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Abstract
Sego is a hypervisor-based system that gives strong privacy
and integrity guarantees to trusted applications, even when
the guest operating system is compromised or hostile. Sego
verifies operating system services, like the file system, in-
stead of replacing them. By associating trusted metadata
with user data across all system devices, Sego verifies sys-
tem services more efficiently than previous systems, espe-
cially services that depend on data contents. We extensively
evaluate Sego’s performance on real workloads and imple-
ment a kernel fault injector to validate Sego’s file system-
agnostic crash consistency and recovery protocol.

General Terms Security, Verification

Keywords Application protection, Virtualization-based se-
curity, Paraverification, Crash consistency

1. Introduction
A seemingly endless parade of privileged software compro-
mises (e.g., OS-level zero-day exploits commanding half-
million dollar ransoms as revealed by the Hacking Team
emails [39]) and a desire to migrate sensitive computations
to the cloud have energized research into removing trust
from privileged software like the host operating system or
hypervisor.

Once privileged software is untrusted, there are two ap-
proaches to system services: replace or verify (in this pa-
per by verify we mean check at runtime that the behavior
matches a specification). Many systems (e.g., Haven [11]

∗ This work is done when the authors were graduate students of The Uni-
versity of Texas at Austin

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’16, April 2–6, 2016, Atlanta, Georgia, USA..
Copyright c© 2016 ACM 978-1-4503-4091-5/16/04. . . $15.00.
http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2872362.2872372

and MiniBox [25]) force an application to link into its ad-
dress space much of its own trustworthy software, e.g.,
to protect persistent storage. Haven includes an entire li-
brary operating system. Finer-grained systems like Over-
shadow [14], Appsec [30], parts of Virtual Ghost [16, 17],
and Inktag [23] verify system services at runtime, for ex-
ample, using the guest file system, but checking that the
guest OS is operating correctly (e.g., by verifying the cryp-
tographic hash value of a secure file).

The advantage of replacement is that the application has
complete control over its software trusted computing base
(TCB). The disadvantage is that complex libraries, includ-
ing library operating systems, have large attack surfaces that
are likely vulnerable to the types of runtime compromise
that plague existing complex libraries and operating systems.
Systems that do not trust privileged software, but verify its
behavior at runtime, incur time and computational expense
to encrypt and hash data as it passes through the trust bound-
aries of the system. For example, SGX-enabled processors
encrypt and decrypt data as it passes from the processor
cache (trusted) to RAM (untrusted). Inktag and Overshadow
encrypt and hash data as it passes from trusted RAM (pro-
tected by the hypervisor) to untrusted RAM (protected by
the untrusted guest OS).

Exacerbating the performance and complexity problems
of these systems is guest OS services that examine the con-
tents of memory pages actively used by user-level code. For
example, kernel memory sharing (KSM) reduces physical
memory use by looking for pages with identical contents
(as often occurs when running multiple virtual machines).
Memory compaction copies memory to physically contigu-
ous regions to enable those regions to be mapped efficiently
with a single TLB entry (e.g., a 2MB page for Intel’s x86
architecture). Whenever an untrusted guest OS touches a
memory page of a secure process in Inktag and Overshadow,
it triggers a hypervisor page fault and the hypervisor must
encrypt and hash the page’s data.

Finally, file system recovery is difficult to do efficiently
when the OS is not trusted. Many file system operations that
appear atomic (e.g., creating a file) consist of a sequence of
updates to persistent storage. Journaling file systems make



file system operations efficient to perform and recover, but
at the cost of complex data structures that introduce more
intermediate states. The hypervisor has two problems man-
aging persistent metadata: it cannot trust the OS’s existing
file system metadata and it generates new intermediate states
during secure file operations (e.g., the secure process must
first tell the hypervisor it wants to create a file before it tells
the OS). Crashes that occur during the new state transitions
must be cleaned up properly by the hypervisor. Fast recovery
of persistent data for guest OS crashes is important because
the guest can be malicious and crashing is a malicious be-
havior that can erase or make unavailable persistent data for
secure processes and harms availability if it requires costly
recovery.

This paper introduces Sego, a system that efficiently
verifies system services at runtime; Sego makes protected,
trusted metadata pervasive across all system devices, elim-
inating the trust boundary that necessitates encryption and
hashing. In the Sego model, data stays in plain text, but it
is protected by trusted components that have access to the
trusted metadata. For example, Sego protects RAM using
the extended page tables and secure page metadata, which
is managed by the trusted hypervisor. Persistent storage is
protected by persistent metadata that is accessed only by the
trusted virtual block device.

Sego is faster than InkTag or Overshadow for workloads
where the untrusted OS touches secure memory, because
those systems must lock pages touched by the OS, and en-
crypt and hash their contents. Sego is 13%–15% faster for
IO-bound workloads, up to 2× faster for memory-intensive
workloads with KSM active, and up to 19% faster when
memory compaction is active. For the file system, Sego effi-
ciently recovers files purposefully or mistakenly deleted by
the guest OS. Previous systems, e.g., InkTag and Haven, pro-
vide secure file recovery after a guest OS crash; however,
they require a full disk scan to find and recover all pieces of
secure files. Sego’s recovery time is proportional to the size
of the recovered data, not the size of the storage device. For
example, Sego is 11× faster than Inktag recovering a 100MB
secure file from a 24GB virtual disk, even if the virtual disk
is completely cached in host memory.

The cost of pervasive metadata is a modified interface.
In Sego, the untrusted OS manipulates pages by reference,
making a hypercall so the hypervisor will perform the oper-
ation after verifying that the OS’s request is legal (e.g., the
OS is not trying to overwrite one trusted application with an-
other’s data). Sego changes the interface for untrusted soft-
ware to make verification of memory page operations more
efficient (designing interfaces that are efficient to verify is
called paraverification [23]).

Our Sego prototype is implemented as part of the KVM
hypervisor, and the QEMU hardware emulator. While Sego’s
model of pervasive metadata is amenable to pushing the
TCB into hardware, our goal was to build a prototype that
executes on currently available hardware. Therefore, Sego

modifies the hypervisor (protecting the CPU), uses nested
paging (to protect RAM), and modifies the hypervisor’s vir-
tualized block device (to protect the file system). We modify
the guest Linux operating system to conform to Sego’s se-
curity model. It no longer manipulates memory directly, but
uses hypercalls to initialize, copy, and test pages. We ex-
tensively evaluate Sego’s performance on various real work-
loads, implement a kernel fault injector to validate Sego’s
crash consistency and recovery protocol, and demonstrate
improved performance.

The contributions of this paper are the following.
1. Develop a model for secure computing where trusted

metadata and untrusted data remain coupled, across all
devices on which they reside (§3).

2. Design an efficient, secure data recovery protocol for
applications that rely on a journaling file system provided
by an untrustworthy operating system (§4).

3. Prototype and evaluate a trusted hypervisor that effi-
ciently verifies untrusted system services that depend on
data contents (§5, §6).

2. Overview and Background
This section explains the parts of Sego1 that derive from
other untrusted privileged code systems (keeping the paper
self-contained). Because it is implemented in the hypervi-
sor, Sego’s lineage traces back to InkTag [23] and Over-
shadow [14], but much of Sego’s assumptions are shared
with other designs such as Haven [11], SP3 [37], Sec-
Pod [35], and Virtual Ghost [17], though we emphasize the
portions that are most relevant to Sego’s novel contributions.

