EwEB117 - O

Programming Considered as a Human Activity.

by

‘Edsger W.Dijkstra

1, Introduction,

By way of introduction I should like to start this

talk with ® story and a quotation,

The story is about the physicist Luswig Boltzmann,
who was willing to resch his goals by lengthy computations.
Orce somebody complained about the ugliness of his methods,
upon which complaint Boltzmann defended his way of working
by stating that "elegsnce was the concern of taylors and

shoemakers", implying that he refused to be troubled by it,

In contrast I should like to guote another famous
nineteenth century scientist, George Bogle. In the middle
of his book "An Investigation of the Laws of Thought" in a
chapter titled "0Of the Conditions of & Perfect Methad.™ he
writes;"] do not here speak of that perfection only which
consists in power, but of that alsoc which is founded in
the conception of what is fit and beautiful. It is probable
that a caraful analysis of this guestion would conduct us
to some such conclusion es the following, viz,, that a
perfect method shoculd not only be an efficient ore, as
respects the accomplishsmnt of the abjects for which it
ia designed, but should in all its parts snd processes

manifest a certain unity and harmony." A difference in

EWD117.html

http://userweb.cs.utexas.edu/users/EWD/transcriptions/EWD01xx/EWD117.html

EWD117 - 1

attitude one can hardly fail to notice.

Jur unconscious agsociation of elegance with luxury
may be one of the arigins of the not unusual tacit assumptian
that it comts to be elegant. To show that it alsc pays to
be elegant is one of my prime purpoaes. It will give us
a clearer understanding of the true nature of the quality
of programs and the way in which they are expressed, viz,
the programming language. From this insight we shall try
to derive some clues &8 to which programming language
features are most desirable, Finally we hope to convince
you that the different aims are less conflicting with ane

another than they might thought to be at firat sight,

2, On the guality of the results,

fven unjer the mssumption of flawlessly working
machines we should ask ourselves the questions: "When
an sutomatic computer produces results, why do we trust
them, if we do s0?" and after that;"What measures can we
take to increase our confidence that the results produced

are indeed the results intended?"

How urgent the first question is might be illgstrated
by a simple, bes it somewhat simplified example, Suppose
that a mathematicisn interested in numbex theory has at
his disposal & machine with a program to factorize numbers.
This process may end in one of two ways: either it gives
a8 factorization of the number given or it answers that the

number given is prime. Suppose now that our mathematician

EWC117 - 2

wishes to subject to this process a, say, 20 decival number,
while he has strong reasons to suppose that it is a prime
number. If the machine confirms this expectation, he will

be happy; if it finds a factorization, the mathematician
may be disappainted because his intuition has fooled him
again, but, when doubtful, he can teke a desk machine and
can multiply the factors producsd in order to check whether
the product reproduces the original number. The situation

is drastically changed, however, if he expects the number
given to be non-prime: if the machine now produces factors
he finds his expectations confirmed and moreover he can
check the result by multiplying. If, however, the machine
comes back with the answer that the number given is, econtrary
toc his expectations and warmest wishes, alas a prime number,

why on sarth should he believe this?

Our example shows that even ir completely discrete
problems the computation of a result is not a well-defined
job, well-defined in the sense that one can say:"] have
done it." without paying sttention to the convincing power

of the result, viz. to its "quality".

The programmer's situstion ps closely analogous to
that of the pure mathematician, who develops a theory and
proves results, Far a long time pure mathematicians have
thought -and some of them still think-— that & theorem can
be proved completely, thet the question whether o suppuosed
proof for a theorem RMMEXEXWOMMEMNEEN is sufficient or

not, admits an absolute answer "yes" or "no". But this is

EwD11T - 3

an illusion, for as soon as one thinks that one has proved
something, one has still the duty to prove that the first
oroof was flawless, and so an, a2 infimitum! Jne can never
guarantee that a proof is correct, the best one can say, isg:
"I have not discovered any mistakes." We sometimes flatter
curselves with the idea of giving watertight praafs, but

in fact we do nothing but make the correctness of our
canclusjons plausible, So sxtremely plausible, that the

analogy may serve as a great source of inspiration.

