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What is RoboCup?

International robotics competition founded in 1997
Consists of many different robot soccer leagues
Includes non-soccer robot competitions: RoboCup Rescue &
RoboCup @Home
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RoboCup Goal

Have a team of fully autonomous humanoid robot soccer players beat the
human World Cup champions by 2050

Click to start

Humans vs Robots
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RoboCup 3D Simulation Domain

Teams of 9 vs 9 autonomous agents play soccer
Realistic physics using Open Dynamics Engine (ODE)
Agents modeled after Aldebaron Nao robot
Agent receives noisy visual information about environment
Agents can communicate with each other over limited bandwidth channel
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Advantages of 3D Simulation
Good for testing both low-level control and high-level processes
Allows for quick prototyping of robot models and behavior
Can do large scale machine learning
Simulated robots don’t break...

well at least not usually!
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Competition Results

RoboCup 2010 2011
Goals For: 11

136

Goals Against: 17

0

Record (W-L-T): 4-5-1

24-0-0

Place: Outside Top-8

1st

BIG IMPROVEMENT!
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UT Austin Villa Team

Professor: Peter Stone

Graduate Students: Patrick MacAlpine, Daniel Urieli, Shivaram Kalyanakrishnan,
Samuel Barrett, Yinon Bentor

Research Scientist: Michael Quinlan

Undergraduate Students: Francisco Barrera, Nick Collins, Adrian Lopez-Mobilia,
Art Richards, Nicu Stiurca, Victor Vu
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Talk Overview

1. Overview of RoboCup

2. Omnidirectional Walk and Parameter Optimization

3. Kicking Engine

4. Dynamic Role Assignment and Positioning System

5. Analysis and Current/Future Work
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Motivation (2010 Walk)

Consists of many fixed frame based skills
Unable to quickly react (not omnidirectional)
Not as stable as desired (completely open loop)

Click to start
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Omnidirectional Walk Engine

Double linear inverted pendulum model
Based closely on that of walk engine by Graf et al
Mostly open loop but not entirely
Designed on actual Nao robot
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Walk Engine Parameters
Notation Description

maxStepi Maximum step sizes allowed for x , y , and θ
yshift Side to side shift amount with no side velocity
ztorso Height of the torso from the ground
zstep Maximum height of the foot from the ground

fg
Fraction of a phase that the swing

foot spends on the ground before lifting
fa Fraction that the swing foot spends in the air
fs Fraction before the swing foot starts moving
fm Fraction that the swing foot spends moving

φlength Duration of a single step
δ Factors of how fast the step sizes change

ysep Separation between the feet
xoffset Constant offset between the torso and feet

xfactor
Factor of the step size applied to
the forwards position of the torso

errnorm Maximum COM error before the steps are slowed
errmax Maximum COM error before all velocity reach 0

Parameters of the walk engine with the optimized parameters shown in bold

Patrick MacAlpine (2012) 11 / 65



Initial Walk Parameters

Designed and hand-tuned to work on the actual Nao robot
Provides a slow and stable walk

Click to start
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CMA-ES (Covariance Marix Adaptation Evolutionary Strategy)

A stochastic, derivative-free, evolutionary numerical optimization method for
non-linear or non-convex problems

In each generation, candidates are sampled from a multidimensional Gaussian
and evaluated for their fitness
Two main principles for parameter adaptation:

I Mean maximizes the likelihood of previously successful candidates, Covariance
maximizes the likelihood of previously successful search steps (Natural Gradient
Decent)

I Evolution paths are recorded and used as an information source
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Learning Algorithms Evaluation
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CEM Cross Entropy Method
CMA-ES Covariance Matrix Strategy Evolutionary Strategy

GA Gebetic Algorithm
HC Hill Climbing

RWG Random Weight Guessing
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Walk Control and Movement of Walk Engine

Agent moves and turns in direction of target at the same time
I Wins on average by .7 goals against non-turning agent

When dribbling agent circles while always facing ball

When told to stop agent jogs in place for half a second before
entering fixed stand pose