2.1 Threat model
Sego completely removes trust of the guest operating

system. Therefore, Sego assumes the guest OS can (try to)
read or modify any area of a user application’s memory, and
intercept or manipulate data en route to an IO device. It can
modify control flow when a user application returns from a
system call or interrupt. An attacker can intentionally crash
the OS at any point to subvert an application. For example,
when a user application updates its security settings (stored
in a file), the attacker can crash the OS before the changes are
made persistent and pretend as if the updates were persisted.
The OS can try to revert file contents. For example, when
a user application deletes a file and writes a new version of
the file with the same name, the attacker can modify OS file
metadata to point to the old version of file, rolling back the
file’s state.

The benefit of removing trust from the operating system
is that it prevents the operating system from being a shared
vulnerability across the entire system. Currently, if an OS is
dynamically compromised using a vulnerability in one appli-
cation, then all applications on the platform are untrustwor-
thy. Systems like Sego allow trusted applications to continue

1 Sego is from super-ego. It restrains the untrusted OS, ensuring well-
adjusted behavior, regardless of purity of intent.
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Figure 1: Sego design overview. In Sego, high-assurance processes (HAPs)
make hypercalls to the virtual machine hypervisor to verify the runtime
behavior of the operating system. The hypervisor and the virtualized block
device are trusted. The section labeled Tramp is untrusted trampoline code
and data used by the HAP to make system calls.

to function with a compromised and even overly hostile op-
erating system.

To protect the application from OS, Sego relies on a
trusted hypervisor and assumes hardware faithfully exe-
cutes hypervisor code. Like most work in untrusted OSes,
Sego does not prevent application bugs or application col-
lusion with the OS. Applications can establish trusted chan-
nels through the untrusted operating system just as they can
across a network, with Sego providing trusted identifiers.
However, once an application trusts another application,
Sego provides no protection.

Sego (and related systems) do not guarantee OS avail-
ability. A compromised OS can simply shut down or refuse
to schedule processes. While such activity would be disrup-
tive, it is also easily detected.

2.2 Sego security guarantees
Figure 1 shows an overview of the Sego architecture.

Sego’s trusted application code executes in a high-assurance
process, or HAP. After booting the OS, the Sego hypervisor
can start a HAP in such a way that the HAP can verify its own
initial code and data, bootstrapping trustworthy execution in
a way similar to a trusted program module (TPM) or soft-
ware guard extensions (SGX). The details are identical to
Inktag [23]. Once running, the Sego hypervisor ensures that
a HAP’s process context (registers) and trusted address space
are isolated from the operating system. Context switches are
handled by the hypervisor which hides information about the
HAP’s program counter and register contents from the guest
OS. The Sego hypervisor uses hardware nested page tables
to ensure privacy and integrity for the HAP’s address space
including code and allocated memory. The Sego hypervi-
sor provides full address space privacy and integrity for the
HAP’s data and control flow. While we explain the high-level
ideas, details are available from previous systems [14, 23].
Sego views the HAP’s address space as a set of secure 4KB
pages (called S-pages) that contain the HAP’s code and
data. Sego protects S-pages using nested paging (a set of
page tables accessible to the hypervisor and not to the guest
operating system). If the guest OS accesses S-page data, the

nested page table hardware faults and transfers control to the
Sego hypervisor, which considers the OS action malicious
and denies the operation (possibly terminating the OS).

Rather than extensively tracking guest OS state, the Sego
hypervisor uses paraverification, where the hypervisor pro-
tects important guest data structures (like the page tables)
and the guest clearly communicates its actions and intent to
the hypervisor. We assume the Sego hypervisor can start as
part of a trusted booting process [3], though the details are
out of scope for this work. In order to operate on S-page data,
a guest OS must make a hypercall and the hypervisor will
perform the action after verifying that the OS action com-
ports with the HAP’s intent, as expressed to the hypervisor
via a set of hypercalls. While the Sego hypervisor contains
new hypercalls to verify guest OS operations, these func-
tions are generally simple and only minimally increase the
hypervisor attack surface. Section 3 provides more detail.

Sego supports secure persistent file storage (called S-files).
HAPs allocate S-pages to load S-files into memory so that
the OS cannot read or modify contents of S-files. To pro-
tect S-files resident in persistent storage, the Sego hypervi-
sor maintains some per-file and per-file-data-block metadata
and uses it to verify accesses to secure files (§ 5.1).

The Sego hypervisor refers to each object that it guaran-
tees privacy and integrity by an identifier known as an OID.
For example, OIDs name secure files and anonymous mem-
ory regions. They are 64-bits long in the prototype.

Sego does not manage network I/O, however applications
can safely communicate over the network via mechanisms
such as transport layer security (TLS [18]), that enable se-
cure communication over an untrusted channel.

2.3 libsego
HAPs must express their intent to the hypervisor, so the

hypervisor can verify OS activity. For example, if the HAP
wants to read data from a file, it must inform the hypervisor
of its intent and then perform the system calls to open and
read the data. Forcing the HAP programmer to make many
additional hypercalls would be burdensome, but fortunately
it is unnecessary because system calls always require the
same hypercalls to precede them.

HAPs link a small library (less than 5,000 lines) called
libsego to get Sego services without having to change
their code. libsego mostly handles system calls and can be
viewed as a small modification to the C runtime library. For
example, when a HAP tries to access an S-file, it transpar-
ently invokes recovery operations (§4) if needed.

Each HAP also contains a small amount of untrusted
trampoline code that interacts with the operating system.
The Sego hypervisor switches control between secure HAP
code and the untrusted trampoline, and all system calls are
issued from the trampoline, protecting HAP control flow. All
system call arguments are copied into trampoline memory,
and results are copied out by the HAP.

For example, when a HAP calls open, code in libsego
translates the path name into an identifier (OID) and then



makes a hypercall to allow the hypervisor to check permis-
sions. If the hypervisor approves the open, the libsego code
calls the operating system by copying arguments into the
trampoline, then transferring control to it via the hypervisor.
When the system call returns, libsego verifies the results. For
example, if the hypervisor approved the open, but the oper-
ating system claimed that no such file exists, libsego must
take action to reconcile the discrepancy, if possible (see Sec-
tion 4). libsego verifies system call parameters and the return
value to prevent Iago attacks (§ 5.5).

3. Secure pages
Sego provides a uniform view of protected and trusted meta-
data with its associated data across all system devices (lib-
sego, hypervisor, and virtualized block device): secure meta-
data and the data to which it refers are always logically cou-
pled, no matter where the data resides. Previous systems that
eliminate trust in privileged software provide an abstraction
for secure data, but they all require complex management of
secure data as it transitions between being protected by the
system’s TCB and residing in untrusted storage.

Sego (and many similar systems) manage secure data in
fixed-sized units we call secure pages (S-pages). S-page data
and metadata can reside in a processor’s cache, in RAM,
or in persistent storage. An S-page in Sego is a block of
data with secure metadata specifying the persistent object
(OID) and offset, uniquely representing the memory. Sego
maintains the same secure metadata for S-pages across all
system devices pervasively.

To contrast Sego S-pages with previous systems, SGX [24]
only considers on-chip cache secure storage, so SGX-
secured data is encrypted and MACed (message-authentication
code) by hardware when it resides in RAM (or on persistent
storage). The InkTag hypervisor also encrypts and MACs
secure data as it moves to untrusted storage.

The Sego model assumes S-page metadata is bound to
its data across all devices. This binding can be provided di-
rectly by the hardware, or emulated with some combination
of hardware and trusted software. In our prototype, Sego
is implemented in a hypervisor, and it protects S-pages in
RAM using hardware memory protection (nested page ta-
bles) to ensure the untrusted guest OS cannot access them.
The Sego hypervisor reads and writes S-page metadata to
storage devices, emulating device support. Our Sego proto-
type does not encrypt or MAC data in order to protect it; it
uses alternate techniques, such as nested paging and trusting
the hypervisor’s handling of block I/O.

