D(v).

Let i be a position in a data word w. The data word w1w2 . . . wi is denoted by
prefix (w, i). Let us consider a position i in a data word w and the set of classes
S(w). Let Sact(w, i) be a set of active classes, i.e. classes X such that there is a
position in X to the left of the position i. More formally, a class X ∈ S(w) is in
Sact(w, i) if the string str(prefix (w, i), X) is not equal to 0i.

Lemma 4.4. Let % be a run of E on w. Let i be a position in w. Let %(i) be
(q, o, c). The number N of classes X, such that X is in Sact(w, i) and c(X) is a
noncyclic vertex, is bounded by D(C0), i.e. N ≤ D(C0).

Proof. Let i be a position in a word w. If i ≤ D(C0), then the number of active
classes is at most D(C0), and we conclude immediately.

Let us consider the case i > D(C0). Let %(i) be (q, o, c) and let s be the string of
length D(C0) defined by s = wi−D(C0)+1 wi−D(C0)+2 . . . wi. There are two possible
cases for each class X in S(w):

—pstr(s,X) = 0D(C0). Let %(i − D(C0)) = (q′, o′, c′), and let c′(X) = v. We
can easily prove that δ∗C(p, 0e) is not in W , for all p and for all e ≥ D(p). By
definition, D(C0) ≥ D(q′). Therefore, we can conclude that c(X) 6∈W .

—pstr(s,X) 6= 0D(C0). This is true for at most D(C0) classes, because, for all
positions x, there is exactly one class X, such that the symbol at the position x
of the class string pstr(s,X) is not 0.

Therefore we have that c(X) ∈W for at most D(C0) classes.

We reduce emptiness of EDAs to emptiness of multicounter automata. Multicounter
automata are equivalent to Petri nets [Gischer 1981], and thus the emptiness of
multicounter automata is decidable. We use the definition of multicounter automata
from [Bojańczyk et al. 2006].

A multicounter automaton is a finite, non-deterministic automaton extended by
a number k of counters. It can be described as a tuple (Q,Σ, k, δ, qI , F ). The set
of states Q, the input alphabet, the initial state qI ∈ Q and final states F ⊆ Q are
as in a usual finite automaton.

The transition relation is a subset of Q×(Σ∪{ε})× {inc(i), dec(i)}×Q. The idea
is that in each step, the automaton can change its state and modify the counters,
by incrementing or decrementing them, according to the current state and the
current letter on the input (which can be ε). Whenever it tries to decrement
a counter of value zero the computation stops and rejects. The transition of a
multicounter automaton does not depend on the value of the counters in any other
way. In particular, it cannot test whether a counter is exactly zero. Nevertheless,
by decrementing a counter v times and incrementing it again afterward it can check
that the value of that counter is at least v.

A configuration of a multicounter automaton is a tuple (q, (ci)i≤n), where q ∈
Q is the current state and ci ∈ N is the value of the counter i. A transition
(p, ε, inc(i), q) ∈ δ can be applied if the current state is p. For a ∈ Σ, a transition
(p, a, inc(i), q) ∈ δ can be applied if furthermore the current letter is a. In the
successor configuration, the state is q, while each counter value is the same as
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before, except for counter i, which now has value ci + 1. Similarly, a transition
(p, a, dec(i), q) ∈ δ with a ∈ Σ ∪ {ε} can be applied if the current state is p, the
current letter is a, if a ∈ Σ, and counter i is non-zero. In the successor configuration,
all counter values are unchanged, except for counter i, which now has value ci =
ci − 1. A run over a word w is a sequence of configurations that is consistent
with the transition function. A run is accepting if it starts in the state qI with all
counters empty and ends in a configuration where all counters are empty and the
state is final.

Lemma 4.5. Let E be an EDA. A multicounter automaton V such that str(L(E)) =
L(V ) can be computed from E.

Proof. We present the construction of a multicounter automaton V that simu-
lates E . The multicounter automaton V simulates the transducer G and a number
of copies of C. There is one copy per class in S(w), where w is the word the au-
tomaton is reading. We say that a class automaton performs a 0-transition if the
input symbol it reads is 0, and it performs a Γ-transition if the input symbol it
reads is from Γ. Intuitively, at each step, the automaton V :

(1) Simulates the transducer G using the finite state part (i.e. not the counters).

(2) It guesses to which class the current position belongs, and it executes the Γ-
transition of the automaton for that class with the symbol that is the output of
the transducer at this step. For all the other simulated automata, V executes
the 0-transition. (This is sufficient because each position belongs to exactly
one equivalence class.)

The counters of the multicounter automaton V correspond to the cyclic vertices
in C0. (In what follows, we call a state of C (non-)cyclic if it corresponds to a
(non-)cyclic vertex in C0.) The value of the counter h corresponds to the number
of copies of C currently in the state h. The finite part of the automaton state tracks
the number of copies in each non-cyclic state. The key idea of the proof is that the
total number of copies in non-cyclic states is finite and bounded (by D(C0)). This
fact is implied by Lemma 4.4.