In spite of all its deficiencies, mathematical
reasoning presents an putstanding model of how to grasp
extremely complicated structures with a brain of limited
capacity. And it smems worthewhile to investigate to what
extent these proven methods can be transplanted to the
art of computer usage. In the design of programming
languages one can let oneself be guided primarily by
considering "what the machine can do®. Considering, hawever,
that the progrsmming lanjuage is the bridge between the
user and the machine -that it can, in fact, be regarded
a3 his tool- it seems just as important to take into com-
sideration "what Man can think". [t is in this vein that

we shall continue our investigationa,

2. 0On the structure of convincing programs.

The technique of mastering complexity is known since
ancient times: "Oivide et impera."("Oivide and rule."}, The
analagy between proof constructicn and program construction

is, again, striking. In both ceses the available starting

EWO117 —- 4

points are given (axioms and existing theory versus primitives
and availsble library programs), in both cases the goal is
given {(the theorem to be proved versus the desired cerfor-
mance), in both cases the complexity is tacklec by division

into parts (lemmas versus subprograms and proceiures).

1 assume the programmer's genius matched to the dif-
ficulty of his problem and assume that he has arrived at
2 suitable subdivisiom of the task. He then proceeds in
the wswual manner in the following stages:
i) he makes the complete specifications of the individual

parts

-
—
et

he gatiafies himself that the total prablem is solved
provided he had et his disposal program parts meeting
the various specifications

II1) he constructs the individual parts, satisfying the
specifications, but indesendent of one anather and

the further context in which they will be used.

Obvicusly, the construction of such an individual
part may again be a task of such a complexity, that

inside this part job, a further subdivision is required.

Some pecple might think the dissection techrique just
sketched a rather indi;ect and tortuous way of reaching
ares joals., My own feelings are perbaps best described
by saying that 1 am perfectly aware that there is no Royal
Road to Mathematics, in other wards, That I have only a

very small head and must live with it, I, therefore, see

EwWD11T - 5

the dissection technique as one of the rather basic patterns
of huran understanding and thimk it worth—while to try to
create circumstances in which it can be most fruitfully

applied.

The assumption that the programmer had made a suitable
subdivision finds its reflection in the possibility to per—
form the first two stages: the specification of the parts
and the verification that they together do the joo, Here
elegance, accuracy, clarity and a thorough understanding
of the problem at hand are prerequisite. But the whole
dissection techniques relies an samething less cutspoken,
viz. on what | should like to call "The priciple of nan-
interference”, In stage Il it is assumed that the correct
working of the whole can be established by taking, of the
oarts, into account their exterior specification only, and
not the particulars of their interior construction., In
stage III the principle of non-interference pops up again:
here it is assumed that the individual parts can be con-

ceived and constructed independently from one another.

This is perhaps the moment to mention that, -rovided
I interpret the signs of current attitudes towards the
ptoblems of language definition correctly, in some more
furmalistic approaches the soundness of the dissection
technique is made subject to doubt. Their promotors argue
as fullows: whenever you give of a mechanism such 2 two
stage definition, first what it should do, wviz. its

specifications, and secondly how it works, yau have,

EWD11T7 ~ 6

at best, said twice the same thing, but in all probability
you have contradicted yourself, And statistically speaking,
[am sorry to say, this last remark is a strong oaint. The
only clean way towards langpuoge definition, they arbue, is
by just defining the mechanisms, becuase what they then
will do will follow from this. My question:"How doms this
follow?" ia wisely left unanswered and [am afraid that
their neglection of the subtle, but aometimes formidable
difference betwcen the concepts "defined" and “krnown” wiil
make their efforts an intellectual exercise leading into

another blind alley,

After this excursion we return to srogramming iteelf.
Everybody familiar with ALGOL 60 will agree that its osrocedure
concect satisfies to a fair degree our requirements of nan-
interference, both in its static properties \e.g. in the
freedom in the chaoice of local identificrs} as in its
dynamic properties (e.g. the posaibility to call a srocedure,

directly or indirectly, from within itself).

