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Abstract

Kernel rootkits that modify operating system state to avoid detec-
tion are a dangerous threat to system security. This paper presents
OSck, a system that discovers kernel rootkits by detecting ma-
licious modifications to operating system data. OSck integrates
and extends existing techniques for detecting rootkits, and verifies
safety properties for large portions of the kernel heap with mini-
mal overhead. We deduce type information for verification by an-
alyzing unmodified kernel source code and in-memory kernel data
structures.

High-performance integrity checks that execute concurrently
with a running operating system create data races, and we demon-
strate a deterministic solution for ensuring kernel memory is in a
consistent state. We introduce two new classes of kernel rootkits
that are undetectable by current systems, motivating the need for
the OSck API that allows kernel developers to conveniently spec-
ify arbitrary integrity properties.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Invasive software

General Terms Security, Verification

Keywords Rootkit detection

1. Introduction

Rootkits are software packages left on an exploited system to facil-
itate further malicious access. They compromise operating system
security in ways that are difficult for modern tools to detect. In-
creasingly dangerous are kernel rootkits that use access to kernel
memory to subvert the integrity of kernel code or data structures,
giving control of critical resources (such as processing, the file sys-
tem, or the network) to a malicious entity [29].

Kernel rootkits are difficult to detect because operating systems
have complicated data structures with no explicit integrity con-
straints, providing a large and growing attack surface to rootkit
authors. In addition, user- or kernel-level security tools should
not trust a compromised operating system kernel to correctly ex-
ecute security checks. To efficiently and reliably detect rootkits, we
propose OSck1, a hypervisor-based system to specify and enforce
the integrity of operating system data structures. Kernel rootkits

1 Like fsck, but for operating system state.
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change the state of operating system data structures in order to gain
unauthorized access to computer resources and to prevent detec-
tion. OSck detects when the state of kernel data structures violates
the integrity properties specified to the hypervisor. If a rootkit com-
promises kernel integrity, the hypervisor can take appropriate ac-
tion, such as terminating the operating system or alerting an ad-
ministrator.

We extend previous work in hypervisor-based monitoring in
four important directions:
1. OSck verifies type-safety properties for the kernel heap through

a linear scan of memory, rather than traversing a data structure
graph. This approach is based on extracting assumptions about
kernel memory layout from memory management data struc-
tures. It is more efficient than graph traversal in both time and
space, and facilitates incremental verification.

2. OSck correctly handles concurrency between the running ker-
nel and verification process. Previous systems assumed that any
inconsistencies caused by concurrency would be transient. We
show this assumption incorrect through user code that causes
these errors frequently enough so as to appear persistent.

3. OSck exports an expressive API for specifying ad-hoc integrity
checks. With OSck, integrity checks are written as if the code
executes in a kernel thread, with full access to all kernel data
structures, even though the code executes in the context of an
unprivileged hypervisor address space.

4. We design and implement two new classes of rootkits and im-
plement new versions of known attacks, demonstrating that de-
feating new rootkit exploits with OSck is simple, often requir-
ing fewer than 100 lines of code. One of our new attacks would
evade detection by all previous monitoring systems because it
modifies data that is not reachable by traversing kernel data
structures from global roots.
OSck supports a rich API for writing kernel integrity checks.We

give three examples of integrity properties that vary in complexity
and require different levels of support from OSck. First, the dbg-
reg rootkit sets up the x86 debugging registers to transfer control to
it when the kernel executes the code to demultiplex a system call.
OSck prevents this rootkit’s operation simply by verifying that x86
hardware debug registers do not reference kernel text. Second, most
in-the-wild kernel rootkits modify kernel state by directing func-
tion pointers to custom functions [23]. OSck detects such rootkits
by verifying type-safety for kernel data structures—the property
that each pointer points to an object of the correct type. This is a
complex property that must be checked concurrently with kernel
execution, and OSck extracts rules about data structure allocations
from the kernel source. Third, integrity constraints may require co-
ordination between the kernel and hypervisor to prevent false pos-
itives due to race conditions. For instance, the Linux kernel main-
tains both a tree and list representation of the run queue. Rootkit
tasks can avoid being listed by system utilities like ps by remov-
ing themselves from the list representation, while remaining in the
tree representation allows them to be scheduled. However, because



the kernel updates these data structures on every scheduling event,
workloads that involve significant scheduling activity may require
synchronization to coordinate the OS modification with the hyper-
visor’s checking.

We demonstrate a new class of rootkit exploits that modify spe-
cific return addresses on the stack. The new attack covertly exe-
cutes by replacing return addresses from the schedule function
for currently sleeping processes. Previous integrity monitoring sys-
tems could not prevent this attack because they check data struc-
tures by traversing them, pointer by pointer, from global variables.
However, kernel stacks are large regions of untyped memory with
potentially unspecified bounds and are thus resistant to traversal.
Even software defenses for stack smashing attacks [2] cannot pre-
vent this attack since such defenses detect overwrites to a region
of stack space including a compiler inserted sentinel value. These
defenses do not work when only the return address is overwritten.

The rest of this paper is organized as follows: §2 describes how
OSck detects kernel rootkits. §4 describes our implementation of
OSck as part of the KVM hypervisor. §5 describes kernel rootkits
we used to evaluate OSck and the associated integrity properties
these rootkits violate. We evaluate OSck in §6, discuss related work
in §7, and conclude in §8.

2. Detecting kernel rootkits

Rootkits obscure signs of their presence, such as files in the filesys-
tem or running processes, using a variety of techniques. There are
three main techniques that rootkit writers use to hide the presence
of a rootkit.
• Diverting control to code that hides presence of the rootkit.
• Executing code or storing data outside of a traditional process
or file context.

• Modifying operating system data structures to conceal the pres-
ence of the rootkit.

A rootkit can divert control flow to modify queries about the state
of the kernel, such as by hiding entries in the Linux proc filesys-
tem by replacing pointers to functions implementing the filesystem
with versions that conceal malicious running processes. It can also
divert control flow so that the rootkit code runs outside of a context
visible to the system administrator, such as running as a frequently
invoked kernel callback rather than a traditional process. Addition-
ally, rootkits can modify non-control data structures in a way that
conceals its presence in the system. For example, a rootkit may re-
move a malicious process from kernel data structures used to list
active processes in a system utility such as ps, but not from the
data structures used to schedule processes.

2.1 Protecting control flow

A rootkit may modify operating system control flow to hide re-
sources visible to user level monitoring tools. For instance, the
adore-ng rootkit substitutes its own implementation of the Linux
Virtual File System (VFS) readdir method for the /proc filesys-
tem. The custom implementation hides certain entries from user
queries about the contents of /proc, preventing a system adminis-
trator from viewing the full set of running processes. Alternately,
a rootkit may modify control flow to run its code in a context un-
detectable by users. Our new “return-to-schedule” rootkit (§5), ex-
ecutes code in the context of every running process by modifying
descheduled processes’ stacks.

To detect rootkits that modify control flow, OSck verifies
control-flow integrity, the property that execution of the kernel
follows a predetermined control-flow graph [1]. We divide con-
trol transfers into three categories: static, persistent, and dynamic.
Figure 1 illustrates these categories in a common system call.

Figure 1. Control transfers in kernel invocation of a getdents
system call. Static control transfers occur within blocks of kernel
text. Persistent and dynamic control transfers use values in hard-
ware registers and kernel memory to determine the next instruction
executed.

