SCRAM: Scalable Collision-avoiding Role Assignment with Minimal-makespan for Formational Positioning

PATRICK MACALPINE, ERIC PRICE, PETER STONE

The University of Texas at Austin Austin, TX 78712 USA {patmac, ecprice, pstone}@cs.utexas.edu

Problem Formulation

How to assign agents to target positions in a 1-to-1 mapping? Want to minimize time for all agents to reach targets (makespan) and avoid collisions.

Required properties of a role assignment function to be CM Valid (Collision-avoiding with Minimal-makespan):

- 1. Minimizing makespan it minimizes the maximum distance from an agent to target, with respect to all possible mappings
- 2. Avoiding collisions agents do not collide with each other

Desirable but not necessary property:

3. Dynamically consistent - role assignments don't change or switch as agents move toward target positions

Recursively minimize longest distance any agent must travel

Minimal Maximum Distance Recursive (MMDR) Role Assignment Function

ordering of mappings from agents (A1,A2,A3) to role positions (P1,P2,P3). Each row represents the cost of a single mapping.

1:	$\sqrt{2}$ (A2 \rightarrow P2),	$\sqrt{2}$ (A3 \rightarrow P3),	$1 (A1 \rightarrow P1)$
2:	2 (A1→P2),	$\sqrt{2}$ (A3 \rightarrow P3),	$1 (A2 \rightarrow P1)$
3:	$\sqrt{5}$ (A2 \rightarrow P3),	$1 (A1 \rightarrow P1),$	1 (A3→P2)
4:	$\sqrt{5}$ (A2 \rightarrow P3),	2 (A1 \rightarrow P2),	$\sqrt{2}$ (A3 \rightarrow P1)
5:	$3 (A1 \rightarrow P3)$.	1 (A2 \rightarrow P1).	$1 (A3 \rightarrow P2)$

- - $\sqrt{2}$ (A2 \rightarrow P2), $\sqrt{2}$ (A3 \rightarrow P1)
- CM Valid and dynamically consistent

Example Problem and Solution

 $a_1 \rightarrow p_3$ is minimal longest distance across all possible mappings

Implementation

Goal: Transform edge distances to be set of weights such that

the weight of any edge *e* is greater than the sum of weights of

Lemma 1. Denote $W_n := \{w_0, ..., w_n\}$ where $w_i := 2^i$. Then $\forall W \in$

• Set weights to be 2^i where *i* is the index of an edge in this sorted

all edges with distances less than *e*.

1. Transform edge distances to new weights:

• Sort edges in ascending order of distance

Example: 100_2 (4) > 010_2 (2) + 001_2 (1) = 011_2 (3)

• Returns MMDR mapping

2. Run Hungarian algorithm with modified weights

 $\mathcal{P}(W_{n-1}): w_n > \sum W.$

list

Assumptions:

- Agents are interchangeable: any agent can be assigned to any target position
- No two agents or targets occupy the same position
- · Agents are treated as zero width point masses
- Agents move at same constant speed along straight line paths to assigned targets

O(*n*⁵) Polynomial Time Algorithm

Require:

- *Agents* := $\{a_1, ..., a_n\}$; *Positions* := $\{p_1, ..., p_n\}$
- $Edges := \{\overline{a_1p_1}, \overline{a_1p_2}, ..., \overline{a_np_n}\}; |\overline{a_ip_j}| := \texttt{euclideanDist}(a_i, p_j)$
- 1: *edgesSorted* := sortAscendingDist(*Edges*)
- 2: lastDistance := -1
- 3: rank. currentIndex := 04: for all $e \in edgesSorted$ do
- if |e| > lastDistance then 5:
- rank := currentIndex6:
- lastDistance := |e|7:
- $|e| := 2^{rank}$ 8:
- currentIndex := currentIndex + 1
- 10: return hungarianAlg(edgesSorted)

Time: $O(n^2)$ bits weights $X O(n^3)$ Hungarian algorithm = $O(n^5)^*$ **Space:** $O(n^2)$ bits weights X O(n) weights stored at a time = $O(n^3)$ There exists $O(n^4)$ algorithm [1]

*Processors can compare bits in weights in parallel reducing running time by factor of word length (e.g. 64 on a 64-bit processor).