Another striking example of increase of clarity thraugh
non-interference, guaranteed by structure, is presented by
all programming languages in which algebraic exoressians
are allowed. Evaluation of such expressions with a sequential
machine having an arithmetic unit of limited comolexity
will imply the use of temporary store for the intermediate
Tesults. Their amonymity in the source language guarantees
the imcossibility that one of them will inadvertently be

destroyed before it is used, as would have been possible

EWRI1T - 7

if the computationsl rocess were described in a vorn Neumann

type machine code,

4. A comparison of some alternatives.

A broed compariscn between 8 von Neumann type machine
code -well known for its lack of clarity— and different

types of algorithmic languages may be not out of arder.

In all cases the execution of a program consists of
a repeated confrontation of two informatiaon streams, the
one (say “"the program") constant in time, the other {®ay
"the cata") verying. For many years it has been thought
one of the essential virtues of the von Neumann type code
that & program could modify its own instructicns. In the
mean time we have discavered that exactly this facility
is to a great extsnt responsible for the lack of clarity
in machine code grograms, Simultanecusly its indispensability
has been questioned: all algebrzic compilers I know produce
an object program that remairs constant during its entire

execution phease.

This observation brings us to consider the status of
the wvariable information. Let us first confine cur attemtion
to programming languages without assignment statements and
without goto statements. Provided that the spectrus of
admissible function values is sufficiently broad and the
concept of the conditional expression is among the aveilable
primitives, one can write the autout of every program as

the value of & big (recursive; function. For a sequential

EwD117 - B

machine this can be translated into a caonatant chbiect
oragram, in which at run time a stack is used tu keep
track of the current hierarchy of calls and the values

af the actual parameters supplied at these calls.

Despite its elegance a mericus objection can be made
against such a programming language. Here the informaticn
in the stack can be viewed as chjects with nested life
times and with & constant value during their entire
life time Nowhere (except in the implicit increase aof
the arder counter which embodies the progress of time)
the value of an already existing named object is replaced
by snother value, As a result the only way to store a
newly formed result is by outting it on top of the stack;
we have no way of expressing that an earlier value becomes
now cbsolete and the latter's life time will be prolornged,
althought void of interest. Summing up: it is elegant but
inadeguate. A second objection -which is probsbly a direct
congeguence of the first one-— is tha- such programs become
after a certain, quickly attained degree of nesting,

terribly hard to read.

The usual remedy is the combined introduction of the
jotc statesent and the assignment statement. The goto
statement enables us with a backward jump to repeat a

piece 2f nrogram, while the assignment statemert can
create the necessary difference in status between the

successive reosetotions,

ut I have reasons to ask, whether the gato

EWD117 = 4

statement as remedy is not worse than the defect it aimed
te cure. For imstance, two pragramming department managers
from different countries and different back rounds ~tﬁe
ane mainly scientific, the other mainly commercial- have
cammunicated to me, independently of each cther and on
their own initiative, their ocbservation that the quality
of their programmers was inversely pro-ortional to the
density of gato statements ir their programs. This has
been an incentive to try to do away with the gato

statement.

The idea is, that what we know as "transfer of control”,
i.e., replacemsnt of the order counter value, is an aperation
usually implied as part of more powerful notions: I mention
the transition to the next statement, the procedure call
and return, the conditional clauses and the for statement;
end it is the question whether the programmer is not rather

lead aszray by giving him separate control over it.

! have done various programming experiments and
compared the ALGGL text with the text [got in modified
versions of ALSZIL 60 in which the goto statesent was
gbolished and the for statement —being pompous and
over-elaborate- being replaced by a orimitive resetition
clause. The latter versions were more cifficult to make:
we are so familiar with the jump order that it reguires
some effort to forget it! In all cases tried, however, the
crogram without the joto statements turned out to be

shorter and more lucid.