Static and persistent control transfers Static control transfers
consist of branches and function calls determined at kernel com-
pile time, and are encoded in kernel text. Persistent control trans-
fers are established by the kernel during initialization and remain
constant while the kernel is executing, such as a system call in-
vocation that is directed to the correct kernel text location via the
values of hardware registers and the contents of the system call
table (an in-memory table of function pointers). These register val-
ues and the contents of the table do not change once the kernel
is initialized. OSck forces these transfers to remain immutable, by
write-protecting kernel text, read-only data, and the values of spe-
cial machine registers (§4.1).

Dynamic control transfers The kernel makes significant use of
dynamic control transfers, which consist of indirect jumps and
function calls based on pointers in writable kernel memory. The
object-oriented design of the kernel encourages the use of function
pointers to implement common interfaces to similar functionality.
For example, virtual file system (VFS) modules associate tables of
function pointers with kernel objects representing inodes and open
files. To invoke the correct function for a given file, a generic kernel
routine dereferences one of these pointers to perform a filesystem-
specific function.

Unlike static and persistent control transfers, determining the
valid target for a dynamic control transfer instruction in the run-
ning kernel may not be possible. For instance, two invocations of
the same filesystem function on separate objects may result in dif-
ferent functions being invoked from the same call instruction in
kernel text. The validity of the targeted function depends on a sig-
nificant amount of context, such as the filesystem that contains the
object and the type of filesystem object referenced. Instead of at-
tempting to verify these complex correctness properties, OSck in-
stead restricts rootkits’ ability to execute arbitrary code by ensuring
that dynamic control transfers will target functions that are safe for
that particular callsite. Safe functions are part of known kernel or
module text and share the desired function’s type signature: the re-
turn type, and number and types of arguments.

The function pointer dereferenced in a dynamic control transfer
is determined by a complex traversal of kernel data structures from
some globally accessible root data structure. Because the exact
traversal is only specified by the dynamic execution of kernel code,
OSck must verify that all paths the kernel could traverse from



bool check_pidmap(){
for_each_process(ptask){

// bitmap entry for each process
// should be set
if(!test_bit(ptask->pid, pidmap))

return false;
}
return true;

}

Figure 2. Simplified code that checks integrity of non-control data.
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Figure 3. OSck architecture. Most of OSck’s verification runs in
a thread at the same privilege level as the guest OS, isolated by
process and VM boundaries.

a global root to a function pointer will result in calling a safe
function. OSck verifies this property by checking certain type-
safety properties of the kernel heap (§3.2).

2.2 Protecting non-control data

In addition to modifying kernel control flow, a rootkit may also
conceal system resources from the user by modifying non-control
data in the kernel heap. For instance, rootkits based on direct kernel
object modification [15] exploit the fact that kernels keep different
data structures for enumerating and scheduling processes. In Linux,
a rootkit can hide a process just by removing it from a hash table
used for process enumeration. The hidden process is still scheduled
normally.

Unlike type-safety of a graph of data structures, modifications
to non-control data structures violate constraints that in many cases
cannot be extracted from raw kernel source. In the example above,
the invariant violated by the rootkit is that the hash table should
contain the same set of processes as those in the process descriptor
list and the run queue. Extracting such an invariant from source
requires an understanding of code semantics that is beyond the
scope of current and foreseeable tools.

Figure 2 is an example of code that checks the integrity of non-
control data to protect the kernel from the pidmap-hide rootkit
(§5) that hides itself from /proc.

For non-control data, OSck focuses on exporting a convenient
interface for writing integrity checks. OSck extracts data structure
definitions from kernel source and automatically generates an API
for writing integrity checks as if they are code that would execute
within a kernel thread, automatically handling translation of kernel
addresses (§4.4).

Figure 4. A subset of the kernel type graph. The kernel’s traver-
sal of this graph will result in the execution of the safe function
readpages.

3. Design

OSck must verify the integrity of the running kernel, remaining safe
even if the kernel is compromised. OSck runs as an independent
thread at the same privilege level as the guest OS, but isolated
from the guest by the hypervisor. Although it does not run as part
of the hypervisor, the hypervisor must trust it (like domain 0 in
Xen). Figure 3 summarizes the organization. OSck shares access to
the guest OS’ physical memory. Coordinating access to guest OS
memory is the most hypervisor-specific part of OSck.

Many of OSck’s integrity checks are based on verifying correct-
ness properties of in-memory kernel data structures, so the most
natural way to express integrity checks would be as code that could
run in a kernel thread. Integrity checks should be allowed to refer-
ence kernel data structures using the same programming interface
as kernel code. OSck extracts full type information from the kernel
(§4) to support access to all kernel data structures (§4.3).

OSck detects rootkits by preventing or detecting modifications
to static, persistent, and dynamic control transfers, and by verifying
properties of non-control data. OSck protects static and persistent
control transfers by restricting the guest kernel’s ability to modify
these values once they are installed. Dynamic control transfers are
protected by verifying the type safety properties described in §2.1.
OSck provides a programming environment identical to writing
kernel code to make the job of verifying non-control data as easy
as possible. Finally, OSck has the ability to quiesce the running
kernel for any property whose verification fails due to the guest OS
modifying data structures concurrently with OSck’s checks.

3.1 Determining which code to trust

OSck detects malicious code in a running OS kernel by verifying
that the hardware and memory values used to transfer control ad-
here to certain safety properties. For these checks to provide mean-
ingful safety, OSck must ensure that both the code invoking control
transfers and the code that the transfers target is code that is part of
the original, non-malicious kernel implementation.

As a result, OSck must manage the regions of memory that
are considered to be valid kernel code. We assume a trusted boot
process via a technology such as TPM [31], to bring the system
from a potentially untrusted kernel image on disk to executing
a trusted kernel that may then be subject to OSck’s verification.
Modules dynamically loaded into the kernel must also become a
part of the memory regions that OSck considers to be valid code.
Currently, OSck relies on a whitelist and cryptographic hash of
trusted modules. We believe that this solution is reasonable for
a high-security setting. However, more robust solutions such as
modules signed by a distributor are possible.



3.2 Verifying heap safety

Once the kernel is loaded in memory, it must not transfer control
to malicious code while executing at the OS privilege level. OSck
verifies this property by ensuring that any sequence of dereferences
the kernel performs to reach a function pointer will result in a
pointer to a safe function (defined in §2.1). OSck considers each
node (a kernel data structure in memory) separately, verifying that
the pointers contained in the data structure are consistent with
the type graph specified by kernel code. A subset of the type
graph for the Linux kernel is shown in Figure 4. OSck asserts
that each pointer field within an object must point to the data type
specified by that pointer, and all function pointers must point to
safe functions.

Type information from an untrusted kernel OSck’s type analysis
maps arbitrary regions of kernel memory to kernel data types, often
using kernel state that could be corrupted. A key challenge is to
show that using type information from a possibly compromised
kernel, it is possible to verify that any dereference path from a
kernel root object to a function pointer must result in invoking a
safe function. Here, we outline an argument that even a malicious
kernel cannot evade detection by corrupting OSck’s map of type
information.