Sego will terminate any untrusted privileged software that
directly manipulates S-page data. Therefore, untrusted priv-
ileged software must be rewritten to access S-pages by ref-
erence. Fortunately, privileged software’s access to S-page
data is generally limited and stylized (e.g., it mostly needs
to copy the data, and occasionally needs more complex op-
erations like checking if two pages have equal contents). As
we quantify in Section 6, modifying Linux to operate on

user pages by reference is non-invasive. Sego modifies 1,572
lines of guest kernel code.

3.1 Pervasive metadata for S-page
An S-page abstraction that spans all system devices sim-

plifies the model and implementation of the TCB, making
security easier to achieve. It also allows efficient, protected
S-page access for untrusted privileged software. For exam-
ple, Sego requires less metadata per page than InkTag. Ink-
Tag requires 64 bytes of metadata for each 4KB disk sec-
tor2, while Sego requires only 20 bytes3. Much of InkTag’s
overhead is for maintaining cryptographic hashes and initial-
ization vectors for persistent data. While InkTag uses nested
paging, Sego simplifies its use. In Sego, an S-page always re-
sides in a trusted nested page table, while InkTag must move
S-pages between trusted and untrusted nested page tables.
Sego’s approach is simpler because it knows when S-files
are being read from IO devices and where the S-files are be-
ing placed in memory, so it can allocate the proper type of
memory page (§ 3.3). InkTag does not trust IO devices, so
it first reads encrypted S-file blocks into an untrusted page
table and decrypts and moves them to a trusted page table
when the HAP accesses the S-file data. Therefore, Sego’s
memory page management code is more than 10× smaller
than InkTag’s (which is less than a thousand lines of code).

3.2 Pages in Sego
Sego views persistent and in-memory storage as objects

that contain a sequence of 4KB blocks. Each block can be in
one of three states:

Untrusted. An untrusted block may be freely used by
untrusted software, privileged and unprivileged. Sego does
not maintain metadata for untrusted blocks. All other blocks
are trusted.

Reserved. A reserved block is protected by Sego and
cannot be accessed directly by untrusted privileged software,
but it contains incomplete metadata. Reserved blocks are
used during non-atomic transitions, like when a memory
frame is allocated to receive protected data from disk.

S-page. An S-page is protected by Sego and cannot be di-
rectly accessed by untrusted privileged software. Sego main-
tains the OID and the offset of each S-page. It sometimes
tracks additional metadata, for example it adds a sequence
number to anonymous memory S-pages.

Table 1 describes the interface the untrusted operating
system uses to create and manipulate S-pages. The untrusted
operating system uses its data structures (e.g., a struct
page in Linux) to distinguish the states of physical frames.
For example, if it needs a new empty page for a HAP, rather
than initialize the page itself, it invokes the 0PAGE hypercall,
which zeroes the page, and protects it from the OS.

2 OID and offset: 16B, hash: 16B, previous hash: 16B, IV: 16B.
3 OID and offset: 16B, version number: 4B.



Hypercall Description
RESV(fr) Reserve a physical frame (fr), e.g., in preparation for a

disk read.
untrusted→reserved

POPL(fr) Populate a reserved physical frame (fr) as S-page, e.g.,
in completion of a disk read.
reserved→S-page

SET PT(fr) Guest OS requests Sego hypervisor to map and verify
an S-page. S-page previously POPLed, 0PAGEed or
COWed.
S-page→verified S-page

0PAGE(fr) Zero-initialize a new frame (fr). The Sego hypervisor
protects the page and fills it with zeros.
untrusted→S-page

COW(dst,
src)

The Sego hypervisor copies the S-page data and meta-
data, thereby marking dst a copy of src.
S-page→two S-pages

FREE(fr) Release an S-page. If the S-page contains sensitive data
(i.e., is not already a zero page), it is zeroed by the Sego
hypervisor.
S-page→untrusted

Table 1: Sego interface for the untrusted operating system to request ser-
vices from the hypervisor to manage physical memory frames. The descrip-
tion of the call concludes with the state change induced on the frame.

3.3 Reading and writing the buffer cache
Untrusted disk blocks can be read into untrusted memory

frames, but the Sego virtualized block device will refuse to
read untrusted data into trusted physical memory. The vir-
tualized block device is code that executes in the hypervisor
that implements the block device interface used by the OS. It
is a necessary part of any hypervisor that exposes a physical
or virtual block device to a guest. The untrusted OS must first
reserve a frame before passing the frame to the virtualized
block device as the destination of a read. When the virtual-
ized block device receives a request for an S-page disk block,
it ensures that the destination frame is reserved, then reads
the S-page data into the frame and the S-page metadata from
storage into hypervisor memory. Once the reserved frame is
filled with data and its associated metadata is in place, the
reserved frame becomes an S-page. Sego maintains S-page
metadata in trusted storage as described in Section 5.1.

3.4 OS-generated S-pages
In addition to regular files, applications (including HAPs)

have memory pages that do not come from a file on disk, but
are instead generated by the operating system. For example,
malloc will call mmap to generate anonymous memory to
hold dynamically allocated data. When an application calls
fork(), it expects its anonymous memory to become copy-
on-write: if, after the fork, either the parent or child attempts
to write to anonymous memory, the operating system creates
a private copy of the page for that process. Maintaining
copy-on-write semantics and verifying its correctness for
these anonymous regions is challenging for Sego.

The Sego hypervisor tracks each HAP’s anonymous mem-
ory regions as S-pages, analogous to the handling of files.
Each anonymous memory S-page has an OID that refers to
the owning HAP, and an offset that specifies the location of

the page in the HAP’s virtual address space. When the parent
process calls fork(), the Sego hypervisor clones all anony-
mous S-page metadata into the new process (via the COW hy-
percall). Although the hypervisor clones S-page metadata,
the data segments for cloned S-pages may be shared, as long
as the data remains read-only. Copy-on-write faults are pro-
cessed by the guest OS and validated by the hypervisor.

To track S-pages generated by copying or zero-initializa-
tion, Sego relies on an S-tag to represent the contents of the
page. An S-tag is a vector with several fields updated by the
Sego hypervisor that tracks the state of the S-page as it is
copied and modified.

The S-tag for the S-page has four fields:
〈OID, offset, sequence number, dirty bit〉

The S-tag is updated as follows: every time the S-page be-
comes writable, the S-page’s OID and offset are copied into
the corresponding fields in the S-tag. The sequence num-
ber is incremented, and the dirty bit set to indicate that the
page may have been written. If the S-page becomes read-
only, the dirty bit is cleared. When the untrusted OS tries to
map the copy-on-write pages (using the SET PT hypercall),
Sego looks up the corresponding S-tag by OID and offset
and verifies the mapping.

3.5 Discussion
There are advantages and disadvantages to the Sego

model for secure data. Security-conscious users want their
cloud data encrypted while “at rest.” In the Sego model se-
cure data is stored in plaintext. Sego’s security model would
be strengthened by hardware enforcement of trusted meta-
data, which would protect persistent data from malicious
administrators, if not physical attacks. A security-conscious
user can always use encryption and MACing with Sego,
though at some performance cost.

An important question is whether hardware support for
encryption and hashing will erase Sego’s performance gains
over an approach like InkTag. Currently, IO bandwidth
is growing faster than encryption/hashing performance,
keeping encryption/hashing a bottleneck for InkTag- and
Overshadow-like approaches. CPU vendors are improving
the performance of cryptographic operations. For AES-
GCM (128 bit) the Intel Xeon E5 processor achieves 1GB/s
throughput per core [6] and a blog reports up to 1.5GB/s on
an Intel i7 4570HQ [7]. Sego shows a 13%–15% speedup
over InkTag for an IO-bound workload using a single SSD,
which has 250MB/s of write bandwidth (§6.4). Assuming
the faster AES speed, Sego’s performance win is reduced to
8%. However, recent SSDs can sustain 520MB/s IO band-
width (e.g., Samsung 850 SSD Pro [9]) which would bring
Sego’s win back up to 34%. We obtained the 850 and mea-
sured Sego’s sequential read performance as 37% faster than
Inktag’s.

Sego’s elimination of encryption and hashing is important
as the bandwidth of high-end IO devices are increasing faster
than processor speeds (e.g., PureStorage announced 5GB/s–
9GB/s of IO bandwidth in the FlashArray//m product [8]).



Device bandwidth can also be increased using RAID strip-
ing. Figures for how memory bandwidth differs between sys-
tem and enclave memory for SGX are not yet available.

3.6 Future work
We hope Sego is attractive to device manufacturers be-

cause it gives device manufacturers a path to integrate
trusted metadata into their devices and improve perfor-
mance. Hardware support for trusted metadata would close
the security gap of data not being encrypted at rest because
even at rest, data is protected by hardware.

Another advantage of hardware support is that emulat-
ing secure devices can be expensive. The situation is simi-
lar to device support for virtualization [28]. As software vir-
tualization gained popularity, device manufacturers directly
supported virtualization, improving performance. If Intel’s
SGX [24] forms the basis for a new generation of trusted
software, Intel and other device manufacturers might em-
brace the Sego model of pervasive trusted metadata because
then they could support it in hardware, limiting the TCB
and improving performance. For example, the Sego’s virtu-
alized block device could be implemented in an intelligent
SSD [19]. Ultimately, technology trends and marketplace
demands will determine the fate of trusted computing.

4. Secure files
A Sego block storage device is an array of 4 kB blocks, each
of which can be untrusted, reserved, or a persisted S-page.
Blocks by default are untrusted, but they are reserved by
the virtualized block device when identified as the even-
tual location of in-memory S-page data and become per-
sisted S-pages when data is committed. Users access secure
data on disk via S-files, which are just like normal files, but
privacy and integrity is guaranteed by the virtualized block
device and hypervisor (the Sego TCB). In addition to per-
block trusted metadata, Sego maintains the following per-
file metadata: OID, file length, and access control informa-
tion. Per-file metadata is persisted and managed by the hy-
pervisor, in storage that appears as a file in the host system
(though the file cannot be read or written by the guest oper-
ating system or any guest applications).

Sego provides fast recovery of secure persistent storage
for guest OS crashes. One contribution of InkTag was to
ensure the integrity of persistent storage in the presence of
guest OS and hypervisor crashes. While InkTag’s mecha-
nism has been adopted by other untrusted OS projects [11],
recovery for crashes (secure fsck) requires a complete scan
of any attached disks. Sego must be able to recover from
hypervisor crashes, but recovery continues to require a full
disk scan, just as it does in InkTag. Sego focuses on the more
common case of guest OS crashes.

Recovery of persistent data should be fast. The guest OS
can be malicious and crashing is a malicious behavior harms
availability if it requires costly recovery.

Fast recovery is difficult. The Sego hypervisor cannot trust
the indexing structures of the guest OS (e.g., the journal)
and must not harm I/O scheduling with many additional sync
operations or reordering barriers. Sego’s pervasive metadata
model allows libsego, the Sego hypervisor and the virtual-
ized block device to work cooperatively by sharing uniform
view of metadata, detecting any inconsistency between S-file
and S-file metadata and recover the S-file.

4.1 Sego’s S-file model
To facilitate fast recovery and to preserve the security

guarantees of S-files, the model for S-files is somewhat lim-
ited relative to normal files:
• No sparsity. S-files are not sparse; they must contain on-

device disk blocks for all file data.
• No shrinking. S-files may be ftruncated only to zero

length, or a length larger than the file’s current length. If
a file’s length is extended via ftruncate, it is filled with
zeroes to preserve the “No sparsity” property.

• sync required. A HAP cannot be sure that a file change
is resident on secondary storage until it returns from a
sync operation (e.g., sync, fsync, fdatasync). POSIX
programs must also sync to be sure file updates are com-
mitted to storage, but the Sego hypervisor does more ag-
gressive caching than most file systems.
Sego’s recovery guarantee for secure files is that any data

present on a storage device or in a device queue at the time
of a guest OS crash is recoverable after the crash. Sego
further provides privacy, integrity and prevention of rollback
attacks for S-files. Recovery is initiated by HAPs (optionally,
transparently) when they first access an S-file after a guest
crash.

The Sego hypervisor and the virtualized block device col-
laborate to verify access to S-files, and to efficiently recover
them. Sego storage maintains the invariant that each block
of a secure file is stored at a unique location. For example,
there can be only one block whose per-block metadata iden-
tifies it as OID X, offset 0. If there is more than one block
corresponding to an offset of a secure file, then the OS can
direct writes to only one of those blocks and direct reads to
the other block, thereby achieving a roll back attack. The
unique location allows the virtualized block device to locate
an S-file’s S-pages without scanning all of persistent storage,
making recovery efficient.

The Sego hypervisor must track S-file length because
it cannot rely on the OS. For instance, consider a S-file
persisted up to length Y , and the OS records length Y − x
due to a legitimate journal rollback or a malicious action. If
the Sego hypervisor believes the Y −x is correct and allows
a HAP to write data to that offset, the S-file will have multiple
data blocks for the same offset.

Challenge of journaling file systems. Modern file systems
like ext4, NTFS and XFS [33] support journaling for crash
consistency, but these guest OS mechanisms only create
challenges for Sego recovery: Sego cannot trust OS journals,



Recovery target Inconsistency Detected

S-file (RSF) Sego creates an S-file but
OS does not

When HAP
opens the S-file

S-file length
(RSL)

S-file length is different
from persistent storage

When guest OS
boots

Committed
block (RCB)

Sego loses persistent data
from an S-file

When HAP
opens a S-file

Reserved block
(RRB)

S-file data block corrupted
(not correctly committed)

When Sego
hypervisor runs
secure fsck

Table 2: Recovery actions for S-files in Sego.

and must not harm a well-behaved OS performing proper re-
covery from a journal. The default behavior of journaling
file systems, when a HAP writes a block of data, is for the
OS to write a modified inode into its journal and to asyn-
chronously write the data. When the data write reaches per-
sistent storage, the Sego hypervisor increases the length of
the S-file. A crash at this point would cause a (well-behaved)
OS to believe the data block had not made it safely to per-
sistent storage (because the modified inode has only been
written to the journal, not to its on-storage location), and the
file’s length would remain unchanged. In recovery, the OS
would disregard the uncommitted journal transaction, caus-
ing the OS and hypervisor to believe the S-file has different
lengths (with the hypervisor believing the file is longer). To
resolve this type of inconsistency, Sego introduces a novel
recovery mechanism.

4.2 Recovery from OS crashes
Table 2 shows Sego recovery actions for different types

of S-file inconsistencies between the hypervisor and OS.
For simplicity, we discuss each cases individually, but it is
possible that a single file needs multiple different recovery
actions.