Ewl117 - 13

The origin of the increase ir clarity is gquite undes—
standable. As is well known there exists no algorithm to
tdecide whether a given program ends or not. Im other words:
each pragrammer who wants to produce a flawless nrogram
must at least convince himself by irspection that his
orogram will indeed termimate. In a pragram, in which
unrestricted use of the goto statement X% has been made,
this analysis may be veru hard on account of the great
variety of ways in which the program may fail toc stop.
After the abolishment of the goto statemert there are
anly two ways im which a program may fail to stop: either
by infinite recursiocn -i.e. thraugh the procedure mecharism-
or by the repetition clause. This simplifias the inspection

greatly.

The notion of repetition, so fundemental in oragramming,
has a further conseguence. It is not unusual that inside a
sequence of statements to be repeated one or more subexoressions
occur, which do not change their value during the repetition.
If such a sequence is to be repeated mamy times, it would
be a regrettable waste of time if the machine had %o
recompute these same values over and over again. Une way
out of this is to delegate to the now optimizing translator
the discovery of such constant subsxpressions in orcer that
it can take the computation of their values cutside the
loop. Without an optimizing translator the aobvious solution
is to invite the programmer to be somewhat more mxplicit
and he can do so by introducing as many additional variables

as there are constant subexoressions within the repetition

EWD1IT - 19

and by assigning the vslues ta them bhefore entering the
repetition. I should like to stress that both ways of
writing the program are equally misleading. In the first
case the translator is faced with the unnecessary cuzzle

to ciscover the constancy, in the second case we have
introduced a wvariable, the only function of which is to
denote a constant value, This last observation shows

the way out of the difficulty: besides variables the nrio-
grammer would be served by "local constants", i.e. identi-
fizble guantities with a finite life time, during which
they will have a canstant value, that has been defiped

at the mament of introduction of the guantity. Such
guantities ars not new: the formal parameters of procedures
already display this property. The above is a plea to
recagnize that the concept of the "local constant" has

its own right of existence. if I am well infoTmed, this

has already been recognized in CPL, the programming
language designed in a joint effort arcund the Mathematical

Laboratory of the University of Cambridge, £mngland.

5, The double gain of clarity,

I have discussed at lemgth that the convincing power
cf the results is greatly dependent or the clarity of the
program, on the degree in which it reflects the structure
of the process to be performed. For those who feel them—
selves mostly concerned with efficiency as measured in
the cruder units of storage spece and machine time, I

should like to EXEKAMXYKEX point out that increase cf

EXI11T7 - 12

efficiency always comes down to exploitation of structure
and for them | should like 4o stress that all structural
.properties merntioned can be used to ircrease the efficiency

af an imolementation. I shell review them hriefly.

The life time relation sztisfied by the local quantities
of procedures allows us to allica-e them in a stack, thus
making very efficient use aof asvailable store; the ancnymity
af the intermediate results esnables us to minimize storage
references dynamically with ihe aid of an automatically
cantroled set of push down accumulatcrs;.the constancy of
program texit under execution is of jzreat help in machines
with different storege levels and reduces the ccmplexitg
of advanced control considerably; the repetition clause
=ages the dynamic detection of endless looping and
finally, the local constant is a succesful cendidete for

2 write-slow-read-fast store, when available.

Let me conclude. When [became scguainted with the
notion of algorithmic languages | never cnallenged the
then prevaiiing opinian that the problems of language
design and implementation were mostly a guestion of
compramises: every new convenience for the user had to
be paid for by the implementation, either in the form
of increased trouble during tramslation, ar curing
execution ar during both, Well, we are most certainly
nat living in Heaven and I am not going to deny the

possibility of & conflict between comvenience and efficiency,

Ew0117 - 13

but now [do protest when this conflict is presented as
a complete summing up of the situation.,] am of the
opinion thaf it is worth-while to investigate to what
exgent the needs of Man and Machine go hand in hand and
to see what techniques we can devise for the benefit of
all of us, I trust that this investigation will bear
fruits and if this talk made some of you ghare this

fervent hope, it has achieved its aim.

Prof,.0r.E.W.0ijkstra
Department of Mathematics
Technolagical University
£.0.Box 913
EINDHOVEN

The Netherlands

	EWD117:

