UT Austin Villa: Optimizing Robot Body Morphologies for Maximizing Performance and Potential in Running and Kicking Tasks

Patrick MacAlpine, Mike Depinet, Jason Liang, and Peter Stone

UT Austin Villa Department of Computer Science, The University of Texas at Austin

July 22, 2014

Patrick MacAlpine (2014)

Omnidirectional Walk Engine

- Expensive to design and build new physical robot body prototypes
- Simulation allows us to quickly and easily test out new body morphologies

EASYier

Patrick MacAlpine (2014)

 Running = Distance traveled forward in ten seconds + percentage of time both feet off ground

• Kicking = maximum distance ball kicked in forward direction

Performance and Potential

• Not changing any power or mass variables

 Only changing x, y, z postitions of six leg joint anchor positions: torso->hip1, hip1->hip2, hip2->thigh, thigh->shank, skank->foot

CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy)

- Evolutionary numerical optimization method
- Candidates sampled from multidimensional Gaussian and evaluated for their fitness
- Weighted average of members with highest fitness used to update mean of distribution
- Covariance update using evolution paths controls search step sizes

CMA-ES (Covariance Matrix Adaptation Evolutionary Strategy)

- Evolutionary numerical optimization method
- Candidates sampled from multidimensional Gaussian and evaluated for their fitness
- Weighted average of members with highest fitness used to update mean of distribution
- Covariance update using evolution paths controls search step sizes