I Wins on average by .64 goals against non-jogging agent
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Drive Ball to Goal Optimization

Agent given 30 seconds to dribble ball toward the goal
Reward = distance ball travels toward goal averaged across 7 runs
Parameters optimized using CMA-ES algorithm

I = initial, D = driveBallToGoal
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Drive Ball to Goal Learned Parameters

Wins by an average goal difference of 5.54 against Initial agent
Wins by an average goal difference of 2.99 against 2010 walk agent

Click to start

Agent with all learned 14 parameters performing driveBallToGoal optimization
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Problems with Drive Ball to Goal Optimization

Agent not that fast
I .43 m/s compared to .6 m/s speed of 2010 walk

Agent unstable when stopping

Agent overfits to when dribbling is going well
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Walk Forward Optimization

Agent walks forward for 10 seconds from a complete stop
Reward = distance agent walks forward
Faster speed of .78 m/s up from .43 m/s

I = initial, D = driveBallToGoal, F = walkForward
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Walk Forward Agent Video

Click to start

Attempts to transition between driveBallToGoal walk parameters (red ’D’) and new
walkForward parameters (yellow ’F’)
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Go to Target Optimization

Agent navigates to a series of target positions on the field
Also have stop targets where agent is told to stop
Reward: + for distance traveled toward target,

- for movement when told to stop

Fall = 5 if robot fell, 0 otherwise
dtarget = distance traveled towards target
dmoved = total distance moved
ttotal = duration a target is active
ttaken = time taken to reach target, or ttotal if target not reached

rewardtarget = dtarget
ttotal

ttaken
− Fall

rewardstop = −dmoved − Fall
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Results of Go to Target Optimization

Wins on average by 2.04 goals against DriveBallToGoal agent
Walk speed increased to .64 m/s
A little slow when positioning around the ball to dribble
Good stability

I = initial, T = goToTarget
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Sprint Parameter Set

Learned with goToTarget optimization task
Active when target is within 15◦ of agent’s orientation
gotoTarget parameter set is fixed during learning
Walk speed increased to .71 m/s from .64 m/s
Can switch on the fly between gotoTarget and sprint parameter sets

I = initial, T = goToTarget, S = sprint
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Go to Target Optimization Video

Click to start

Red ’T’ = gotoTarget parameters, yellow ’S’ = sprint parameters
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Drive Ball To Goal 2 Optimization

Learn positioning parameter set active when .8 meters from the ball
Dribble ball towards goal for 15 seconds from multiple different
starting points around ball
Reward = distance ball travels toward goal averaged across 16 runs
gotoTarget and sprint parameter sets are fixed
Wins by an average goal difference of .15 against Sprint agent

I = initial, T = goToTarget, S = sprint, P = positioning
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Drive Ball To Goal 2 Optimization Video

Click to start

Red ’T’ = gotoTarget parameters, yellow ’S’ = sprint parameters, cyan ’P’ = positioning
parameters
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Final Agent Video

Click to start

Red ’T’ = gotoTarget parameters, yellow ’S’ = sprint parameters, cyan ’P’ = positioning
parameters
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Walk Agent Performance

Game results of agents with different walk parameter sets. Entries show the average
goal difference (row − column) from 100 ten minute games. Values in parentheses are
the standard error.

Initial DriveBallToGoal GoToTarget
Final 8.84(.12) 2.21(.12) .24(.08)

GoToTarget 8.82(.11) 2.04(.11)
DriveBallToGoal 5.54(.14)
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Walk in Competition

Click to start

Action from the second half of the 2011 RoboCup 3D Simulation Final
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Omnidirectional Walk Optimization Summary

An optimization task should be representative of the overall task

Parameter sets can be combined but must be learned in
conjunction with each other

Machine learning is very effective for parameter optimization
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Kicking Engine Desired Properties

1. Agility: refers to taking shots quickly

2. Robustness: entails taking accurate and powerful shots in spite of
positioning errors (e.g., without the agent being perfectly lined up
with the ball)

3. Versatility: refers to being able to kick in multiple directions from
multiple ball starting locations
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Kick Engine Kinematics

Define waypoints relative to ball for foot to reach
Cubic Hermite splines used to compute path for foot to follow
Inverse kinematics system determines if kick can be executed
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Directional Kicks

The agent can dynamically kick the ball in varied directions with respect to the
placement of the ball at a, b, and c
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Kicking Video

Click to start

Different directional kicks
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Kick Choice

When approaching ball compute cost to execute each kick and
choose kick with the lowest cost

distCost = |agentPosition− targetOffsetPosition| /m

turnCost =
|agentOrientation− targetOrientation|

360◦

ballPenalty =

{
.5 if ball is in path to target offset
0 otherwise

kickCost = distCost + turnCost + ballPenalty

Patrick MacAlpine (2012) 36 / 65



Kick Engine Workflow
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Kick Optimization

Optimize parameters of kick: waypoint values, speed, ball offset
Attempt ten kicks by approaching ball from different angles
Reward = average distance ball travels toward target

Click to start

Patrick MacAlpine (2012) 38 / 65


kickOpt.mp4
Media File (video/mp4)



Kick Performance

Kicking agent loses by .15 goals on average to dribble only agent

Strategy for best using kick not yet implemented (no passing yet)

Shows improvement when used with an agent with a less effective
walk (agent with initial walk parameters)

I Kicking agent scored 8 goals while non-kicking agent failed to score when playing 100
games against each other
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Kick Engine Summary

Inverse kinematics allows for robust and varied kicks

Machine learning is very effective for parameter tuning

Need appropriate strategy to effectively utilize kicking
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Formation

Every player assigned to a role (position) on the field
Positions based on offsets from ball or endline
onBall role assigned to the player closest to the ball
Goalie positions itself independently
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Role Assignment Mapping and Assumptions
One-to-one mapping of agents to positions
Can be thought of as a role assignment function

Assumptions:
1. No two agents and no two roles occupy the same position
2. All agents move at constant speed along a straight line
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Desired Properties of a Role Assignment Function

1. Minimizing longest distance - it minimizes the maximum distance
from a player to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

3. Dynamically consistent - role assignments don’t change or switch
as agents move toward target positions
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Role Assignment Function (fv )

Lowest lexicographical cost (shown with arrows) to highest cost ordering of mappings
from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a

single mapping.
1:

√
2 (A2→P2),

√
2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)
3:

√
5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)
6: 3 (A1→P3),

√
2 (A2→P2),

√
2 (A3→P1)

Mapping cost = vector of distances sorted in decreasing order
Optimal mapping = lexicorgraphically sorted lowest cost mapping
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Validation of Role Assignment Function fv

fv minimizes the longest distance traveled by any agent (Property 1)
as lexicographical ordering of distance tuples sorted in descending
order ensures this.

Triangle inequality will prevent two agents in a mapping from
colliding (Property 2) it can be shown, as switching the two agents’
targets reduces the maximum distance either must travel.

fv is dynamically consistent (Property 3) as, under assumption all
agents move toward their targets at the same constant rate, lowest
cost lexicographical ordering of chosen mapping is preserved
because distances between any agent and target will not decrease
any faster than the distance between an agent and the target it is
assigned to.
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Recursive Property of Role Assignment Function fv

Theorem
Let A and P be sets of n agents and positions respectively. Denote the mapping m :=
fv (A,P). Let m0 be a subset of m that maps a subset of agents A0 ⊂ A to a subset of
positions P0 ⊂ P. Then m0 is also the mapping returned by fv (A0,P0).

