Machine Learning through Morphing of Heterogeneous Robot Models

Patrick MacAlpine

Department of Computer Science, The University of Texas at Austin

June 27, 2013

- New for the 2013 3D Simulation League
- Models only released about a week before the competition

Problem

- Changing a robot's model breaks learned locomotion primitives such as walking, kicking, and getting up
- Want to develop new motion primitives with machine learning techniques but need a good seed
- Need to be able to get up after falling to learn most motion primitives

CMA-ES (Covariance Marix Adaptation Evolutionary Strategy)

- A stochastic, derivative-free, evolutionary numerical optimization method for non-linear or non-convex problems
- In each generation, candidates are sampled from a multidimensional Gaussian and evaluated for their fitness
- Two main principles for parameter adaptation:
 - Mean maximizes the likelihood of previously successful candidates, Covariance maximizes the likelihood of previously successful search steps (Natural Gradient Decent)
 - Evolution paths are recorded and used as an information source

CMA-ES (Covariance Marix Adaptation Evolutionary Strategy)

- A stochastic, derivative-free, evolutionary numerical optimization method for non-linear or non-convex problems
- In each generation, candidates are sampled from a multidimensional Gaussian and evaluated for their fitness
- Two main principles for parameter adaptation:
 - Mean maximizes the likelihood of previously successful candidates, Covariance maximizes the likelihood of previously successful search steps (Natural Gradient Decent)
 - Evolution paths are recorded and used as an information source

Solution

- Can slowly morph or grow robot model from original model to target model during optimization
- Increment model whenever we reach a certain threshold of average fitness
- No longer need a new seed for target model!

Patrick MacAlpine (2013)

Getup from Back

Series of fixed poses assumed sequentially

Getup from Back

Getup from Front

Series of fixed poses assumed sequentially

Getup from Front

More Information

UT Austin Villa 3D Simulation Team homepage: www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/

Email: patmac@cs.utexas.edu

This work has taken place in the Learning Agents Research Group (LARG) at UT Austin. LARG research is supported in part by NSF (IIS-0917122), ONR (N00014-09-1-0658), and the FHWA (DTFH61-07-H-00030).

Patrick MacAlpine (2013)