We consider two mappings of kernel addresses to data types, the
effective mapping and the bound mapping. The effective mapping
is the mapping implicitly created by the actions of kernel code. For
a memory address, the effective mapping uses the type that ker-
nel code implicitly assumes at that address, based on a sequence
of pointer dereferences. That is, if the kernel traverses a struct
page pointer to arrive at memory address 0x100, then memory at
address 0x100 is of type struct page. We assume that the effec-
tive mapping is consistent with the kernel’s type graph— the kernel
does not typecast pointers to an unrelated type as it traverses them.
A rootkit seeks to modify the effective map, changing kernel point-
ers such that the kernel believes a malicious function is legitimate,
because a function pointer points to it.

The bound mapping is the map that OSck creates, starting
with type information from the kernel source code, and augmented
with potentially unreliable information on heap-allocated types.
Memory locations in the kernel image (such as functions and static
data structures) are bound to a type at link time, when a symbol
name (with an associated type in the source code) is assigned an
address. The type of memory locations on the heap are bound when
dynamically allocated memory is scanned during runtime, through
analysis of kernel memory data structures described in §4.2. The
bound mapping and the effective mapping will agree for all global
roots. Global roots are symbols compiled into the kernel, and they
are protected by OSck by write-protecting the kernel text that uses
those symbols as constant values. In addition, the bound mapping
maps the entry points of all safe functions to their type signature.
For both global roots and safe functions, a compromised kernel
cannot change the bound mapping, since OSck does not rely on
dynamic kernel state for those addresses.

In the presence of a rootkit, the bound mapping must differ
from the effective mapping in at least one place: the malicious
function. The kernel believes the memory at the malicious function
is a valid function, while OSck, which binds the addresses of safe
functions when the kernel is linked, and does not rely on the values
of mutable function pointers, will not.

If a rootkit inserts malicious functionality into the kernel by
modifying a function pointer, there is a traversal of the data struc-
tures in the kernel’s effective map that begins at a global root and
ends at the malicious function. At the global root, the effective map
and bound map must be consistent, since OSck protects the global
roots. At the malicious function, the effective and bound maps must

Figure 5. Modified type graph created by a malicious modification
to the kernel heap, with two possible bindings from object to type.
Regardless of binding, malicious modification will cause verifica-
tion to fail.

be inconsistent. Thus, there must be a step in the traversal, a pointer
in object A to a destination location B, for which the maps have A
mapped consistently, andB mapped inconsistently with each other.
We assume that the effective map is consistent with the type graph.
Then for OSck, which uses the bound map, the pointer fromA toB
must be inconsistent with the type graph. If it were consistent, then
B would be mapped to the same type as in the effective map. This
pointer will fail OSck’s verification process, and OSck will detect
the presence of a rootkit.

Type-safety example Consider a typical Linux file read that tra-
verses the data structure graph from a file object to the associated
address space to the table of address space operations, and
finally to the readpages method. The type graph on which this
traversal operates is illustrated in Figure 4. A kernel rootkit may
divert this traversal in several ways that result in the kernel invoking
an unsafe function. One possible modification is illustrated in Fig-
ure 5. A rootkit may allocate a duplicate evil address space
that points to a duplicate evil address space operations,
which contains a pointer to the rootkit’s custom code. If OSck
binds the evil address space to the address space type, as in
Figure 5(a), but the evil address space operations remains
unbound or is bound (based on incorrect information from the ker-
nel) to some other type, verification will fail because the pointer to
the evil address space operations is not type-safe. If neither
object is bound, as in Figure 5(b), verification will fail because the
pointer from the file object to the evil address space is not
type-safe. OSck uses kernel memory management data structures
to bind kernel memory to data types without requiring developer
interaction. §4.2 describes this process in detail.

OSck verifies the entire heap in a linear scan of kernel memory.
This approach has several advantages. First, a linear scan is effi-
cient: in the common case, checking pointer targets is a read-only
operation. It does not require marking objects as visited, updating
queues of unvisited objects, or making recursive calls. In our bench-
marks, checking type-safety for much of the kernel heap requires
at most around 300ms, and as little as 50ms (§6.2). Second, our ap-
proach facilitates incremental verification. A performance-sensitive



system, or a system unable to concurrently run kernel and verifica-
tion code may require that the heap be verified in stages. OSck’s
linear scan facilitates easy recording of the position in the heap to
be resumed later.

3.3 Handling concurrency

A key goal of OSck is to minimize the performance impact of
monitoring kernel state by interleaving execution of OSck’s ver-
ification process and the kernel’s execution as much as possible.
However, running the kernel verifier concurrently with the kernel
presents several synchronization issues. In general, OSck’s verifi-
cation process may attempt to check kernel state that the kernel is
in the process of updating by means of a code region that it be-
lieves to be atomic. For example, OSck could read a pointer from a
structure that is incompletely initialized and whose contents could
point anywhere, or it could observe a red-black tree in the process
of rebalancing and conclude that an integrity constraint has been
violated.

Although OSck’s access to kernel memory could allow it to cor-
rectly synchronize with the running kernel, doing so would sig-
nificantly increase complexity and reduce performance. OSck fre-
quently scans large portions of the kernel heap. Correct synchro-
nization would require acquiring and holding a large number of
locks, and adhering to the locking discipline of the existing kernel.
In addition, there are synchronization requirements in the kernel
that can depend on the order in which data structures are accessed,
adding additional undue complexity and requiring OSck to follow
numerous rules specified only through comments and a particular
kernel implementation. OSck is designed to minimize effort when
porting to successive kernel versions. Incorporating details of ker-
nel synchronization into OSck would require additional expertise
to verify that OSck’s synchronization conventions accurately track
the kernel’s.

Instead, we make two assumptions that allow OSck to verify the
state of the kernel with no synchronization in the common case.
First, we assume that false negatives due to unsynchronized ac-
cesses are transient. OSck detects persistent modifications to ker-
nel state, and it is unlikely that malicious code could consistently
modify kernel state to be correct when observed by OSck, but in-
correct when viewed by the kernel. Second, we assume that false
positives due to unsynchronized accesses are rare. OSck may then
employ a heavyweight synchronization mechanism in the event of
an integrity violation to bring the system to consistent state and
re-verify. In the common case that the event reflects an actual in-
tegrity violation, performance is not critical. In the rare case of a
false positive, that heavyweight synchronization will have negligi-
ble performance impact. This assumption is validated by our exper-
iments. While we are able to construct microbenchmarks in which
false positives are frequent, we did not observe any false positives
in any of the benchmarks that we ran (§6.4).

In the event of an integrity violation, OSck performs two steps
before alerting the user about the possible rootkit infection:
• Immediately re-verify the state of the kernel. Kernel atomic
regions are short, so re-running the check should resolve many
integrity violations due to concurrent accesses.

• Enforce quiescence. OSck halts the kernel at a point at which all
data structures should be consistent, and then re-verifies kernel
state.
Choosing an effective point at which to enforce quiescence is

an important part of OSck’s design. An effective quiescence point
should have two key properties. First, it should be a point where
kernel data structures are consistent. Second, a multi-processor sys-
tem requires enforcing quiescence for each processor. A processor
should not quiesce in a place where it holds resources required by
another processor (such as a lock), thus preventing quiescence for

the second processor and creating deadlock. Our implementation is
discussed in §4.5.

3.4 Discussion

As with other systems that attempt to detect security violations by
inspecting the state of a potentially insecure system (e.g. a virus
scanner), it may be possible for a sufficiently advanced rootkit to
evade detection by OSck. OSck currently detects the attack vectors
used by all of the Linux rootkits that we were able to locate. In
this section, we discuss our assumptions, and ways in which a
sufficiently advanced rootkit might evade detection.