Translation: Any subset of a lowest cost mapping is itself a lowest
cost mapping

If within any subset of a mapping a lower cost mapping is found,
then the cost of the complete mapping can be reduced by
augmenting the complete mapping with that of the subset’s lower
cost mapping
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Dynamic Programming Algorithm for Role Assignment

HashMap bestRoleMap = ∅
Agents = {a1, ..., an}
Positions = {p1, ..., pn}
for k = 1 to n do

for all a in Agents do
S =

(n−1
k−1

)
sets of k − 1 agents from Agents − {a}

for all s in S do
Mapping m0 = bestRoleMap[s]
Mapping m = (a→ pk ) ∪mo

bestRoleMap[a ∪ s] = mincost(m, bestRoleMap[a ∪ s])
return bestRoleMap[Agents]

Any subset of a lowest cost mapping is itself a lowest cost mapping
Begin evaluating mappings of 1 agent and build up to n agents
Only evaluate mappings built from subset mappings returned by fv
Evaluates n2n−1 mappings, for n = 8 is 1024 (brute force = 40,320)
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Positioning Video

Click to start

Each position is shown as a color-coded number corresponding to the agent’s uniform
number assigned to that position. Agents update their role assignments and move to

new positions as the ball or an agent is beamed (moved) to a new location.

Patrick MacAlpine (2012) 49 / 65


positioning.mp4
Media File (video/mp4)



Positioning System Evaluation

Team Goal Difference
Static .32 (.07)
AllBall .43 (.09)

Static Each role is statically assigned to an agent
AllBall Every agent except goalie goes to the ball
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Positioning System Summary

Minimizing longest distance any agent travels is effective function

Dynamic programming provides considerable increase in
computational efficiency

No learning/optimization performed with positioning system...
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Competition Analysis

Average goal difference across 100 games against other agents in the competition

Rank Team Goal Difference
3 apollo3d 1.45 (.11)

5-8 boldhearts 2.00 (0.11)
5-8 robocanes 2.40 (0.10)
2 cit3d 3.33 (0.12)

5-8 fcportugal3d 3.75 (0.11)
9-12 magmaoffenburg 4.77 (0.12)
9-12 oxblue 4.83 (0.10)

4 kylinsky 5.52 (0.14)
9-12 dreamwing3d 6.22 (0.13)
5-8 seuredsun 6.79 (0.13)

13-18 karachikoalas 6.79 (0.09)
9-12 beestanbul 7.12 (0.11)

13-18 nexus3d 7.35 (0.13)
13-18 hfutengine3d 7.37 (0.13)
13-18 futk3d 7.90 (0.10)
13-18 naoteamhumboldt 8.13 (0.12)
19-22 nomofc 10.14 (0.09)
13-18 kaveh/rail 10.25 (0.10)
19-22 bahia3d 11.01 (0.11)
19-22 l3msim 11.16 (0.11)
19-22 farzanegan 11.23 (0.12)

Across 2100 games played won all but 21 games which ended in ties (no losses)
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Additional Interesting Data

Final competition agent beat agent with 2010 walk by an average
goal difference of 6.32 goals across 100 games
Agent with 2010 walk would have finished in tenth place
Number of times goalie touched the ball during the 2011
competition = 0
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Getup from Back

Series of fixed poses assumed sequentially

Click to start

Getup from Back
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Getup from Front

Series of fixed poses assumed sequentially

Click to start

Getup from Front

Patrick MacAlpine (2012) 57 / 65


GetUpFront.mp4
Media File (video/mp4)



Fully Holonomic Walk

Can walk in all directions with equal velocity

Click to start

Fully Holonomic Walk
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Kickoff 2011
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Kickoff 2011
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Kickoff 2012

Click to start

Kickoff 2012
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Kickoff 2012 Slow

Click to start

Kickoff 2012 Slow
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Kickoff Optimization
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Future Work

Attempt to apply learned walks in simulation to actual Nao robots

Improve kicking strategy and add passing

Attempt to learn better formations with machine learning

Explore path planning ideas
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Summary

UT Austin Villa is a complete agent that won the 2011 RoboCup 3D
simulation competition

Key components of the agent are it’s omnidirectional walk, kicking
engine, and dynamic positioning system

The omnidirectional walk proved to be the crucial component in
winning the competition

Optimizing parameters though machine learning is the underlying
theme for the team’s success
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More Information

UT Austin Villa 3D Simulation Team homepage:
www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Email: patmac@cs.utexas.edu

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by
NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).
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