Furthermore, one copy e of the class automaton is used to keep track of all the
classes that are not active yet, i.e. not in Sact(w, i) at step i - thus when a position-
preserving class string contains a symbol in Γ for the first time, a new copy of the
automaton C is started from the state at which the copy e is.

Let γ ∈ Γ be the current input symbol. The automaton works as follows: The
first step consists of the automaton V nondeterministically guessing the equivalence
class X to which the current position belongs. The copy of the class automaton for
X is then set aside while the second step is performed. That is, if the copy is in
state s, then s is remembered in a separate part of the finite state. In the second
step, the automaton V simulates 0-transitions for all the other copies (other than
the copy that performed the Γ-transition). For copies in non-cyclic states, this is
done by a transition modifying the finite state of V . The copies that transition
from a non-cyclic to a cyclic state are dealt with by modifying the finite state and
increasing the corresponding counter. The copies in cyclic states are tracked in
the counters. Note that if we restrict the graph to only cyclic states, each state
has exactly one incoming and one outgoing 0-edge. For all the copies in cyclic

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



Algorithmic Analysis of Array-Accessing Programs · 21

states, the 0-transition is accomplished by ’relabeling’ the counters. This is done
by remembering in the the finite state of V for each loop for one particular state
to which counter it corresponds. This is then shifted in the direction of the 0-
transition.

The third step is to perform the Γ transition for the class X. For the copy of the
automaton corresponding to this class, a Γ-transition is performed. That is, if it is
in state q, and δ(q, γ) = q′, then there are four possibilities:

—If q, q′ are cyclic states, the counter corresponding to q is decreased and the
counter corresponding to q′ is increased.

—If q, q′ are non-cyclic state, a transition that changes the state of V is made.

—If q is a cyclic state and q′ is a non-cyclic state, the counter corresponding to q
is decreased, and the finite state of V is changed to reflect that the number of
copies in q′ has increased.

—If q is a noncyclic state and q′ is a cyclic state, the transition is simulated similarly.

This concludes the proof of Lemma 4.5.

Lemma 4.5 reduces the emptiness problem for EDAs to the emptiness problem
for multicounter automata. As the latter is decidable, we can conclude the proof
of Theorem 4.3.

4.3 Restricted doubly-nested loops

Language of a program.. Given a program and a boolean state m, the language
Lm(P) is the set of data words w, such that there exist an initial state gI and a
state g, such that gI [A] = w, bool(g) = m, and (gI , g) ∈ [[P]]. In order to define the
language of a program, we extend the notion of a program by designating one of
its boolean state as the final state. The language L(P) is defined by L(P) = Lm(P)
where m is the final state. We say that a program P accepts the language L(P).

Theorem 4.6. Reachability for Restricted-ND2 programs is decidable.

Proof. We will reduce the reachability problem of Restricted-ND2 programs to
the emptiness problem of EDAs. The main idea of the proof is that the transducer
G guesses an accepting run of the outer loop, while the class automaton C checks
that the inner loop can be executed in a way that is consistent with the guess of
the transducer.

We present the proof for programs where the loops are not sequentially composed.
We assume a program P of the following form:

for i1 := 1 to length(A) do {
P1;

for j1:= 1 to length(A) do P2;

P3

}

where P1, P2, P3 are loop free programs. We present the proof for programs of
this form. It can be extended for general Restricted-ND2 programs (which allow
sequential composition of loops) using product construction techniques similar to
those from the proof of Theorem 3.2. Similarly to the proof of Theorem 3.2, we
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assume that that the length of the array is non-zero. (In the case the length of
the array is zero, the program effectively contains no loops, and reachability can
be computed in time polynomial in number of variables.) Recall that according
to the definition of Restricted-ND2 programs, P2 must be of the following form:
if A[i1].d=A[j1].d then P21 else P22, where P22 cannot contain A[i1].d or
A[i1].s.

Given a boolean statemr, we construct an EDA E = (G,C) such that w ∈ Lmr
(P)

iff w ∈ L(E).
The task of the transducer G is to guess an accepting run of the outer loop. The

output alphabet Γ of the transducer consists of tuples in Σ×M ×M ×V , where M
is the set of boolean states of the program P. The set V is defined as VC ∪V ′C ∪{e},
with e /∈ V . The set VC is the set of all constants from D that appear in the
program P. The set V ′C contains a symbol c′ for each c ∈ VC . The symbol e will
represent the fact that the current input is not equal to any of the constants in the
program.

If a position i is marked with (ai,m,m
′, v), the class automaton corresponding

to class X such that i ∈ X will verify that if the inner loop, which ran when the
loop variable of the outer loop pointed to i, was started at m, then it will finish at
m′.

First, let us summarize the effect of the loop-free subprograms P1 and P3 by
relations f1, f3 ⊆M×(Σ×V )×M . The programs P1 and P3 can access the boolean
state, read the value [[A[i1].s]], compare the value [[A[i1].d]] to constants, and
modify the boolean state.

The transducer reads a word a1a2 . . . al ∈ Σ∗, and produces a word b1b2 . . . bl ∈ Γ∗

such that:

—b1 = (a1,m,m
′, v), for some m such that there exists a global state gI such that

(bool(gI), (a1, v),m) ∈ f1.

—for all i such that 1 ≤ i < l, if bi = (ai,m1,m2, v) and bi+1 = (ai+1,m
′
1,m

′
2, v
′),

then there exist boolean states m3, m′1, m′2 such that (m2, (ai, v),m3) ∈ f3 and
(m3, (ai+1, v

′),m′1) ∈ f1.

—bl = (al,m,m
′, v), for some m ∈M and v ∈ V such that (m′, (al, v),mr) ∈ f3.

—There is an additional requirement on the fourth component of the tuple (a,m,m′, v)
that will enable the class automaton to verify that the position of constants has
been guessed consistently. The transducer guesses a value in VC ∪ {e}, but at
the rightmost position where it guesses a particular value v ∈ VC , it outputs v′

instead of v. This enables the class automata to check that each value v ∈ VC
has been guessed for at most one class.

We now define the class automaton C. Its task is to check that the inner loop
can be executed in a way that is consistent with the guess of the transducer. The
position preserving class string defined by a data value d looks as follows:

00(a1,m1,m
′
1, v1)000(a2,m2,m

′
2, v2) . . . 0(ao,mo,m

′
o, vo)00

In more details, the task of the class automaton is twofold. First, it checks
that if we consider only non-0 elements of the sequence and project to the fourth
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component of the tuple, the sequence observed is either of the form e∗ or v∗v′, for
a constant v. This ensures that constants have been guessed consistently, i.e. that
each constant has been assigned to a unique class, and at most one constant has
been assigned to a class.

Second, the class automaton for a class X checks that the inner loops that ran
when i1, the variable of the outer loop, pointed to one of the positions belonging
to X, can run as the transducer has guessed. That is, if the position i ∈ X has
a tuple of the form (ai,mi,m

′
i, v), the inner loop that started at state mi, with

the value of i1 equal to i, will finish at state m′i. It is not difficult to construct a
regular automaton for this condition.

The proof of Theorem 4.6 gives rise to a decision procedure, but one whose
running time is non-elementary. The reason is that while the problem of reachability
in multicounter automata is decidable, no elementary upper bound is known.

However, the following proposition shows that the problem is at least as hard
as the reachability in multicounter automata, which makes it unlikely that a more
efficient algorithm exists. The best lower bound for the latter problem is Ex-
pspace [Lipton 1976].

Proposition 4.7. The reachability problem for multicounter automata can be
reduced in polynomial time to the reachability problem for Restricted-ND2 programs.

Proof. Given a multicounter automaton A, we construct a Restricted-ND2 pro-
gram P operating on data words that encode runs of A. The proof is similar to the
proof of Theorem 14 from [Bojańczyk et al. 2006].

More precisely, we will construct a program P with a boolean state m such that
Lm(P) is non-empty if and only if there is an accepting run of A, i.e. iff L(A) is
non-empty.

Let A be defined by the tuple (QA,ΣA, kA, δA, q
A
I , FA). The array of the program

P is a word on ΣA ×D. The set ΣA is defined as QA ∪ {Ij | 1 ≤ j ≤ kA} ∪ {Dj |
1 ≤ j ≤ kA}. Ij models the increase operation of the counter j, and similarly, Dj

models the decrease operation of the counter j. A transition (q1, inc(j), q2) ∈ δA is
encoded by having q1, Ij and q2 as ΣA values in successive positions. A transition
(q1, dec(j), q2) ∈ δA is encoded by having q1, Dj and q2 as ΣA values in successive
positions.

The program P consists of two sequentially composed parts. The first part is
a single non-nested loop that examines only the ΣA part of the data word, and
check whether: (a) the first symbol is the initial state of A, (b) the word encodes
transitions in δA, and (c) the last position contains a state in FA. The second
part uses data values to check that each decrement matches exactly one previous
decrement, and each increment matches exactly one subsequent decrement, that
is, the counters are never less than zero, and are equal exactly to zero at the end
of the computation. This is ensured by requiring that each occurrence of Ij has a
different data value, while each occurrence of Dj has the same data value as exactly
one preceding Ij .

It is easy to write a Restricted-ND2 program (of polynomial size) that checks the
second part above.

b:=false;
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b1:=true;

for i:= 1 to length(A) do {
if (A[i].s = I j) {
for j:= 1 to length(A) do {

b1 := checkForD j

}
}
...

}
if b1:=true then b:=true;

The code fragment above shows the core structure of the program P. The reach-
ability question we will ask is whether a state where b is true is reachable. The
variable b is set to true at the end of the program if b1 is true, which will be the case
only if no error was found during the tests such as checkForDj above. Note that
checkForDj denotes a few lines of code, it is not a procedure call. This particular
test is run if the ΣA part of the current element in the outer loop is equal to Ij and
the test checks whether the equivalence class of the current element contains exactly
two elements, with the other element at a position greater than the current value
of i (no order tests need to be used, this can be checked by switching a boolean
variable when i = j holds) and its ΣA part contains Dj .

4.4 Undecidable extensions

We show that if we lift the restrictions we imposed on Restricted-ND2 programs,
the reachability problem becomes undecidable.

Theorem 4.8. The reachability problem for ND2 programs is undecidable.

Proof. The proof is by reduction from the reachability problem of two-counter
automata [Minski 1962]. We note that the proof also implies that the reachability
problem is undecidable even for ND2 programs that do not access the order on the
data domain and do not use index or data variables.

Two-counter automaton has a finite set of states and two integer counters. The
main difference between two-counter automata and multicounter automata is that
a two-counter automaton can test whether the value of a counter is equal to 0.
More precisely, a two-counter machine is a tuple (Q, δ, q0, F ), where Q is a set of
states, q0 ∈ Q is an initial state and F ⊆ Q is a set of final states. The transition
relation δ is a subset of Q × (({+} × {1, 2} × Q) ∪ ({−} × {1, 2} × Q × Q)). A
configuration is a tuple in Q × N × N representing the current state and current
values of the two counters. At each step, the machine can either increment one of
the counters and transition to a new state, or (try to) decrement one of the counter
and transition to one of two possible new states depending on whether the value
of the counter was 0. The automaton accepts by final state. It is well-known that
the nonemptiness problem for two-counter automata is undecidable [Minski 1962;
Lambek 1961].

Given a two-counter automaton A, we construct an ND2 program P that has a
boolean state m such that for all data words w, we have that w ∈ Lm iff w encodes
runs of A. A configuration (q, i, j) is encoded as a data word as follows: The Σ
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part of the data word will be of the form

(#q${a, b}h1${a, b}h2)∗

where Σ = {#, $} ∪ Q ∪ {a, b}. The first counter is represented between the first
and second $ symbols and its value is given by the number of times the symbol a
occurs. Similarly, the second counter is represented between the second and third $
symbols. A run is a sequence of configurations, and it will be encoded as a sequence
of encodings of configurations. Note that the maximal value the counters can have
in a run (denoted by h1, h2 above) does not change during the run in this encoding.

The ND2 program P checks that the run has the form above, the first configuration
has an initial state and the values of counters are zero, the last configuration in the
input word has a final state, and that the transition relation δ is respected at every
step. We describe how the program checks the last condition.

Let us consider two successive configurations, represented as follows:

. . .#q$C1$C2#q′$C ′1$C ′2# . . .

Let us describe how the program check that the length of the string C1 is the
same as the length of the string C ′1. The program first checks that every data value
that appears in the C1 part appears there exactly once, and appears exactly once in
the C ′1 part. Similarly, every data value that appears in the C ′1 part should appear
there exactly once, and should appear exactly once in the C1 part. The program
also checks that every data value d in the C1 and C ′1 parts of the data word appears
in pairs (a, d) or (b, d), and not in pairs with other symbols from Σ.

The program guesses a transition and checks that it matches the two successive
configurations. We proceed by case analysis on the form of tuples in the tran-
sition relation. Let us suppose that the transition guessed is given by the tuple
(q1,+, 1, q2). The automaton checks that q = q1, q′ = q2, the value of the first
counter (represented by C1) has increased by one and the value of the second
counter has not changed. We show how a program can check that the value of the
first counter increased by one:

—If a data value d appeared in the C1 part in a pair (a, d), then it appears in the
C ′1 part in a pair (a, d).

—Let d be the leftmost data value d that appears in the C1 part in a pair (b, d).
The program checks that it appears in the C ′1 part in a pair (a, d).

—For all other data values that appear in the C1 part in a pair (b, d), the program
checks that they appear in a pair (b, d) in the C ′1 part.

It is easy to see that an ND2 program can check these conditions. In order to check
the first condition in the list above, we can construct an ND2 program as follows:
Let i be the loop variable of the outer loop. The boolean state of the program
keeps track of whether the A[i].s is #, or is in the C1 part or in the C2 part. If
it’s in the C1 part and A[i].s is a, the inner loop is used to find the data value
A[i].d in the C ′1 part. Once the inner loop finds this value, say at position j, it
checks whether A[j].s is a. (Note that the inner loop accesses the A[j].s value even
when A[i].d is not equal to A[j].d, thus violating the syntactical restriction from
the definition of Restricted-ND2 programs.) The program thus determines that the
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number of a’s has increased by one. Checking that the value of the second counter
has not changed can be done similarly. Conformance to other transition tuples can
be verified analogically. Therefore we can conclude that for all words w, we have
that w ∈ Lm(P) if and only if w represents an accepting run of the two-counter
automaton. This concludes the proof of Theorem 4.8.

There are three restrictions in the definition of Restricted-ND2 programs — (i)
they do not use data or index variables, (ii) they do not access the order on data
values, and (iii) the syntactical restrictions on the inner loop. The proof of The-
orem 4.8 shows that if we lift restriction (iii), the reachability problem becomes
undecidable.

We now show that lifting restriction (i) or (ii) leads to undecidable reachability
problem as well. Let OrderND2 programs be programs with nesting depth at most
2 that do not use index or data variables. Furthermore, there is a restriction on
the syntax of the code inside the inner loop. Let P1 be the code inside an inner
loop, and let i be the loop variable of the outer loop and let j be the loop variable
for the inner loop. P1 must be of the following form: if A[i].d=A[j].d then P2

else P3. Furthermore, P3 cannot refer to A[j].s (but note that P3 can compare
A[i].d and A[j].d e.g. by A[i].d < A[j].d). The DataVarND2 programs are
defined similarly, the only difference from OrderND2 programs is that DataVarND2

cannot access order on the data values, but can have data and index variables, and
can compare the value A[j].d to the value of data variables.