Threat model The threat model we consider for OSck is that of
an attacker with temporary read-write access to kernel memory. For
example, an attacker might gain access to kernel memory through
a bug in the kernel, or by exploiting a setuid program and access-
ing the (now-deprecated) /dev/kmem interface. An attacker with
access to kernel memory could corrupt kernel state and cause the
kernel to crash. OSck does not protect against these modifications,
or similar attempts to deny service. Instead, the goal of OSck is to
detect meaningful malicious modifications to kernel state: modifi-
cations that facilitate further malicious activity in a way that will
not be detected by a system administrator. For instance, an attacker
could spawn a daemon as the root user, and then use modifications
to kernel memory to hide that daemon from the list of running pro-
cesses. The attacker must modify kernel memory carefully enough
that queries into system state return a reasonable set of results while
hiding some set of information.

Type-safety Amajority of kernel rootkits (see §5) implement ma-
licious behavior by subverting kernel control flow. Many control
transfers within the kernel are relatively simple to protect by pro-
tecting modifications to low-level state, such as the contents of ker-
nel code and architectural registers.

The kernel makes extensive use of function pointers to transfer
control, thus OSck must also protect the values of function pointers
in writable kernel memory. OSck protects function pointers by
ensuring that any function pointer used by the kernel points to a
function that is a part of already trusted code, and has the correct
type signature. This policy prevents all current attacks on function
pointers, which direct pointers to custom rootkit functionality.

An attacker that wishes to remain undetected may only swap
pointers with other functions that share the same type signature.
We believe that implementing meaningful malicious behavior (such
as hiding a single entry in the /proc filesystem) under these con-
straints is unlikely to be successful.

Kernel data structures In addition to subverting kernel control
flow, an attacker can hide evidence of malicious activity by subvert-
ing implicit invariants between kernel data structures, for example
in the Linux kernel the assumed equivalence between the tree used
to schedule processes and the linked list used to display them. OSck
protects these data structure relationships through ad-hoc checks on
kernel state.

For a large production kernel such as Linux, specifying the
complete set of invariants is not likely to be tractable. However,
to provide effective security, OSck need only check invariants that
rootkits can violate to implement meaningful malicious behavior.
In addition, adding a new integrity check to OSck’s library is
significantly less intrusive than fixing a kernel exploit, and does not
require restarting a system. Checks in OSck can be implemented
in a handful of lines of code, and do not need to be as thoroughly
tested as patches to a production kernel: a crash in OSck requires
only that it be restarted, without affecting the running kernel.

Concurrency OSck’s checking code runs concurrently, and in
the common case unsynchronized, with kernel code. We make



Figure 6. Mapping guest OS memory into the OSck verifier ad-
dress space.

two main assumptions regarding concurrency. For performance, we
assume false positives (detecting a violation of some invariant due
to concurrent modification and not malicious behavior) are rare.
Our experiments (§6) support this assumption. For security, we
assume that false negatives are rare and not reproducible by an
attacker. We recognize that race conditions form a significant body
of attack vectors on a wide variety of systems. However we note
that in general a race must happen once to violate security, while
in OSck an attacker would have to win every race for the lifetime
of the system to evade detection. We also assume that an attacker
cannot accurately predict when an OSck check will run, so attack
code cannot repair kernel data structures just in time for the OSck
check, and then corrupt them again after the check.

4. Implementation

We implement OSck as part of the KVM hypervisor [20]. KVM
virtualizes a guest kernel within a host Linux kernel. A user-level
launcher binary allocates a region of memory to serve as the guest’s
physical memory, loads the guest kernel, and then calls into the host
kernel to run the virtualized guest. OSck runs as a separate process,
communicating over a socket with the launcher binary. OSck reads
guest state by mapping the same memory region as the launcher.

OSck integrity checks are written as if they were executed
in a guest OS kernel thread, although they are isolated from the
guest kernel by the hypervisor. This is possible by mapping several
virtually contiguous memory segments from the guest kernel into
the OSck verifier address space, as shown in Figure 6. The majority
of kernel data structures are addressed in a large portion of the
virtual address space that linearly maps physical memory. In the
32-bit x86 Linux kernel, this consists of the last gigabyte of a 4GB
address space. On the 64-bit kernel, a 64TB region starting from
0xFFFF880000000000 maps physical memory. A second region
(the same region in 32-bit Linux) maps text and data in the kernel
image.

In addition to the linearly mapped region, several kernel data
structures (such as the list of kernel modules) reside in a region
of memory allocated by the vmalloc function, which may con-
tain non-linear mappings of physical memory. The OSck verifier
translates addresses in this area by reading guest page tables from
physical memory. Although reading page tables in software is in-
efficient, few kernel data structures reside in this area, and so this
does not noticeably increase OSck’s overhead. These memory map-
pings give the OSck verifier the same view of kernel data structures
as a kernel thread. Our original OSck prototype was developed for
32-bit Linux. Porting OSck to a 64-bit architecture required few
changes other than redefining a few aspects of the kernel’s memory
layout and interpreting a different page table format.

Both automatic and manual integrity checks in OSck make
significant use of data structure definitions and properties extracted
from kernel source code. As part of kernel compilation, OSck
translates the kernel into the C intermediate language (CIL)[22].
We use CIL to output sanitized kernel type definitions for use in
manual checks and to automatically generate functions to verify

Figure 7. Slab organization of kernel memory allocations. Infor-
mation about allocated and free objects within a slab is contained
in a slab descriptor’s internal list.

type-safety for each data type. The executed kernel is compiled
directly using gcc; the CIL processing step is only to generate code
that executes as part of OSck integrity checks.

This section explains how OSck protects static and persistent
control transfers by restricting guest privilege (§4.1). Dynamic
control transfers are protected by verifying type-safety properties
(§2.1). Verifying these properties requires a mapping from loca-
tions in kernel memory to the data structure type. §4.2 describes
how we use existing kernel memory management structures to effi-
ciently construct a mapping. OSck provides a convenient interface
to kernel data structures that is used both by automatic verification
code (§4.3) and system programmers specifying custom integrity
properties (§4.4). §4.5 discusses the synchronization protocol be-
tween the guest kernel and OSck.

4.1 Restricting guest privilege

A query about the state of the system, in the form of a system
call, begins with a user executing the syscall instruction with a
system call number specified in the x86 eax register, or an int
0x80 instruction with the values contained in the x86 interrupt
descriptor table. Either way, the path of control from user-level
to the kernel implementation of the system call is determined by
the value of hardware registers, kernel data, and kernel text. These
control transfers remain fixed once they are installed by the booting
kernel.

OSck protects the static and persistent control transfers on sys-
tem call entry by restricting the guest operating system’s privilege
to modify certain registers and regions of memory once their val-
ues are set during boot. Modifying hardware registers that deter-
mine the transfer of control flow from user to kernel mode (such as
x86 machine-specific registers that determine the operation of the
syscall instruction) is a privileged operation, and must be imple-
mented through a call to the hypervisor. OSck modifies the hyper-
visor to prevent updates to these registers after the initial values are
installed.

