
SCRAM: Scalable Collision-avoiding Role Assignment with Minimal-makespan
for Formational Positioning

PATRICK MACALPINE, ERIC PRICE, PETER STONE

The University of Texas at Austin
Austin, TX 78712 USA

{patmac, ecprice, pstone}@cs.utexas.edu

Problem Formulation

How to assign agents to target positions in a 1-to-1 mapping? Want to minimize time for all agents to reach targets (makespan) and avoid collisions.

Required properties of a role assignment function
to be CM Valid (Collision-avoiding with

Minimal-makespan):

1. Minimizing makespan - it minimizes the maximum distance
from an agent to target, with respect to all possible mappings

2. Avoiding collisions - agents do not collide with each other

Desirable but not necessary property:

3. Dynamically consistent - role assignments don’t change or
switch as agents move toward target positions

Example Problem and Solution

a1 → p3 is minimal longest distance across all possible mappings

Assumptions:

• Agents are interchangeable: any agent can be assigned to any
target position

• No two agents or targets occupy the same position

• Agents are treated as zero width point masses

• Agents move at same constant speed along straight line paths

to assigned targets

Minimal Maximum Distance Recursive (MMDR) Role Assignment Function

Recursively minimize longest distance any agent must travel

Lowest lexicographical cost (shown with arrows) to highest cost
ordering of mappings from agents (A1,A2,A3) to role positions
(P1,P2,P3). Each row represents the cost of a single mapping.

1:
√

2 (A2→P2),
√

2 (A3→P3), 1 (A1→P1)

2: 2 (A1→P2),
√

2 (A3→P3), 1 (A2→P1)

3:
√

5 (A2→P3), 1 (A1→P1), 1 (A3→P2)

4:
√

5 (A2→P3), 2 (A1→P2),
√

2 (A3→P1)
5: 3 (A1→P3), 1 (A2→P1), 1 (A3→P2)

6: 3 (A1→P3),
√

2 (A2→P2),
√

2 (A3→P1)

CM Valid and dynamically consistent

Implementation

Goal: Transform edge distances to be set of weights such that
the weight of any edge e is greater than the sum of weights of
all edges with distances less than e.

Lemma 1. Denote Wn := {w0, ..., wn} where wi := 2i. Then ∀W ∈
P (Wn−1) : wn >

∑

W .

1. Transform edge distances to new weights:

• Sort edges in ascending order of distance

• Set weights to be 2i where i is the index of an edge in this sorted
list

Example: 1002 (4) > 0102 (2) + 0012 (1) = 0112 (3)
2. Run Hungarian algorithmwith modified weights

• Returns MMDR mapping

O(n5) Polynomial Time Algorithm

Require:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {a1p1, a1p2, ..., anpn}; |aipj | := euclideanDist(ai,pj)

1: edgesSorted := sortAscendingDist(Edges)
2: lastDistance := −1
3: rank, currentIndex := 0
4: for all e ∈ edgesSorted do
5: if |e| > lastDistance then
6: rank := currentIndex
7: lastDistance := |e|
8: |e| := 2rank

9: currentIndex := currentIndex + 1

10: return hungarianAlg(edgesSorted)

Time: O(n2) bits weights X O(n3) Hungarian algorithm = O(n5)*

Space: O(n2) bits weights X O(n) weights stored at a time = O(n3)

There exists O(n4) algorithm [1]

*Processors can compare bits in weights in parallel reducing running
time by factor of word length (e.g. 64 on a 64-bit processor).

Minimal Maximum Distance + Minimum Sum Distance2 (MMD+MSD2) Role Assignment Function

Find a perfect matching M that:

1. Has aminimum-maximal edge

2. Minimizes the sum of distances squared

M
′′ := {X ∈ M | ‖X‖∞ = min

M∈M

(‖M‖∞)} (1)

M∗ := argmin
M∈M′′

(‖M‖2
2) (2)

CM Valid but not dynamically consistent

Implementation

Minimal-maximum Edge Perfect Matching Algorithm:

O(n3) breadth-first search using Ford-Fulkerson algorithm to
find the minimal maximum length edge in a perfect matching

1. Find minimal-maximum edge in perfect matching with weight w

2. Remove all edges with weight greater than w from graph
3. Use Hungarian algorithm to compute perfect matching with max

sum of distances squared

O(n3) Polynomial Time Algorithm

Require:

Agents := {a1, ..., an}; Positions := {p1, ..., pn}
Edges := {−−→a1p1,

−−→a1p2, ...,
−−→anpn}; |

−−→aipj | := euclideanDist(ai,pj)
2

1: longestEdge := getMinMaxEdgeInPerfectMatching(Edges)
2: minimalEdges := e ∈ Edges, s.t. |e| ≤ |longestEdge|
3: return hungarianAlg(minimalEdges)

Time: O(n3) Min-max Edge Alg. + O(n3) Hung. Alg. = O(n3)

Space: Breadth-first search of Ford-Fulkerson =O(n2)

Role Assignment Function Properties

Function Properties
Function Min. Make. No Coll. Dyn. Con.

MMD+MSD2 Yes Yes No

MMDR Yes Yes Yes

MSD2 No Yes No

MSD No No No

Random No No No

Greedy No No No

Assigning 10 robots to 10 targets on a 100 X 100 grid
Function Avg. Make. Avg. Dist. Dist. StdDev

MMD+MSD2 45.79 27.38 10.00

MMDR 45.79 28.02 9.30

MSD2 48.42 26.33 10.38

MSD 55.63 25.86 12.67

Random 90.78 52.14 19.38

Greedy 81.73 28.66 18.95

MSD: Minimize sum of distances between robots and targets.
MSD2: Minimize sum of distances2 between robots and targets.
Greedy: Assign robots to targets in order of shortest distances.
Random: Random assignment of robots to targets.

Role Assignment Algorithm Analysis

Time and space complexities
Algorithm Time Complexity Space Complexity

MMD+MSD2 O(n3) O(n2)

MMDR O(n4) O(n4) O(n2)

MMDR O(n5) O(n5) O(n3)

MMDR dyna O(n22(n−1)) O(n
(

n
n/2

)

)

brute force O(n!n) O(n)

Running time in milliseconds for different values of n

Algorithm n = 10 n = 20 n = 100 n = 300 n = 103 n = 104

MMD+MSD2 0.016 0.062 1.82 21.2 351.3 115006

MMDRO(n4) 0.049 0.262 17.95 403.0 14483 —

MMDRO(n5) 0.022 0.214 306.4 40502 — —

MMDRdyna 0.555 2040 — — — —

brute force 317.5 — — — — —

RoboCup Robot Soccer Case Studies

SCRAM role assignment performed better than static role as-

signment in both the RoboCup 2D and 3D Simulation Leagues

Future Work

• Task specialization: agents assigned to subset of targets
• Heterogeneous agents moving at different varying speeds
• Have agents also avoid known fixed obstacles
• Model robots as having non-zero width mass
• Make algorithms distributed

References

[1] P. Sokkalingam and Y. P. Aneja. Lexicographic bottleneck combina-
torial problems. Operations Research Letters, 23(1):27–33, 1998.

More Information

Videos andC++Code: http://www.cs.utexas.edu/˜AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2013/html/scram.html