Proposition 4.9. Reachability for OrderND2 programs is undecidable. Reacha-
bility for DataVarND2 programs is undecidable.

Proof. We modify the proof of Theorem 4.8. Let i be the loop variable of the
outer loop, and let j be the loop variable of the inner loop, as before. Recall that
in the proof of Theorem 4.8, it was necessary to access A[j].s even if A[j].d was
different than A[i].d. This falls out of restriction given by OrderND2 programs. We
thus have to modify the encoding of the computation of the two-counter automaton.
We will still represent computations as strings of the form:

. . .#q$C1$C2#q′$C ′1$C ′2# . . .

The inner loop had to access the Σ value of a position even if the data values
A[j].d and A[i].d are not equal, because it had to determine if it had passed the
$ sign, in order to see whether the current position is in the C1 or C2 part. We will
now use a different encoding to enable the inner loop to determine this. The even
positions in the string will encode the computation of the two-counter automaton.
The odd positions (more precisely, the data values at the odd positions) encode
whether the next even position has a sentinel symbol (# or $) or a value from the
set {q, a, b} as the Σ-value. Let DC be a set of data values, with size of DC being
at least max(h1, h2), where h1 (resp. h2) is the size of the substrings C1 (resp. C2).
Let d1 and d2 be two values in D, such that d1 is smaller than all the values in
DC and d2 is greater than all the values in DC (it is always possible to find such
a set DC and values d1 and d2, as D is infinite). The data values of odd positions
will be either equal to d1 or d2, with d1 indicating that the next position contains
a sentinel symbol and d2 indicating that the next position contains a symbol in
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{q, a, b}. When the loop variable of the outer loop is at a position in the C1 part or
in the C2 part position, the inner loop can test whether the odd position contains
d1 and d2 by testing A[i].d < A[j].d.

The proof for the DataVarND2 programs is similar — we again use two different
values for odd positions, and test these values via equality to a data variable. The
data variable is set to the first position in the word.

4.5 Expressiveness

In this subsection, we compare expressiveness of logics and automata on data words
and array-accessing programs. We make our comparisons in terms of languages
of data words these formalisms can define. For logics and automata, the notion
of expressiveness is standard. For programs, recall that we defined a language
corresponding to a program and in Section 4.3.

The following proposition shows that EDAs and EMSO2(≈,+1,⊕1) are equally
expressive. This means that somewhat surprisingly, DAs and EDAs are expressively
equivalent.

Proposition 4.10. EDAs and EMSO2(≈,+1,⊕1) are equally expressive.

Proof. The fact that EDAs are at least as expressive as EMSO2(≈,+1,⊕1)
follows from two facts mentioned in Sections 4.1 and 4.2. First, the logic EMSO2(≈
,+1,⊕1) and data automata are equally expressive, and second, for each DA there
exists an EDA that accepts the same language on data words.

To show that EMSO2(≈,+1,⊕1) is at least as expressive as EDAs, we present
a construction that given an EDA E constructs an EMSO2(≈,+1,⊕1) formula ϕ
such that for all words w ∈ D∗, w |= ϕ iff w ∈ L(E).

First, we recall a result of [Bojańczyk et al. 2006] that states that EMSO2(≈
,+1,⊕1) and EMSO2(≈, <,+ω,⊕1) are expressively equivalent. It is thus suffi-
cient to construct an EMSO2(≈, <,+ω,⊕1) formula. The construction is similar
to classical simulation of finite state automata in EMSO2(+1).

We present only the core part of the proof that is different from the classical
construction. A formula ϕ that simulates an accepting run of E is constructed. It
needs to simulate the run of the transducer, as well as the run of a priori unbounded
number of copies of the class automaton. We present the simulation of the runs
of copies of the class automaton C. Note that we cannot mark (via existentially
quantified monadic second order variables) each position in the string with the state
of all the copies of C. Instead, monadic second order variables will correspond to
single states of C, and each position in a word is marked by exactly one of these
state predicates. If the position p is in class X, it will be marked with a state
in which the copy of C corresponding to X is at p. The task of the first order
part of ϕ is then to verify, for each class, that the labeling encodes an accepting
run of the class automaton. As part of this task, it needs to verify that a correct
number of 0 positions appeared between successive class positions. If Pq and Pq′

are labels on successive class positions p and p′, then one needs to verify that the
class automaton that ran with the position-preserving class string as input and thus
saw the 0 symbols will indeed be in the state q′ after processing the string of 0s
followed by the symbol at position p′. The formula that verifies this condition of
course depends closely on the transition relation of the class automaton. We will
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not present the proof for a general transition relation, but will use an illustrative
example. Let us suppose that the class automaton (its 0-transitions) are as depicted
in Figure 3, and let us suppose that position p is labeled by q1 and position p′

with a Γ symbol a is labeled with a some state s such that there is a transition
δC(q7, a) = s. The formula now needs to check that the distance between p and p′

is 6 + 5i, for some i, as this would guarantee that the class automaton transitions
to q4 on the initial string. The part of the formula that checks this property is:

∀x ∀y (x⊕ 1 = y ∧ Pq(x) ∧ Pq′(y))→

(
∧

1≤k≤5

∀y ((x+ k = y)→ (x 6≈ y)))∧

C0(x)↔ C1(y) ∧ C1(x)↔ C2(y) ∧ C2(x)↔ C3(y)∧
C3(x)↔ C4(y) ∧ C4(x)↔ C0(y)

where C0, C1, C2, C3, C4 are existentially quantified monadic second order predi-
cates that are used for counting modulo the length of the cycle (which is 5 in the
example). Note that this is an FO2(≈, <,+ω,⊕1) formula.

The following proposition sheds light on the difference between DAs and EDAs.
We saw that DAs and EDAs are expressively equivalent. However, one difference
between EDAs and DAs is that deterministic EDAs are more expressive than de-
terministic DAs. It is the nondeterminism that then levels the difference.

Proposition 4.11. Deterministic EDAs are more expressive than deterministic
DAs.

Proof. Let L be the language defined in Example 4.2. We showed that there is
a deterministic EDA E such that L(E) = L.

We now show that there is no deterministic DA A = (GA, CA) such that L(A) =
L. The proof will be by contradiction. We suppose that there is such a data
automaton. As the alphabet Σ is a singleton, the Σ part of the data word is
determined by the length of the word in this case. We therefore define data words
only by their data part in the rest of this proof. Let k be the number of states
of the transducer GA. We consider a data word w1 = (d1d2)k+1, where d1, d2 are
two distinct values in D. This word is in L. There is therefore an accepting run
of GA. Let us consider the even positions in w1. Clearly, there are two positions
2i and 2j such that k + 1 > 2i > 2j and GA is in the same state at 2i as it
is at 2j. We now consider the words w2 = (d1d2)i(d1d2)k+1−j(d1d4)j−i and w3 =
(d1d2)i(d1d3)j−i(d1d4)k+1−j . Note that both w2 and w3 are in L and the run of the
transducer GA on both of these words is the same as on w1, as GA is deterministic
and the Σ parts of w1, w2, and w3 are the same.

Now we look at the word w4 = (d1d2)i(d1d3)j−i(d1d2)k+1−j and show that it is
accepted by E . Again, the run of the transducer is the same as for w1. The class
automaton for the class corresponding to d1 reads the same input as was the case
for w1. The class automaton for the class corresponding to d2 reads the same input
as was the case for w2 (here the fact that the transducer is in the same state at 2i
and 2j is used), and the class automaton for the class corresponding to d3 gets the
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same input as was the case for w3. Therefore in each case, the class automaton CA
accepts its input. Thus we have reached a contradiction, as w4 is not in L.

We show that nondeterminism adds to the expressive power of EDAs. We will
use the following example for the proof.

Example 4.12. Let L# be the language of data words defined by the following
properties: (1) str(w) = a∗$a∗, (2) the data value of the $-position occurs exactly
once, and each other data value occurs precisely twice — once before and once after
the $ sign, and (3) the order of data values in the first a-block is different from the
order of data values in the second a-block.

Proposition 4.13. Deterministic EDAs are strictly less expressive than EDAs.

Proof. There exists a nondeterministic EDA for the language L# from Exam-
ple 4.12 (we can use the DA constructed in [Bojańczyk et al. 2006] in Example 8).
It remains to prove that there is no deterministic EDA that accepts the language
L#. The proof is by contradiction. Let us assume that there exists a deterministic
EDA E = (G,C) that accepts L#.

Let n be the number of states G. For the automaton C, we assume (without loss
of generality) that it is deterministic. Consider the graph C0 and its components
Cj0 for j ∈ [1..k], as defined in the proof in Theorem 4.3. For each component Cj0
let loop(Cj0) be the length of the loop in Cj0 . Let K0 be the product of the lengths

of the loops, i.e. K0 =
∏
j:1≤j≤k loop(Cj0). Recall the definition of D(C0) from the

proof of Theorem 4.3. Let K be the smallest multiple of K0 greater than D(C0).
Let w be the word (a, d1)(a, d2)...(a, dK(n+2))($, d)(a, d1)(a, d2) . . . (a, dK(n+2)),

where d1, . . . , dK(n+2), d are distinct. The word w is not in the language, but we
show that there is an accepting run of E on this word. Let us consider the following
n + 1 position in the first part of the word: K, 2 ·K, 3 ·K, . . . , (n + 1) ·K. There
exist integers p′1 and p′2, such that 1 ≤ p′1 < p′2 ≤ n + 1 and G has the same state
after reading the positions p1 and p2, where p1 = p′1 ·K and p2 = p′2 ·K. Let v be
the data word obtained by switching the data values at p1 and p2. We can observe
that the run of G on v and w is the same. The position-preserving class strings
for classes other than the classes defined by dp1 and dp2 are the same. Consider
the position-preserving class string sv of the word v for the class defined by the
value dp1 . It is of the form 0p2−1(a, dp1)0k(n+2)−p20 . . .. The corresponding string
sw in w is of the form 0p1−1(a, dp1)0K(n+2)−p10 . . .. It is easy to see that C does
not distinguish between the two strings in the following sense: (a) C has the same
state after reading the position p2 of sv as it does after reading the position p1 of
sw, and (b) C has the same state after reading the position K(n + 2) + 1 in both
sv and sw. (We use (a) to show (b).) We now use the same argument for the class
defined by dp2 . We have thus shown that the accepting run of E on v can be used
to construct the accepting run of E on w, which creates a contradiction.