After a user system call traps into the kernel text segment, code
transfers control to the service routine corresponding to the desired
system call number by indexing the system call table, an array of
function pointers in kernel memory. The kernel does not modify the
system call table once it has been created. OSck protects the system
call table through hardware page protection and a hypervisor call
ensuring that once the table is initialized the guest operating system
may not modify it. Similarly, the implementations of kernel func-
tions, such as the routines that implement individual system calls,
remain static once the kernel is running. As with the system call
table, OSck freezes read-only hardware page protections on pages
containing kernel text, preventing the guest kernel from modifying
their contents.



4.2 Slabs for efficient type safety

Efficiently constructing an accurate mapping between kernel mem-
ory and data type is key to both OSck’s integrity guarantees and
performance. Most important data structures in the Linux kernel
are allocated via slab allocation, which provides caches, or special-
ized per-type allocators [7]. Kernel caches allocate memory from
groups of pages called slabs containing a single type of object. Im-
portant kernel data structures that are dynamically allocated from
caches include directory entry (dentry) structures used by ker-
nel filesystem lookup routines, buffer head structures that de-
scribe on-disk locations of blocks that make up a memory page,
and radix tree node structures that comprise radix trees used,
for example, in indexing pages in page caches.

OSck can determine the type of memory allocated within each
page by determining the type allocated by a kernel cache. The
Linux kernel maintains data structures that allow a given memory
address to be associated with metadata about its containing page.
For pages that are part of a slab, the metadata contains a pointer to
the slab descriptor. The slab descriptor, shown in Figure 7 specifies
the cache that contains the given slab, alignment information for
objects within the slab, and a list of free objects.

OSck uses this kernel-provided information to perform efficient
mapping between memory and data type. OSck associates each
cache with a data type, and binds every allocated object in the slab
to that data type. Objects that are not allocated or not part of a slab
are unbound.

OSck associates individual kernel caches with data types by
analyzing kernel source code during compilation of the kernel
binary. The addresses of most kernel caches are stored and accessed
through global variables. To allocate an object from a kernel cache,
a cache variable is passed to a generic allocation function, and the
resulting untyped pointer is cast to the desired type. OSck’s analysis
of kernel source code detects these sequences and associates the
cache variable with the type that it allocates.

4.3 Automatic type-safety checks

The wealth of data types within the kernel requires that OSck
automatically generate per-type checks for verifying the type safety
of the kernel heap. For each data type, OSck generates a C function
that takes a pointer to kernel memory as input. For each pointer
within the data type, OSck outputs a call to our pointer-based type
safety verifier. For each nested data type, OSck outputs a call to the
function responsible for verifying that data type.

Most kernel type definitions are unambiguous. However, some
types include a C union to pack multiple fields of information
within a single region of memory. Without higher-level informa-
tion, OSck is unable to disambiguate the different fields of a union
to call the correct verifying function. Instead, OSck considers a
union correct if at least one of its fields verifies correctly.

4.4 Manual integrity checks

Although many rootkits violate kernel control flow in a way that
may be detected by automatically generated type-safety verifica-
tion, there are many integrity properties important to kernel oper-
ation that cannot be automatically extracted from kernel code. For
instance, the relationship between the bitmap of allocated process
ids and the list of running tasks is unlikely to be extracted from
kernel source code. For these properties, OSck exports an interface
for writing verification code that is convenient for those who un-
derstand kernel internals best: kernel developers. We believe that
hand-written code for checking data structures should resemble as
closely as possible code that runs within a kernel-level thread.

There are two challenges to allowing developers to write natu-
ral verification code within a user-space program. First, the wide
variety of data structures within the kernel must be made avail-

able, without the complication of including kernel header files in
user code. Second, authors of integrity checks should be able to
seamlessly use pointers within kernel data structures, without con-
sidering the translation necessary to reflect the kernel address space
within a user process.

As part of its analysis phase, OSck automatically generates a
convenient API for writing kernel integrity checks. OSck collects
kernel type definitions and performs a source to source translation,
generating a header file containing type definitions with memory
layouts identical to those in the kernel, without preprocessor and
other complexities common to kernel header files. OSck sanitizes
identifiers for safe usage within C++, and transforms all pointers
within data structures to smart pointers. These pointers automati-
cally translate from kernel addresses to addresses in the user-level
reflection of the kernel address space, illustrated in Figure 6. Point-
ers within the linearly-mapped region of kernel memory translate
directly to the launcher process’ map of guest physical memory.
Pointers within the vmalloc region translate to the launcher pro-
cess’ map of the kernel virtual address space.

We have found OSck’s automatically generated kernel data
structure API useful in practice. Kernel convenience functions and
macros, such as for iterating through kernel lists, may be copied
without modification and perform correctly on a more complex
translation of the kernel address space. Nearly all of the verifica-
tion code in OSck is written using this API, including the large
amount of code dedicated to caching kernel type information and
verifying type-safety for kernel pointers.

4.5 Quiescence

Tominimize checking overhead, OSck verifies kernel data structure
integrity in a thread that runs concurrently with guest execution.
In the common case, when OSck does not synchronize with the
guest kernel, data races are possible. OSck must manage errors and
false positives due to races efficiently and safely. First, OSck max-
imizes performance when data structures are not being updated, or
inconsistencies due to races are transient. Second, OSck provides
a means for the hypervisor to synchronize with the guest to check
properties that are violated because of guest activity.

It is possible for the guest OS’s workload to prevent an integrity
check from succeeding. For example, we present an experiment in
Section 6.4 where several user programs are constantly yielding the
CPU, making it difficult for the OSck hypervisor to verify that the
rbtree representation of the run queue contains the same processes
as the list representation (the kernel assumes the same processes
are in both representations). To check this property, the hypervisor
must quiesce the system, which suspends execution of the virtual
processors of the guest OS.

As discussed in §3.3, OSck attempts to verify data structures
and when it fails, it quickly re-verifies (to see if the problem was
transient and has disappeared). If the re-verification fails, it en-
forces quiescence.

The guest’s virtual processors must be suspended while kernel
data structures are consistent, otherwise it will look to the hypervi-
sor like a transient problem is persistent. There are locations in the
guest where all guest data structures are consistent, and these are
potential points at which the hypervisor can suspend virtual proces-
sors. However, it is also important only to select points such that all
kernel threads can reach quiescence. If a guest kernel thread on a
suspended virtual processor held locks that were necessary for an-
other kernel thread to reach a quiescence point, then attempting to
induce quiescence would instead induce deadlock.

OSck quiesces the kernel at the start of the schedule function.
The function is called frequently, minimizing the response latency
of the guest when the hypervisor requires quiescence. Although
some kernel locks may be held when schedule is called, all such



Type Name Data structures exploited

Control

flow-related

ret-to-sched∗ Return address of suspended
kernel thread’s stack

extable∗ Exception table of the inserted
module

adore-ng% file operations table of
/proc

enyelkm% Kernel text and page table

dbg-reg Debug registers and the
notifier chain

net3 Protocol handlers and netfilter
filters

proc-hide file operations table of
/proc

Non-control
hideme† Thread list for a process id

pidmap-hide† Bitmap for PID allocation

Table 1. Summary of rootkits used in our evaluation. Asterisks (*) indi-
cate new classes of rootkits proposed in this paper. Percent signs (%) indi-
cate actual rootkit code, ported to the latest 2.6 kernel. Daggers (†) indicate
new implementations of known attack techniques.

locks are blocking. If another kernel thread attempts to acquire a
lock held by a virtual processor that has quiesced in the schedule
function, it will yield the processor by calling schedule itself.
Instead of deadlocking, the processor attempting to acquire the lock
will similarly quiesce.

OSck enforces quiescence in two stages. First, it interrupts the
guest kernel to halt its execution. OSck overwrites the beginning
of schedule with a hypercall after ensuring no guest thread is
in the midst of executing the replaced instructions, and allows the
guest to resume. When the guest attempts to call schedule, the
hypercall transfers control to OSck. OSck verifies the entire state of
the quiesced kernel, restores the original instructions in schedule,
and resumes execution at the beginning of the function. The guest
the continues as if it had completed a simple call to schedule.

5. Rootkits

We evaluate OSck with several publicly-available Linux rootkits,
that corrupt the integrity of a running kernel via several vectors.
The source code of many of these are specific to the 2.4 version of
the kernel. We ported existing rootkits to work with the latest 2.6
kernel, sometimes specializing them to separate out different attack
vectors.

In addition, we present several kernel exploits that to the best
of our knowledge are not currently used by rootkits. These are
Linux exploits developed out of our familiarity with the kernel.
While having the source code of Linux was valuable in writing
these exploits, we believe that programmers who work with the
APIs of a closed source operating system like Windows would be
able to create similarly creative exploits. Table 1 summarizes the
rootkits used in this study.

Return to schedule The ret-to-sched rootkit overwrites the return
address on the stack of every process blocked for I/O. Rather than
return to the schedule function, processes return to the rootkit
code, which then returns to schedule. This exploit is undetectable
by all previous integrity checking systems we are aware of. It
does not modify any kernel data structure reachable from pointers
in the kernel heap. By modifying a single stack location, there
is no “collateral damage” (overwrites of compiler-placed sentinel
values) that techniques like StackGuard [10] rely on to detect a
stack smashing attack.

The ret-to-sched rootkit runs in the context of many processes
by rescanning the I/O queues on each invocation and reinfecting

any processes that are blocked. The attack depends on the rootkit
understanding the stack layout of the compiler, though in the case
of Linux there are few compilers besides gcc that can compile a
functioning kernel.

Because ret-to-sched does not create or perceptibly alter the
number or state of running processes, it is not detectable by any sys-
tem administration utilities. Listing the system’s active processes
will not detect anything out of the ordinary. OSck detects this attack
by ensuring that the return addresses on the stacks of descheduled
processes correspond with valid kernel code regions. Stacks are not
currently checked to determine if they represent a valid call stack,
so a sufficiently advanced attacker could construct a return-oriented
program [28]. However, OSck could be extended to add this prop-
erty, by including information on the valid kernel call graph in its
analysis.

extable The extable rootkit uses the kernel’s exception handling
mechanism to subvert control flow. The exception table is a nec-
essary kernel feature that speeds up the common case of copying
data to and from the user. On every page fault, the Linux page fault
handler searches the exception table of the kernel and loaded mod-
ules using the faulting PC as the key. If a match is found, control is
transferred to the value in the exception table. The extable rootkit
inserts an entry that associates a faulting address in the kernel text
section with a fixup address within the module text section (or dy-
namically allocated kernel memory). Any page fault at the specified
kernel PC will cause execution flow to resume at the fixup PC that
is specified by the module.

The rootkit corrupts a kernel global variable that is dereferenced
in a single location in kernel code, and is never copied into another
data structure. The variable is dereferenced whenever a workqueue
(a Linux mechanism used to defer work in interrupt handlers)
is created. On this common event, the kernel faults, the rookit
executes and finishes by patching up the machine registers to make
it appear as if the dereference succeeded. The pointer remains
corrupt, so the rootkit can be called again.

adore-ng adore-ng modifies structures that contain sets of func-
tion pointers used by Linux’s Virtual File System (VFS) layer to
accommodate many different filesystems within one uniform direc-
tory hierarchy. adore-ng has a user-controllable security password,
and a lookup of <password>-fullprivs as a filename within
/proc will call adore-ng’s lookup function, giving the task per-
forming the lookup root privileges. This is used as a method of
obtaining root privileges on subsequent login after an initial intru-
sion.

The Linux developers have taken steps to make this exploit
more difficult. Beginning in kernel version 2.6.16, data marked
const is placed on write-protected pages, and all data structures
containing these function pointers were marked const. Writes to
these structures are no longer possible without modifying permis-
sions in page tables. However, when used through VFS, the oper-
ations are actually referenced via pointers from directory lookup
cache entries (dentry). We modified adore-ng to change the point-
ers within dentry structures to point to rootkit allocated VFS func-
tion pointer structures with malicious function pointers. This ex-
ample indicates how difficult it is to defeat rootkits from within the
kernel. OSck ensures the integrity of individual function pointers,
and will detect the malicious pointers in adore-ng.

enyelkm enyelkm hides files and processes by modifying code
that dispatches to the system call table. The system call code is
patched to redirect system calls to modified versions. A new ver-
sion of getdents conceals directory entries, such as those in the
/proc filesystem used to enumerate running processes. In addi-
tion, enyelkm modifies the read system call to not return portions
from files that are contained within specially delimited sections.



As a result, enyelkm can survive reboot by allowing an adversary
to modify startup configuration files in a way such that the enyelkm
module loads on boot, while the configuration file changes will then
be subsequently invisible due to the modified read system call. De-
tectors that examine the system call table contents themselves will
not detect this rootkit.

In order to be able to modify the system call dispatch code on
recent version of Linux, we modified enyelkm to change the page
table permissions for the system call code region. OSck detects this
modification and flags it for violating the integrity of the system
call table.

dbg-reg dbg-reg is a specialized version of the mood nt rootkit
that uses x86 debugging registers and breakpoint notifiers to alter
kernel control flow.

The x86 has four debug registers that can hold addresses which,
when executed, cause breakpoint exceptions. Linux handles break-
point exceptions using a chain of callbacks, named notifiers. On a
breakpoint exception, the notifiers on the chain are called one by
one until the end of the chain is reached, or one of the callbacks
returns a special return code.

dbg-reg registers a notifier and puts the address of the call
instruction that dispatches function pointers from the system call
table into a debug register. The rootkit dispatches from a modified
system call table that contains pointers to malicious functions. The
control register (DR7) has a protection bit which helps disguise
the rootkit. When the general detect enable bit is set, any attempt
to read or write the debug registers causes a debug exception,
which transfers control to the dbg-reg handler. In this case, the
handler emulates the read or write and returns a code preventing
other handlers from running. Code that reads or writes the registers
believes it has succeeded. OSck defeats this rootkit by disallowing
the guest OS to set debug registers with kernel addresses. In a
production setting where security is paramount, debugging support
for the kernel is not necessary.

net3 net3 implements an attack [26] where protocol handlers
and netfilter filters take arbitrary action upon receiving network
traffic (specifically, ICMP traffic). The rootkit netfilters pass the
ICMP traffic, but can be configured to drop incoming or outgoing
traffic that matches arbitrary criteria. Dropping incoming traffic can
disguise input used to signal the rootkit. Dropping outgoing traffic
can disrupt a component of a distributed application executing on
the machine.

This rootkit can be stopped by ensuring that functions called
by protocol handlers and netfilter filters are in legitimate address
regions—either within kernel text or within the text of a set of
allowed modules. OSck is notified when the kernel loads modules,
so it verifies that the netfilters function pointers are legitimate.