To prevent data loss, Sego must accurately track S-file ex-
istence (see §5.1 for hypervisor on-storage data structures).
S-file creation is not atomic, so there is a window of vulner-
ability between when the Sego hypervisor believes an S-file
exists and the OS believes the corresponding S-file exists.
libsego checks on open for such inconsistencies and re-
covers by recreating the missing S-file in the OS file system
(case RSF).

Figure 2 shows the timeline of events on the left, and
the consequences of an OS or hypervisor (HV) crash on
the right. A HAP creates an S-file, causing libsego to make
a hypercall. The hypervisor creates the S-file and before it
writes the metadata, if the hypervisor were to crash, both it
and the OS would agree that the S-file does not yet exist.
Once the hypervisor syncs its per-file metadata, then on a
OS crash it would believe the file exists, while the OS would
not. This is the most common disagreement between the
hypervisor and the OS in our experiments (§6). Once the OS
has (asynchronously) written the new inode to its location
on storage, the hypervisor and OS would again agree on the
state of the file system were either to crash. The OS region

HAP
create S-file
libsego: create S-file (hypercall)

hypervisor
create S-file object
write S-file metadata

OS crash

Per-file metadata store

OS
write the inode to storage

HV crash

hypercall

Synchronously

HV creates S-file
but OS does not

HV creates S-file
but OS does not

action: RSF action: RSF

HV and OS successfully create S-file

N/A

Both HV and OS
do not create 

S-file

action: NONE

HAP
libsego: create S-file (syscall)

Asynchronously

Return to HAP

Figure 2: Windows of vulnerability while creating an S-file.

is marked N/A during hypervisor execution, because the OS
cannot crash while it is not executing.

For writes, libsego extends the length of an S-file be-
fore writing data. If the OS crashes after the S-file length is
extended, but before the OS persists the new S-page, Sego
must recover the correct length of the written data (case
RSL). The virtualized block device tracks the length of the
S-file, shares the S-file state with the Sego hypervisor, and
persists the metadata even when the guest crashes. The Sego
hypervisor can determine the true (persisted) length of the
S-file by examining the shared state from the virtualized
block device without exhaustively searching storage. Fig-
ure 3 illustrates this complex case, specifying the possible
disagreements between OS and hypervisor and the actions
necessary to reconcile state after a crash.

The most challenging recovery case is recovering com-
mitted data blocks (case RCB). RCB arises when the guest
OS rolls back an uncommitted journal transaction and the
OS’s notion of the length of the S-file is shorter than what
the hypervisor’s metadata says. When a HAP opens an S-file,
libsego compares the OS length and the hypervisor length,
and if the OS length is shorter, libsego initiates data re-
covery. A HAP indicates target S-pages in memory to hold
recovered data with a recovery hypercall, and the hypervisor
and the virtualized block device find and return the missing
data. Importantly, this does not require searching through all
persistent blocks. RCB can ignore all non-secure data block
because the trusted block bitmap (§5.2) allows the hypervi-
sor to distinguish trusted from untrusted blocks. libsego
then makes system calls to write the recovered data into the
S-file to allow the OS to come to agreement with the hyper-
visor on the contents of the S-file. Note that the guest OS
is isolated from all recovery actions, and cannot access any
recovery information.



HAP
append data to S-file
libsego: increase S-file length

hypervisor
increase S-file length 
create per-page metadata

OS
update inode for S-file

hypercall

return to 
HAP

OS
write inode to disk 

HAP
libsego: write data to S-file 

return to HAP;
hap do syscall

OS
update inode

OS crash HV crash

S-file length: 
 HV > OS

No data written

S-file length:
 HV == OS

No data written

status 2

hypervisor and OS successfully write data

asynchronous write

S-file data 

Inode (journal)

Journal commit

Inode

sync

flush data and metadata
 asynchronously

action: RSL

action: RSL

status 1

action: RSL, RCB

status 1: hypervisor losts S-file length information
status 2: OS fails to commit journal transaction; transaction will be rollbacked

status 1 and 2

action: FSCK

action: FSCK, RCB

N/A

Storage

Figure 3: Appending data to S-file. Guest OS uses journaling file system
(Ext3 ordered mode in this figure). The dotted line “sync” implies the
successive two blocks are stored in order, guaranteeing that the first is
persisted before the second.

Hypervisor crashes will not lose secure file data, but re-
covering from a hypervisor crash requires a complete disk
scan (InkTag’s secure fsck). RRB recovery can only occur
during a secure fsck. We leave optimizations for hypervi-
sor crash recovery as future work.

4.3 Secure deletion: preventing file rollback attack
Deleting S-files creates a challenge for maintaining unique

block locations, because the data and metadata for a single
S-file can be scattered across a storage device. Consider a
user who deletes a file, and then creates a file with new
contents but the same name. The delete must somehow in-
validate all blocks on the storage device before it can safely
return, yet synchronously updating the metadata for every
block in a file will be slow, especially for disks.

Sego provides a fast delete operation by adding a version
number which is incremented on delete (as other file systems
have done, e.g., LFS [31]). Sego defines the effective OID
for a file as hash(OID|verion). The hypervisor increments
the version number when the HAP deletes a secure file by
calling ftruncate(0) or unlink. The hypervisor and
the virtualized block device maintain a mapping from origi-
nal OID to effective OID. For crash consistency, the mapping

Figure 4: Sego storage layout. The untrusted OS reads and writes OS-
addressable blocks, which are arranged in segments on the backing store
and interleaved with OS-invisible blocks, that store S-page metadata.

information is synchronously persisted to per-file metadata
store. The hypervisor stores the effective OID in per-block
metadata, so the virtualized block device can separate active
blocks and deleted block for secure files. Effective OIDs al-
low for fast, secure deletion of S-files.

5. Implementation
This section describes our prototype implementation of Sego
for efficient, pervasive metadata and crash recovery.

5.1 Storage layout
The Sego hypervisor views persistent storage as a se-

quence of 4KB blocks. The Sego’s virtualized block device
executes on behalf of the hypervisor and helps track S-page
and S-file metadata.

Figure 4 illustrates the persistent storage layout of OS-
addressable blocks, which contain untrusted data or S-page
data and may be read directly (for untrusted data) or indi-
rectly (for S-pages) by the guest OS. The storage image also
contains OS-invisible blocks, which contain metadata for
S-pages. OS-addressable blocks are arranged in segments on
the storage device, with OS-invisible blocks interleaved at a
fixed ratio. The Sego hypervisor presents the OS-addressable
blocks to the untrusted guest as a contiguous virtual block
device. Sego interleaves its metadata, defining a virtual stor-
age image format that we call interleaved data image or IDI.

For each segment of OS-addressable blocks, metadata for
S-pages contained within those blocks is stored in two OS-
invisible blocks. The leading invisible block stores S-page
metadata such as OID and offset, and the trailing invisible
block stores a commit block, that atomically indicates the
completion of an update to both S-page metadata and data.

5.2 Implementing pervasive metadata
The Sego hypervisor (running as part of the Linux kvm

module), its virtualized block device (running as part of
the userspace qemu process), and the guest kernel share
information about the state of physical frames in memory
and on disk.

Trusted block bitmap The untrusted guest kernel and the
virtualized block device share a bitmap of the trusted blocks,
indicating which blocks contain S-file data (the trusted block



bitmap). Before submitting a disk request, the guest kernel
(specifically, the VirtIO driver) checks the bitmap, and
invokes a hypercall for a secure disk operation if the blocks
contains S-file data.

Sharing S-page metadata with the virtualized block device
The Sego hypervisor and the virtualized block device share a
map of physical memory to exchange S-page metadata. The
map is indexed by the guest physical address of an S-page
and contains S-page metadata for each entry. When the vir-
tualized block device receives a write request with data in
guest physical memory and a virtual disk address as a desti-
nation, it checks the shared map to see whether the request
comes from an S-page, updates the secure block bitmap if
necessary, and writes the S-page metadata, along with the
data to virtual disk. When the virtualized block device re-
ceives a read request, it verifies the block’s status by looking
it up in shared memory: the destination physical frame must
be marked as an S-page if the block is trusted or marked as
untrusted if the block is untrusted. If the destination physi-
cal frame is an S-page, the virtualized block device populates
the S-page metadata in the shared map by reading the S-page
metadata block. The size of S-page metadata is 30 bytes4 for
each 4KB S-page, which is at most 0.7% of total memory
size.

5.3 Recovering S-files
To aid secure recovery, the virtualized block device and

the Sego hypervisor share a memory region. Once qemu
boots, it allocates a fixed amount of memory and sends the
address to the hypervisor via ioctl interface.

When libsego requests RCB recovery (see Table 2 in
§4.2) to the hypervisor, the hypervisor maps the shared mem-
ory, signals the virtualized block device to fetch recovery
data and send the recovery data to libsego. Most impor-
tantly, the Sego hypervisor never trusts any information from
OS and the OS cannot access or modify the shared memory
during the RCB recovery.

The first 4K page of the shared memory contains informa-
tion for recovery such as OID and range of offset. Once the
virtualized block device gets signal for a recovery request, it
searches corresponding blocks for the S-file with the block
bitmap information (without full scan of disk such as what
InkTag does) and copies found data to the shared memory
for recovery.

Sego restores S-page and S-file metadata consistency fol-
lowing a hypervisor crash (not guest OS crash) via an fsck-
like process that reads the entire disk. Blocks having both
associated S-page metadata and a valid commit block are
considered secure blocks. If a block has S-page metadata,
but no commit block, then it is considered reserved. Because
the hypervisor cannot be sure whether or not private data
has been written to the OS-addressable block, the virtual-

4 OID: 8B, offset: 8B, version number: 4B, sector number: 8B, state vari-
able: 2B.

ized block device can only zero the block on disk to recover
the reserved block. (RRB recovery)

5.4 Optimizing storage access
The InkTag storage layout is designed for crash consis-

tency. When the OS writes a block for a secure file, the write
is transformed into three writes. First, S-page metadata is
written to the leading metadata block, which is invisible to
guest OS. Then, the data is written to the OS-addressable
block. Last, the commit block is written to indicate the com-
pletion of the previous two writes. To reduce seeks on disk,
the InkTag’s virtualized block device5 writes metadata, data
and commit block sequentially within each segment. The
host (hypervisor) I/O scheduler can merge and reorder I/O
request from the InkTag’s virtualized block device so Ink-
Tag must sync after each write to guarantee that the three
writes are persisted in order.

Sego batches writes to a single segment, writing leading
metadata, all data blocks, and then the commit block in
order. This process eliminates a sync for every data block
written to a segment, beside the first. Segments are 64KB in
our prototype.

5.5 Preventing Iago attacks
Sego prevents known Iago attacks [12]. It prevents attacks

on mmap as InkTag does, using a user-provided token re-
turned by the OS from mmap, which allows the user to verify
that newly memory mapped regions do not overlap old ones.
Sego saves and restores the fs and gs registers on context
switches, because the gcc toolchain uses them for thread-
local storage and other purposes.

Sego only supports unnamed POSIX semaphores, which
reside in the processes’ address space, disabling the OS from
modifying their values. Sego uses uClibc for HAPs and the
resume path in sem wait checks whether the thread is being
woken up by another thread/process doing a sem post. This
check ensures that a waiting process will not proceed when
the OS wakes it up for any reason except a corresponding
sem post.

6. Evaluation
In this section, we evaluate the performance and crash recov-
ery of the Sego system. For IO benchmarks we use a 3.4GHz
quad-core Intel i7-3770, with a 500GB HDD and a 256GB
SSD and for the server benchmarks we use a 2.8GHz quad-
core Intel i7-860 with a 160GB HDD and a 256GB SSD.
Sego is originally implemented at Linux 2.6.36 and QEMU
0.12.56 and ported to Linux 3.19.3 and QEMU 2.3.2. Our
test system uses Ubuntu 14.04.4. Our guest VMs use a sin-
gle virtual CPU, 2GB memory and a 12GB disk image. For
the InkTag experiments, we turn off MAC functionality to

5 This is the similar component to Sego’s virtualized block device and used
for InkTag’s storage layout
6 The server benchmark, crash test and IO benchmarks are done using the
older code base.



Service Application Non-HAP InkTag Sego

KSM

429.mcf 521 1095 (110%) 548 (5%)
471.omnetpp 319 478 (49%) 333 (4%)
470.lbm 218 351 (61%) 230 (5%)
Graph analysis 200 278 (39%) 202 (1%)

Comp. Memory read 237 298.6 (25%) 251.4 (6%)

Table 3: Execution time with KSM (in second) and memory compaction
(in millisecond). Application slowdown is normalized by Non-HAP.

emulate GCM [20] (or upcoming hardware support for SHA
hashing [5]). Sego modifies 1,572 lines of Linux kernel code
for guest OS and 5,411 lines of KVM hypervisor code. Ink-
Tag modifies 962 lines of guest kernel code and 4,068 lines
of hypervisor code.

6.1 Performance comparison with modern OS services
This section compares the efficiency of Sego and Ink-

Tag when a HAP runs with modern kernel services: ker-
nel samepage merging (KSM) and memory compaction. Ta-
ble 3 shows application slowdown when the applications ex-
ecute with KSM and/or compaction enabled. To quantify
the overhead from KSM, we run three memory-intensive
benchmarks from SPEC CPU 20067 and a graph analysis
application [2]. KSM uses its default configuration, where
a dedicated kernel thread scans 100 pages on every invo-
cation and sleeps 20 milliseconds between invocations. The
KSM thread constantly scans and test secure memory, caus-
ing severe performance interference (up to 2×) by InkTag’s
cryptographic operations. To analyze compaction overhead
and thereafter memory access delay, we use synthetic micro-
benchmark: this benchmark maps 500MB of secure mem-
ory, requests compaction and read the memory after com-
paction finishes. Our investigate reveals 64MB secure mem-
ory is moved by compaction (InkTag hypervisor encrypts
the pages). When HAP reads the pages, InkTag decrypts the
pages, which causes 19% slowdown of memory read perfor-
mance.

6.2 Crash Consistency
We evaluate Sego’s crash consistency via directed and

randomized fault injection. We analyze file system code to
determine four windows of vulnerability for different types
of data loss and use System Tap [21] to inject faults at the
beginning, middle and end points of each window (directed
crash test). These experiments stress worst case behaviors
that would be difficult to generate with user-level workloads.
For example, when extending a file, Linux often merges the
length and data updates into a single inode write, but we test
a crash between these updates. Sego recovers from all faults
in the directed crash tests for the ext3, ext4, vFAT, and
btrfs filesystems.

We further validate that Sego can withstand and recover
from faults by randomly injecting faults into a guest (that

7 We choose these three benchmarks because they have enough memory
accesses to show a difference between InkTag and Sego.

Domain Masked Short Recovery TotalRSF RSL RCB
File system 51 9 40 2 1 103
Kernel 85 7 10 0 1 103

Table 4: Random fault injection experiments, with faults injected to file
system code and into the entire kernel. Either the benchmark ran correctly
(faults Masked), the OS and Sego hypervisor both observed the same
amount of data in affected files (Short), or Sego recovered a secure file,
secure length, and possibly secure data (RSF, RSL, and RCB).