Minimal Maximum Distance + Minimum Sum Distance² (MMD+MSD²) Role Assignment Function

Find a perfect matching M that:

1. Has a minimum-maximal edge 2. Minimizes the sum of distances squared

6: 3 (A1 \rightarrow P3),

 $\mathbb{M}'' := \{ X \in \mathbb{M} \mid \|X\|_{\infty} = \min_{M \in \mathbb{M}} (\|M\|_{\infty}) \}$ (1) $M^* := \underset{M \in \mathbb{M}''}{\operatorname{argmin}} (\|M\|_2^2) (2)$

CM Valid but not dynamically consistent

Role Assignment Function Properties

Function Properties					
Function	Min. Make.	No Coll.	Dyn. Con.		
MMD+MSD ²	Yes	Yes	No		
MMDR	Yes	Yes	Yes		
MSD^2	No	Yes	No		
MSD	No	No	No		
Random	No	No	No		
Greedy	No	No	No		

Assigning 10 robots to 10 targets on a 100 X 100 grid						
	Function	Avg. Make.	Avg. Dist.	Dist. StdDev		
	$MMD+MSD^2$	45.79	27.38	10.00		
	MMDR	45.79	28.02	9.30		
	MSD^2	48.42	26.33	10.38		
	MSD	55.63	25.86	12.67		
	Random	90.78	52.14	19.38		
	Greedy	81.73	28.66	18.95		

MSD: Minimize sum of distances between robots and targets. **MSD**²: Minimize sum of distances² between robots and targets Greedy: Assign robots to targets in order of shortest distances Random: Random assignment of robots to targets.

Implementation

Minimal-maximum Edge Perfect Matching Algorithm: $O(n^3)$ breadth-first search using Ford-Fulkerson algorithm to find the minimal maximum length edge in a perfect matching

1. Find minimal-maximum edge in perfect matching with weight *u*

2. Remove all edges with weight greater than *w* from graph 3. Use Hungarian algorithm to compute perfect matching with max sum of distances squared

Role Assignment Algorithm Analysis

Time and space complexities					
Algorithm	Time Complexity	Space Complexity			
MMD+MSD ²	$O(n^3)$	$O(n^2)$			
MMDR $O(n^4)$	$O(n^4)$	$O(n^2)$			
MMDR $O(n^5)$	$O(n^5)$	$O(n^3)$			
MMDR dyna	$O(n^2 2^{(n-1)})$	$O(n\binom{n}{n/2})$			
brute force	O(n!n)	O(n)			

Running time in milliseconds for different values of nAlgorithm n = 10 n = 20 n = 100 n = 300 $n = 10^3$ $n = 10^4$ MMD+MSD 0.016 0.062 1.82 21.2 351.3 115006 $MMDRO(n^4)$ 0.049 0.262 17.95 403.0 14483 $MMDRO(n^5)$ 0.022 0.214 306.4 40502 MMDR dyna 0.555 2040 brute force 317.5

More Information

O(*n*³) **Polynomial Time Algorithm**

Require:

- *Agents* := $\{a_1, ..., a_n\}$; *Positions* := $\{p_1, ..., p_n\}$
- $\textit{Edges} := \{ \overrightarrow{a_1p_1}, \overrightarrow{a_1p_2}, ..., \overrightarrow{a_np_n} \}; \, |\overrightarrow{a_ip_j}| := \texttt{euclideanDist}(a_i, p_j)^2$ 1: *longestEdge* := getMinMaxEdgeInPerfectMatching(*Edges*)
- 2: $minimalEdges := e \in Edges$, s.t. $|e| \leq |longestEdge|$
- 3: return hungarianAlg(minimalEdges)

Time: $O(n^3)$ Min-max Edge Alg. + $O(n^3)$ Hung. Alg. = $O(n^3)$ **Space:** Breadth-first search of Ford-Fulkerson = $O(n^2)$

RoboCup Robot Soccer Case Studies

SCRAM role assignment performed better than static role assignment in both the RoboCup 2D and 3D Simulation Leagues

Future Work

- Task specialization: agents assigned to subset of targets
- Heterogeneous agents moving at different varying speeds
- Have agents also avoid known fixed obstacles
- Model robots as having non-zero width mass • Make algorithms distributed

References

[1] P. Sokkalingam and Y. P. Aneja. Lexicographic bottleneck combinatorial problems. Operations Research Letters, 23(1):27-33, 1998.

Videos and C++ Code: http://www.cs.utexas.edu/~AustinVilla/sim/3dsimulation/AustinVilla3DSimulationFiles/2013/html/scram.html