Non-control flow based rootkits hideme and pidmap-hide di-
rectly manipulate the relationship among kernel data structures in-
stead of altering control flow. Both rootkits hide a process from the
/proc directory. When the user lists the contents of the /proc di-
rectory, the kernel enumerates all processes, creating a directory for
each PID. hideme removes the target process from the pid hash,
hiding it from the PID enumeration.

Because PID use is sparse, the kernel first checks the pid hash
table when enumerating PIDs, and then uses the pidmap bitmap to
find the next in-use PID. pidmap-hide clears the bit in pidmap that
corresponds to the target process. But the kernel looks in pid hash
first without looking at pidmap. To hide PID p, the rootkit must
prevent any running process from having PID p− 1, which it does
by running several processes in quick succession to get two with
adjacent PIDs. The cleared bit in pidmap will be detected and
corrected by the kernel when PID allocation overflows. The rootkit

Rootkit OSck action
Detection
time (s)

ret-to-sched Detected 0.51
extable Detected 0.51
adore-ng Detected 0.50
enyelkm-1.3 Prevented -
dbg-reg Prevented -
net3 (protocol handler) Detected 0.44
net3 (netfilter filter) Detected 0.48
proc-hide Detected 0.46
hideme Detected 0.56
pidmap-hide Detected 0.74

Table 2. Rootkits detected by OSck

Integrity check LOC Rootkits
Guest privilege enyelkm, dbg-reg
restriction
Heap type-safety 504 adore-ng, proc-hide
ck extable 64 extable
ck net filter 74 net3
ck prot handlers 64 net3
ck proc namespace 99 hideme, pidmap-hide
ck stacks 40 ret-to-sched

Table 3. Kernel integrity checks implemented by OSck. Lines of code for
each check are reported as calculated by SLOCCount [33].

delays PID overflow by setting the last allocated PID to p+1where
p is the PID for the process hidden by the rootkit.

6. Evaluation

In this section wemeasure the performance and detection capability
of our OSck prototype implemented in the KVM hypervisor. All
experiments were performed on a Intel 2.80GHz Core i7 860 CPU,
with 8GB memory and running the 64-bit Linux 2.6.32.9 kernel.
We ran virtualized guests with 2GB memory, and in 1- and 4-core
configurations.

6.1 Rootkit detection

Table 2 shows the set of rootkits we created or ported, and the
average time OSck takes to detect them. Rootkits listed as “De-
tected” were detected by OSck’s periodic integrity checks. Rootk-
its listed as “Prevented” were prevented from modifying the ker-
nel by OSck’s restriction of guest privilege. We ran each rootkit a
minimum of 5 times to make sure OSck detected it each time, and
report the average detection latency for those detected by integrity
checks. Our experiments show that OSck detects rootkits reliably
and promptly. We observed no false positives: every non-rootkit
benchmark run with OSck did not report a rootkit.

Table 3 lists OSck’s integrity checks. Heap type-safety requires
about 500 lines of code, but all other checkers were less than
100 lines. The largest checker, ck proc namespace, verifies two
independent properties of the /proc filesystem, and detects two
rootkits. In general, integrity violations caused by a wide class of
kernel rootkits are defeated with very small checking functions.

6.2 Performance of OSck integrity checks

To illustrate the low overhead of OSck’s integrity checks, we mea-
sured the time necessary to complete an iteration of the full set
of checking code, including verifying type-safety for much of the
kernel heap (Table 4). The amount of time to check the integrity
of kernel data structures varies by the number of data structures a
given benchmark creates on the heap. Our kernel compile bench-
mark requires on average 126ms to complete a complete iteration
of OSck’s checking code. RAB, which can create 10 times as many



Benchmark Avg. check time (ms) Max. check time (ms)
SPEC INT 76 123
SPEC FP 43 109
RAB 109 316
Kernel compile 126 324

Table 4. Execution times for a single iterations of OSck’s complete in-
tegrity checks for each single core benchmark.

Single core

host guest OSck
SPEC 2006

INT 1.00 1.03 1.05 (2%)
FP 1.00 1.03 1.03 (0%)

PARSEC
raytrace 13.2 13.4 13.5 (1%)
swaptions 11.5 11.5 11.5 (0%)
x264 2.76 2.87 2.87 (0%)

RAB
mkdir 5.62 5.87 5.98 (2%)
copy 17.68 44.07 45.15 (2%)
du 0.29 0.39 0.40 (3%)
grep/sum 2.51 1.89 1.86 (-2%)

Kernel compile
2.6.32.9 515 471 473 (0%)

Multiple core

host guest OSck
PARSEC

raytrace 7.87 8.05 8.17 (2%)
swaptions 3.43 4.24 4.11 (-3%)
x264 0.97 1.20 1.17 (-3%)

Kernel compile
2.6.32.9 145 179 189 (6%)

Table 5. Benchmark execution time (slowdown of OSck checks over
guest execution in parentheses). SPEC reports the weighted geometric mean
of slowdown, the remainder report seconds.

objects as an idle system, requires an average of 110ms over the
entire benchmark. We report the average and maximum times for
any iteration of OSck’s checks to describe the range of the latency.

For a given checking latency, a user can set the checking interval
to achieve a particular performance level. For example, if OSck
checks take about 50ms, then running them every 5s will slow down
the workload by 1%. Rootkit detection on the order of seconds
is the goal of OSck. If a multiprocessor host has a free CPU,
OSck checks can mostly be overlapped with guest computation.
Quiescence is rare in our benchmarks (§6.4), so its latency can be
safely ignored.

6.3 Benchmarks

Table 5 compares the execution time of several benchmarks on the
host machine, executing within the KVM hypervisor, and executing
on KVM with OSck integrity checks run every 0.5 seconds. All
results are the average of 5 runs.

We first describe the slowdown for several compute-intensive
workloads. For SPEC 2006 [14], we report the weighted geometric
mean for the slowdown of integer and floating point workloads. The
results show that OSck has less than a 2% or lower performance
overhead over KVM at this checking interval.

We ran a subset of the PARSEC [6] benchmark suite to verify
that OSck continues to minimally impact performance in a multi-
core setting. We report the average of 5 runs for three different ap-
plications: a ray-tracer, a securities market simulator, and an H.264

Num procs Failed checks
5 14%
10 19%
50 23%

Table 6. Percent of OSck’s runqueue integrity checks that fail for different
numbers of user processes that do nothing but yield the processor.

encoder. We used a four core VM for this benchmark. OSck exhib-
ited a maximum of 2% overhead in any one application.

As an I/O bound benchmark, we ran the reimplemented andrew
benchmark (RAB) [24], a scalable version of the Andrew bench-
mark [16] that uses several phases to stress the file system. In our
configuration RAB initially creates 100 files of 1024B each and
measures the time for the following four operations: (1) creation of
20,000 directories, (2) copying each of the 100 initial files to 500
directories, (3) executing the du command to calculate disk usage,
and (4) searching for a short string and checksumming all the files.
Our experiments show that OSck imposes a maximum overhead of
3% compared to the guest OS running in the unmodified KVM.
This workload has over an order of magnitude more kernel objects
than the other workloads.

Finally, we report the performance of a kernel compile, a work-
load that balances I/O and CPU demands. In the single core case,
execution time does not change compared with unmodified KVM,
and for four cores, the overhead is 6%.