Domain Recovery Success TotalRSF RSL RCB
File system 29 7 0 150 150
Kernel 26 0 0 150 150

Table 5: Random fault injection experiment for git

has an ext3 file system). We use a kernel fault injection
model [13, 34, 38], updating a copy of the injection frame-
work from Swift et. al. [34] for modern kernels. We use two
fault distributions, one for the whole kernel and one that tar-
gets file system code. These distributions are based on recent
real-world fault studies [15, 26, 29, 38]. Our results are in
Table 4. Our software fault injection framework is available
online.8

A fault injection trial starts with the execution of four
HAPs concurrently writing 20MB S-files, while 20 randomly
selected faults are injected. Then four more HAPs are created
to write additional 20MB S-files, all data is synced to storage
and the system reboots. After the reboot, all of the S-files are
read by the HAPs.

Table 4 shows the results of injecting random kernel and
file system faults. Sego can detect and recover from every
case where the OS and Sego hypervisor disagree on the state
of the affected S-files. In our experiment, the RCB recovery
happens when the guest OS believes the S-file does not exist
(though the S-file actually exists and data are persisted).
Thus, the recovery procedure is combined with two recovery
mechanisms: re-creating the S-file (RSF) and recovering
blocks of the S-file (RCB).

We do the fault injection evalution to version control
system, git. We make git (v1.2.3) run as HAP and config-
ure the git to store all meta-information and object files as
secure files. The evaluation starts with initializing reposi-
tory, adding 20MB file and commiting the file, followed by
sync. Git can persist meta-information (index, header for ini-
tial commit) and objects for current snapshot. Faults are in-
jected with the same configuration used in table 4. 30MB
file is added and commited to the repository and system
shuts down. After reboot, we run git’s consistency check-
ing tool (git fsck). If git successfully finishes the consis-
tency check, we count it as success. Table 5 shows the result.
Sego recovers every trial enough for git to successfully run
git fsck.

8 https://github.com/ut-osa/fault-injection

https://github.com/ut-osa/fault-injection


Recovery time for a secure file in Sego.
File Size 4KB 1MB 10MB 50MB 100MB

Disk 0.02 0.03 0.36 1.63 3.49
SSD 0.01 0.02 0.16 0.78 1.51

Recovery time for InkTag.
Fully cached Half cached Not cached

SSD 17 41 65

Table 6: Recovery time (seconds). A 24GB virtual disk is stored on an SSD
and the host caches different amounts of the virtual disk during recovery.

Server Linux VM Sego

Apache throughput (req/s) 1526 1411 (7.5%)
latency (ms) 65.5 70.9 (8.2%)

OpenLDAP
insert (ms) 1307.7 1515.7 (15.9%)
query (ms) 1079.8 1118.2 (3.6%)
delete (ms) 1269.4 1459.5 (15.0%)

DokuWiki 1 client (s) 7.9 11.1 (40%)
16 client (s) 11.3 16.9 (49%)

Table 7: Server application performance.

Sego recovery provides an optimized path for recover-
ing secure data that is maliciously erased by the operat-
ing system. If the malicious OS executes rm -rf /, Sego
has trusted metadata distinguishing all secure disk blocks so
it preserves their contents and rejects any subsequent OS
writes to them. As haps try to access the deleted S-files,
Sego recovers their contents by searching just the secure data
on the disk, not the entire disk contents. Table 6 shows the
amount of time it takes to recover S-files. To measure the re-
covery time of Sego, we delete (rm -f) an S-file and have
a HAP reopen the S-file to recover the data. Most of the
time is spent in the disk controller (∼90%) reading secure
data, and the HAP successfully recovers the entire contents
of the S-file. The second table shows recovery time of Ink-
Tag. InkTag has to scan entire disk to recover the length of
S-files and inconsistent blocks since it cannot trust the on-
disk metadata of OS. We measure the time by running fsck
-c (the option that scans for bad blocks) on the virtual disk
to estimate InkTag fsck time. Sego’s recovery time is 19×
faster than InkTag when the entire virtual disk is already in
the host buffer cache. Because Sego maintains fine-grained
metadata, it does not need to recover the entire disk after a
crash, it can recover only missing secure data.

6.3 Server applications
We build several server applications as HAPs, and evalu-

ate their performance. The clients run in a different machine
connected over 1Gbps Ethernet.

For the Apache webserver, we use the ab benchmarking
tool to measure the performance overhead in Sego. The
benchmark executes 10,000 requests, at a concurrency level
of 100. Table 7 shows the results; throughput and latency
overheads are below 9%.
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Figure 5: Sequential IO performance of disk and SSD. We normalize I/O
throughput by the number of Linux VM; Slowdown of Linux is less than 1.

SSD Linux in a VM S-file Sego
grep-src 0.20 0.22 (10.1%)
Fortune 50 1.80 1.95 (8.3%)

Table 8: GNU grep execution time in seconds. The standard deviation over
20 trials is less than 4% of the mean.

We build the OpenLDAP [4] server as a HAP, using
Berkeley DB as the backend and secure all database and
log files as S-files. We measure the overhead of inserting,
querying, and deleting 200 entries, and the results are shown
in Table 7. The overhead is 3.6% for queries, and under 16%
for insert and delete. The server calls an fdatasync for in-
serts and deletes, in which the Sego hypervisor synchronizes
the per-file metadata for crash consistency.

We run DokuWiki [1] as a HAP in Sego and follow the
methodology from the InkTag paper [23]. DokuWiki is a
PHP-based wiki that stores wiki data as S-files. We use the
same corpus of wiki edits used in the InkTag benchmarks.
We run a sequence of operations against DokuWiki via its
XML-RPC interface, with a 90% read workload, where each
write advances a wiki page to its next version. Sego runs
DokuWiki’s CGI binary as a HAP. We measure the slow-
down for a sequence of 20 operations, averaged across 5 tri-
als. Our results are shown in Table 7.

6.4 IO benchmarks
Figure 5 shows the sequential write performance of Sego

on both disk and SSD. The micro-benchmark performs
200MB of sequential write with a 64K request size. The
interleaved disk image (labeled IDI) has a segment size of
64KB and a 4KB block each for the metadata and commit
blocks.

The write penalty for IDI is reasonably low (< 10%),
Sego’s S-file write performance is 17% and 26% slower on
disk and SSD respectively. We measure between 8 to 10 MB
of additional metadata writes when writing a 200 MB S-file
on SSDs. Sego outperforms InkTag by 76% and 27% in
disk and SSD respectively because Sego reduces the number
of sync by our I/O optimization and eliminates encryption
and MAC for IO data. Our investigation identifies 13%–15%
IO performance is improved by removing the cryptographic
protection.

To measure IO performance with a real application, we
compile GNU grep (v2.18) as a HAP and search for a string



(that is not found) in the grep source code and through a
directory of the most recent form 10-K filing from the top
50 of the Fortune 500 (termed Fortune 50). The grep source
code contains 918 files with an average file size of 10 KB and
the Fortune 50 files contains 49 files (one of the companies
is not publicly traded) with an average file size of 4.6 MB.
Table 8 shows the wall-clock time for each setting. Grepping
large and small files on Sego has about a 10% overhead
though it is slightly worse when search through many small
files. Opening an S-file induces an additional hypercall to
check for file recovery, which shows up when working with
many small files.

7. Related work
There has been significant work on providing verifiable sys-
tem services built on untrustworthy operating systems. We
summarize the contribution of many systems in a taxonomy
to determine what has been done in the state of the art and
what work remains.

Table 9 summarizes several recent systems, explains what
properties they achieve and how they achieve them. Most
abbreviations used in the table are explained in the caption.
The table is divided into regions. The first region is about
privacy and integrity of physical memory and address space
mappings. The next region is about storage. Some systems
distinguish storage for user’s cryptographic keys; some sys-
tems support protected files; some assume applications will
use their keys to encrypt and MAC their data. Sego and Ink-
Tag have focused on problems that arise with verifying the
untrusted file system, while Haven replaces the untrusted file
system with a library OS and most other systems assume a
simple library for encrypted and MACed files. OS page in-
dicates if a system allows the OS to temporarily swap a pro-
tected application’s page to persistent storage (which it does
to manage a limited amount of physical memory). Then fol-
lows access control, with HV acct indicating if the trusted
system supports a user account distinct from, but parallel to
OS accounts. In the final section, Split app indicates if the
system requires an application to do privilege separation to
isolate its security-sensitive components (which represents a
significant barrier to entry).

Techniques for protecting the privacy and integrity of
RAM is the area of widest innovation. RAM protection is the
performance-sensitive basis for supporting applications on a
hostile operating system, so it is logical that it is the focus
of innovation. Most existing systems have not addressed
address space privacy, so a hostile operating system can
effectively get a page-granularity trace of any application’s
execution (and an effective attack has been published [36]).

A fundamental distinction is between systems that try to
provide a protected file system and those that rely on appli-
cations (perhaps augmented with libraries) to protect their
own data via encryption. Systems that support an untrusted
file system (e.g., Sego and Overshadow) can mmap secure
files, which provides compatibility with current systems and

a variety of services and optimizations. For example, mmap is
the way Linux loads applications. It provides demand paging
for executables and provides a basis for metadata-efficient
integrity verification. Supporting a file system allows sys-
tems like Overshadow and Sego to support OS paging. Fi-
nally, verifiable file system support can include flexible ac-
cess control.

Many recent systems have avoided providing file system
support, relying on cryptography and do-it-yourself appli-
cation libraries (e.g., virtual ghost and MiniBox). The sim-
plicity of leaving the file system out of the list of system
services that need to be verified is appealing. Without file
system support, it is straightforward to support simple data
storage for a single application (much like the app-centric
storage model of iOS). If a user has privacy and integrity for
a set of encryption keys, they can use those keys to encrypt
and HMAC files. Encryption on files works well for a HAP
to protect data that a future instance of the same HAP will
access.

All features provided by an untrusted file system can
probably be reimplemented by trusted applications, though
these features include complex semantics and important per-
formance optimizations. For example, application-directed
paging would require new interfaces to allow applications
to make swapping decisions. Paging requires the applica-
tion and hypervisor to dynamically protect the privacy and
integrity of memory pages and the integrity of their map-
ping. Virtual ghost has a design for OS paging, but does not
implement it in their prototype, hence the Y/N. As another
example of how systems compensate for lack of file system
support, TLR relies on special hardware to prevent memory
rollback attacks.

It is difficult to provide access control without a file sys-
tem. Several systems feature user accounts in the hypervi-
sor (though virtual ghost has a VM instead). Such accounts
might be sufficient for the hypervisor to maintain per-user
encryption keys. However, providing user and group-based
access control common in file systems using only cryptog-
raphy is still an open problem, especially for access revoca-
tion [10, 22].

minimizing the code in a HAP is desirable. It uses a shared
wimpy kernel service that verifies only low-level I/O with
the untrusted OS, not higher level services like file system
operations (e.g., demand paging or copy-on-write).

8. Conclusion
Sego guarantees trustworthy services for user applications
even when the guest operation system is malicious. We pro-
pose pervasive metadata for efficient verification and demon-
strate substantial performance improvements for modern
system services as well as IO-bound workloads. Sego pro-
vides crash consistency and recovery for secure data, which
is validated by experiment. We believe Sego contributes a
step forward for “secure” cloud computing.



System RAM
privacy

RAM
integrity

AS
privacy

AS
integrity User keys FS

privacy
FS
integrity

FS
crash

OS
Paging

HV
acct

Split
app

Sego EPT EPT None PV & HV Secure file HV & Virtualized
block device

HV
recovery Yes No No

InkTag [23] EPT &
Encrypt

EPT &
HMAC None PV & HV Secure file Encrypt &

Namespaces
Per-sector
HMAC

Disk
scan Yes No No

Overshadow [14] Shadow
page table HMAC None HV Secure file Encrypt File

HMAC None Yes No No

Haven [11] HW
Enclave

HW Enclave
& HMAC None HW

Enclave
LibOS file
system

Shield
module

Shield
module

Disk
scan Yes NA No

Virtual Ghost [17] Compiler
& ISA Compiler None ISA TPM & VM None None None Y/N Yes No

MiniBox [25]
TrustVisor [27]

EPT EPT &
vTPM

Pinned
text HV µTPM &

TPM App App None No Yes Yes

TLR [32] ARM TrustZone
memory

ARM TrustZone
translation tables

Encrypt &
memory HW None None None No No Yes

Table 9: A comparison of techniques that support applications running on untrusted operating systems. AS–address space, FS–file system, HV–hypervisor,
EPT–extended page tables, PV–paravirtualization, attrs–attributes, PCR–platform configuration register. NA means the category is not applicable.
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[29] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès,
Julia Lawall, and Gilles Muller. Faults in linux: Ten years
later. In ASPLOS, pages 305–318, 2011.

[30] Jianbao Ren, Yong Qi, Yuehua Dai, Xiaoguang Wang, and
Yi Shi. Appsec: A safe execution environment for security
sensitive applications. In VEE, 2015.

[31] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1), February 1992.

[32] Nuno Santos, Himanshu Raj, Stefan Saroiu, and Alec Wol-
man. Using ARM trustzone to build a trusted language run-
time for mobile applications. In ASPLOS, 2014.

[33] Adam Sweeney, Doug Doucette, Wei Hu, Curtis Anderson,
Mike Nishimoto, and Geoff Peck. Scalability in the xfs file
system. In USENIX ATC, 1996.

[34] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating systems. In
SOSP, pages 207–222, 2003.

[35] Xiaoguang Wang, Yue Chen, Zhi Wang, Yong Qi, and Yajin
Zhou. Secpod: a framework for virtualization-based security
systems. In USENIX ATC, 2015.

[36] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In IEEE S&P, 2015.

[37] Jisoo Yang and Kang G. Shin. Using hypervisor to provide
data secrecy for user applications on a per-page basis. In VEE,
pages 71–80, 2008.

[38] Takeshi Yoshimura, Hiroshi Yamada, and Kenji Kono. Is linux
kernel oops useful or not. In HotDep, 2012.

[39] Kim Zetter. Hacking team leak shows how secretive zero-day
exploit sales work. Wired, 2015.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

	Introduction
	Overview and Background
	Threat model
	Sego security guarantees
	libsego

	Secure pages
	Pervasive metadata for S-page
	Pages in Sego
	Reading and writing the buffer cache
	OS-generated S-pages
	Discussion
	Future work

	Secure files
	Sego's S-file model
	Recovery from OS crashes
	Secure deletion: preventing file rollback attack

	Implementation
	Storage layout
	Implementing pervasive metadata
	Recovering S-files
	Optimizing storage access
	Preventing Iago attacks

	Evaluation
	Performance comparison with modern OS services
	Crash Consistency
	Server applications
	IO benchmarks

	Related work
	Conclusion