We will now compare the expressive power of array-accessing programs to logics
and automata on data words. Specifically, we will use the logic EMSO2(≈,+1,⊕1)
for comparison. Recall that this logic is expressively equivalent to data automata.
We first show that Restricted-ND2 programs are not as expressive as EMSO2(≈
,+1,⊕1).
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Proposition 4.14. Restricted-ND2 programs are strictly less expressive than
EMSO2(≈,+1,⊕1).

Proof. The proof of Theorem 4.6 gives, for each Restricted-ND2 program P

and a boolean state m, an equivalent EDA E . In the proof of Proposition 4.10,
we have constructed an EMSO2(≈,+1,⊕1) formula equivalent to a given EDA.
Therefore, for every Restricted-ND2 program P and its boolean state m, we can find
an EMSO2(≈,+1,⊕1) formula ϕ such that w ∈ Lm(P) iff w |= ϕ.

We will now show that there is a language of data words that can be specified
by an EMSO2(≈,+1,⊕1) formula ϕ, but not by a Restricted-ND2 program. We
will use Example 4.12. We have stated that the language L# can be captured by a
nondeterministic EDA, and thus by an EMSO2(≈,+1,⊕1) formula. We show that
there is no Restricted-ND2 program P that captures L#.

For a proof by contradiction, let us assume that there is a Restricted-ND2 program
P and a state m, such that Lm(P) = L#. Without the loss of generality, we make the
following two assumptions. First, we can assume that the program contains only one
(nested) loop, because to every program with sequentially composed loops, we can
construct an equivalent program with only one nested loop, by using a construction
similar to the one in Theorem 3.2, where we combined sequentially composed loops
into a single traversal. Second, we assume that the inner loop of the nested loop is
deterministic, as the inner loop can be determinized using a subset construction, as
for the classical finite state machines. The nondeterministic choices are then only
in the outer loop.

Recall the restriction on the code of the inner loop. The body of the loop must be
of the following form: if A[i].d=A[j].d then P2 else P3, where i is the loop
variable of the outer loop, and j is the loop variable of the inner loop. Furthermore,
P3 cannot refer to A[j], i.e. it does not contain occurrences of A[j].d or A[j].s.
The computation of the inner loop can therefore be seen as a computation of a
finite automaton I on a string over the alphabet Σ ∪ {0}, similarly as for the
class automaton of an EDA. As in the proof of Proposition 4.13, we analyze the
restriction of the automaton I to the letter 0 in order to define the numbers K0

and K as in that proof.
Let us consider a data word w = (a, d1)(a, d2)...(a, dN )($, d)(a, d1)(a, d2) . . . (a, dN ),

for N = K0 +K+2. Let e = K0 +1, and let f = K0 +K+1. Let v be a data word
obtained by switching the first two occurrences of de and df . Clearly, w 6∈ L#, but
v ∈ L#. However, given an accepting execution rv of P on v, we can construct an
accepting execution rw of P on w, and thus obtain a contradiction. We prove that
given any value of i (the loop variable of the outer loop), and an execution riv on v
of the inner loop with that value of i, we can construct an execution riw of the inner
loop on w that starts and finishes in the same state as riv. For values of i other
than e, f , N + 1 + e, N + 1 + f , the execution of the (deterministic) inner loop on
w is exactly the same as the execution on v. If the value of i is e, it can be shown
that the execution rfv can be used. More precisely, we show that P is in the same
boolean state when the execution rfv reaches position N + 1 + e (resp. N + 1 + f),
as P is when the execution rew reaches position N + 1 + e (resp. N + 1 + f). Similar
arguments can be used when the value of i is f,N + 1 + e,N + 1 + f .

We have shown that v is in L(P), which is a contradiction.
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We also compare the expressive power of ND1 programs and EMSO2(≈,+1,⊕1).

Proposition 4.15. There exists an EMSO2(≈,+1,⊕1) property that is not ex-
pressible by an ND1 program.

Proof. Let us consider the language L of data words w such that every data
value that appears in w appears at least twice. It is easy to construct a (determin-
istic) Restricted-ND2 program that checks this property. The property can thus be
specified in EMSO2(≈,+1,⊕1).

We now show that this property cannot be specified by an ND1 program. For the
sake of contradiction, suppose that there exists an ND1 program P with k index and
data variables. Let us consider a word w = w1w2 . . . w2(k+1) of length 2(k+1), such
that corresponding data values are such that for all i ≤ k+ 1, di+1 > di, and there
exists a d′i such that di < d′i < di+1. The positions greater than k + 1 are defined
by dk+1+i = di. As w is in L, there is an accepting run of P. Let us consider this
run after k + 1 steps. At this point, there is one value dj among the first k + 1
values in w that is not stored in a data variable or pointed to by an index variable.
Let us now construct a word w′ by replacing the value at k + 1 + j by d′j . We can
show that P accepts w′ with the same run, even though w′ is not in L. We have
thus reached a contradiction.

Note that ND1 programs allow order on the data domain, and thus can check
a property specifying that the elements in the input data word are in increasing
order. It is easy to see that this property is not specifiable in EMSO2(≈,+1,⊕1).
However, if we syntactically restrict ND1 programs not to use order on D, they can
be captured by EMSO2(≈,+1,⊕1) formulas. The reason is that ND1 programs that
do not refer to the order on D can be simulated by register automata introduced
in [Kaminski and Francez 1994]. For every register automaton, there is an equiva-
lent data automaton [Björklund and Schwentick 2007]. Another natural question is
whether there is an order-invariant property that can be captured by ND1 programs
(that have access to order), but is not expressible in EMSO2(≈,+1,⊕1). We leave
this question for future work.

5. RELATED WORK

Our results establish connections between verification of programs accessing arrays
and logics and automata on data words. Kaminski and Francez [Kaminski and
Francez 1994] initiated the study of finite-memory automata on infinite alphabets.
They introduced register automata, that is automata that in addition to finite
state have a fixed number of registers that can store data values. The results of
Kaminski and Francez were recently extended in [Neven et al. 2004; Bojańczyk
et al. 2006; Björklund and Schwentick 2007; Björklund and Bojańczyk 2007]. Data
automata introduced in this line of research were shown to be more expressive
than register automata. Furthermore, the logic EMSO2(≈,+1,⊕1) was introduced,
and [Bojańczyk et al. 2006] shows that EMSO2(≈,+1,⊕1) and data automata are
equally expressive. The reduction from EMSO2(≈,+1,⊕1) to data automata and
the fact that emptiness is decidable for data automata imply that satisfiability
is decidable for EMSO2(≈,+1,⊕1). We show that Restricted-ND2 programs can
be encoded in EMSO2(≈,+1,⊕1). However, adding a third variable to the logic
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or allowing access to order on data variable makes satisfiability undecidable for
the resulting logic, even for the first order fragment [Bojańczyk et al. 2006]. We
show, perhaps somewhat surprisingly, that the undecidability does not translate
into undecidability of reachability for ND1 programs that access order on the data
domain and have an arbitrary number of index and data variables. Similarly, the
main difference between our result for ND1 programs and the result of [Kaminski
and Francez 1994] about decidability of emptiness for register automata is that the
ND1 programs can test order of the elements of the data domain.

The results on automata and logics on data words model were applied in the
context of XML reasoning [Neven et al. 2004] and extended temporal logics [Demri
and Lazić 2006]. The connection to verification of programs with unbounded data
structures is the first to the best of our knowledge.

Deutsch et al. [Deutsch et al. 2009] consider a model of database-driven systems
similar in some aspects to our model of programs. The key difference is that they
consider a dense order. They specifically note that the model-checking problem
they consider is open for the case of a discrete order. It would be interesting to see
if our result on programs on structures with discrete order can be extended to the
setting of database-driven systems.

Fragments of first order logic on arrays have been shown decidable in [Bradley
et al. 2006; Habermehl et al. 2008; Balaban et al. 2005; Bouajjani et al. 2007].
These fragments do not restrict the number of variables (as was the case with
EMSO2(≈,+1,⊕1)), but restrict the number of quantifier alternations. These pa-
pers focus on theory of arrays, rather than on analysis of array-accessing programs.
Decidability of reachability for polymorphic systems with arrays (PSAs) was stud-
ied e.g. in [Lazić 2005]. PSAs use well-typed λ-terms and do not allow iteration
over arrays.

Static analysis of programs that access arrays is an active research area. As
even simple properties such as reachability are undecidable in general, bulk of the
literature is on abstraction. Recent results for this type of programs include [Gopan
et al. 2008; Gulwani et al. 2008; Balaban et al. 2005]. The approach consists in
finding inductive invariants for loops using abstraction methods, such as abstract
domains that can represent universally quantified facts [Gulwani et al. 2008] and a
predicate abstraction approach to shape analysis [Balaban et al. 2005]. In contrast,
our results yield decision procedures for array-accessing programs. The methods
based on abstraction are applicable to a richer class of programs, including programs
that access more than one array, use nested loops, and write to the arrays. However,
the abstraction based methods are sound but not complete. In contrast, our results
lead to a sound and complete decision algorithm. Note also that the abstract
domains used for examples and applications in the cited papers also track equality
and order on array elements.

6. CONCLUSION

We have presented decision procedures for reachability for classes of array-accessing
programs. The arrays considered are unbounded in length and have elements from
a potentially infinite ordered domain. For programs with non-nested loops, we
showed that the problem is Pspace-complete, i.e. it is in the same complexity
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class as the reachability problem for boolean programs, which is used in standard
software verification tools. We have established connection to well-studied logics
and automata on data words, and we have shown that the decidability boundary
for the reachability problem lies in the class of programs with doubly-nested loops.
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