6.4 OSck and concurrency

A key goal of OSck is behaving correctly in the face of concurrency.
Previous systems have assumed that any false positives when mon-
itoring the kernel heap due to data races would be transient. How-
ever, we present a user-level benchmark that consistently violates
an integrity property due to concurrency. One technique for hiding
malicious processes is to create inconsistency between structures
used for scheduling processes, and those used for listing processes.
We run an integrity checker that compares the list and rbtree repre-
sentations of the scheduler runqueue, as several user-level programs
continuously yield the CPU. This creates a steady stream of updates
to the kernel’s runqueue data structures. Because OSck checks the
integrity of these data structures while they are being modified, it
can see an inconsistent view. Table 6 shows that as the number of
user programs increases, the likelihood of seeing an inconsistent
view rises. Many previous integrity checking systems simply re-
verify a failed check a fixed number of times (e.g., 3), and this data
shows that such a strategy is not sufficient. Even with 5 processes,
14% of checks find an inconsistent view making a false positive
from 3 consecutive inconsistent views an eventual certainty.

OSck only quiesces if two consecutive checks fail, so a mecha-
nism to deal with repeated failures is necessary in practice, though
rare enough that a heavy-weight mechanism is acceptable. There
were no false positives—all checks passed after quiescence in this
concurrency stress-test. We found no occurrences of quiescence in
our other non-rootkit benchmarks.

7. Related work

Since the time that VMM-based introspection was originally pro-
posed [13], there has been significant progress on techniques for
monitoring kernel integrity from a hypervisor. OSck integrates
many of these techniques into a single practical package that
stresses cooperation between the hypervisor and the monitored
kernel. Just as paravirtualization [5] modifies kernel device drivers
to make virtualization more efficient, OSck integrates type infor-
mation and an understanding of the kernel memory allocators to
make integrity checking comprehensive and efficient. OSck re-



quires only minimal modification to the guest kernel, generally to
communicate boot time parameters like when to begin enforcing
immutability of protection on kernel text page table entries.

VMM-based approaches to security can be categorized by the
types of guarantees that they provide for a guest VM. Systems like
Terra [12] attest, via a chain of trust, that the VMs are initialized to a
desired state. Terra [12] guarantees that its virtual machines cannot
be inspected or modified by other VMs. Attested VM initialization
and its counterparts like secure boot [3, 19] are orthogonal to
the design goals of OSck. OSck is instead concerned with the
continued maintenance of guest OS integrity after initialization,
and Terra provides no such guarantee.

After correct initialization, the next guarantee is that of guest
kernel code integrity. SecVisor [27] protects kernel code frommod-
ification thus defeating certain attacks. However, merely protect-
ing code segments is insufficient to guarantee correct kernel opera-
tion, as shown by return-to-libc [30] and return-oriented program-
ming [17, 28] attacks that make use of unmodified, non-malicious
code to accomplish malicious goals. Kernel code integrity is the
foundation on which the more stringent guarantees of control-flow
integrity [1] and data integrity [4, 8, 11] are layered.

Unlike OSck, that maintains the guest OS integrity against ma-
licious applications, Overshadow [9] ensures secrecy and integrity
for application memory against a compromised OS kernel. Over-
shadow enforces that application code and data pages appear en-
crypted to the OS, thus ensuring application integrity. However,
Overshadow does not protect guest OSes from corruption, hence
it is possible for applications to receive incorrect yet consistent re-
sponses from a compromised OS. For example, an application may
believe it is reading a configuration file and yet actually be reading
a fabricated version.

7.1 Control-flow integrity

Petroni and Hicks [23] describe a VMM-based approach to main-
taining control-flow integrity (execution follows a predetermined
control-flow graph [1]) They perform periodic scans of kernel
memory, verifying state-based control-flow integrity, a property
similar to that verified by OSck. They compute a type graph from
kernel source, and use this graph to determine a set of global roots
for kernel data, the fields of kernel data structures that are function
pointers, and the fields that point to other structures. Periodically,
their integrity checking monitor executes and traverses the kernel’s
object graph starting from the set of global roots, successively fol-
lowing pointers to examine all allocated kernel data structures. For
each object, the system verifies that all function pointers have de-
sired properties, for example, that they point to a specific set of
allowed functions. This requires a breadth-first search of the data
structure graph, while OSck verifies type safety via a linear scan of
kernel memory.

The Petroni/Hicks system does not consider the stack, though
they assert that attacks on the stack are generally transient. Our “re-
turn to schedule” rootkit demonstrates a non-transient stack-based
attack that would not be caught by their system. Furthermore, their
system does not address inconsistencies that can occur because
their checks are performed as they scan through a tree of kernel
data structures that can be concurrently modified by the OS. OSck
avoids these inconsistencies by quiescing when integrity is in ques-
tion after preliminary checks.

HookSafe [32] protects function pointers (often called hooks)
by moving them to a write-protected area. Instructions that access
these pointers within the kernel are detected with a profiling run,
and then rewritten via binary translation to access the new hook
locations. Any accesses to function pointers not present in the pro-
filing run are not correctly translated during runtime. OSck verifies
a larger class of integrity properties than properties about kernel

function pointers. When possible, it protects function pointers by
placing them in hardware-protected memory (whose access policy
is determined by the hypervisor), otherwise, it periodically verifies
that function pointers point to legitimate code targets according to
a flexible policy.

7.2 Data Integrity

KernelGuard [25] protects kernel data structures by selectively in-
terposing on memory writes. KernelGuard checks the kernel func-
tion that writes a guarded memory region against explicit sets of
allowed functions per region. While specifying what functions can
modify which regions is a powerful primitive, it does not pre-
vent large classes of attacks where (for example) a function that
is permitted to modify a region does so maliciously. For example,
protocol handler and netfilter filter registration functions need to
be able to install new filters—the latter is used in the firewalling
tool iptables. OSck enforces OS integrity guarantees on the data
structures themselves—in this case, that the functions for protocol
handlers and netfilter filters are contained within kernel or allowed
module text. Indirect guarantees do not ensure OS integrity.

LiveDM [18] is a system for tracking the types of dynamically
allocated kernel memory. It operates by interposing on guest VM
operation, waiting until the VM reaches any of a set of kernel mem-
ory allocation functions. For these functions, the VMM keeps a
“shadow stack” of pending return addresses that it uses to deter-
mine when a particular call returns so it can associate call sites
(kernel code locations) with return values. The types of return val-
ues can then be inferred by static analysis of surrounding code re-
gions; an instrumented version of gcc is used to generate an AST
for static analysis. While OSck focuses on typing slab allocation, it
only uses CIL for static analysis and does not require instrumenting
a compiler. No performance measurements are given for LiveDM,
but OSck’s cache scanning mechanism has low system impact.

Loscocco et. al. present the Linux kernel integrity monitor
(LKIM) [21] which is a hypervisor component that intelligently
hashes kernel data structures for integrity. LKIM does not provide
advanced features like type-checking the kernel heap or provid-
ing an interface to kernel programmers to write their own integrity
checks.

8. Conclusion

OSck is a virtual machine based system that detects rootkits by
determining violations to operating system invariants. OSck intro-
duces new mechanisms for bulk verification of types, and consis-
tent data structure views to provide practical and efficient detec-
tion. Our deployment of OSck can efficiently detect many kinds of
rootkits including two new classes that cannot be handled by any
previous rootkit detection system.
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