EWD30%3 = G

On the reliability of programs.

All speakers at the lecture series have received very strict instructians
as how to arrange their speach; as & result I expect all speaches to be similar
to each other. Mine will not differ, 1 adhere to the instructions. They told us:
first tell what you are going to say, then say it and finally XEEMEXXKX summarize

what you have said.

My story consists of four points.
1) I shall argue that our programs should be correct
2} I shall argue that debigging is an inadequate means for achieving that goal
and that we must prove the correctness of programs
2) I shall argus that we must tailor our programs to the proof regquirements
4) 1 shall argue that programming will become more and more an activity of

matbematical nature.

The starting point of my considerations is to be found at the
"gsoftware failure". A few years ago the wide—spread existence of this regrettable
phenomenon was established beyond doubt; as farlas my information tells me, the
software failure is still there as vigorous as ever and its effects are sufficiently

alarming to justify our concern and attention. What, however, is it?

Depending on the specific instance of failure one chooses, it can be
described in many ways. One of the most common forms starts with an exciting
nroject, but as it proceeds, deadlines are viplated and what started és a
fascinating thriller slowly turns into a drama, to be played ny an ever increasing
number of actors, the majority of which know perbaps their own part but have
certainly lost their grasp on the meaning of the performance as a whole., At last
the curtain falls, only because it is too late, but not because anything has really
been completed, for the final piece of software is still full of bugs and will
remain so for the rest of its days. There are other forms, but they all have in
common, that it turns aut to be very, very difficult to get the whole program

working with an acceptable degree of reliability.

When we try to explain the present as the natural outcome of the recent
past, we get a better understanding of what has happened. In the past ten, fifteen
vears, the power of commonmly available computers has increased by a factor of a
thousand. The ambition of society to apply these wonderful pieces of equipment

has grown in proportion and the ppor programmer, with his duties in this field of

EwWD303 - 1

tension between equipment and goals, finds his task exploded in size, scope
and sophistication. And the poor programmer just has not caught up. Looking backwards
we must conclude that the difficulty of the tasks shead have been grossly under-—
estimated in the past. Extrapolations concerning the number and power of computers
to be installed have been made, but society's preparation for this oncoming wave
of machinery has been the call for more and more programmers, rather than for more
capable anes, who derive their greater capability from a better understanding of

the nature of the programming task.

It is alarming to see how little the average programmer's attitude
towards his work has chamged. The reason is twofold: many programmers have been
attracted towards the profession a long time ago, and among them many did not
have the intellectual growth potential needed to keep up with the changing
profession. Besides that 1 am afraid that in many organizations young people
are attracted FUEXEKEXKEXNXMNMME as programmers, who are selected on account of
obsolete aptitude tests; 1 still often bear that a succesful pragrammer should
be "puzzle-minded" whereas I bave the feeling that a EYUXEMMEEXXXXMKIKAXXEGEKKEX
eesrmtiatx clear and systematic mind is more essential. A modern, competent
programmer should not be puzzle=minded, be should not revel in tricks, he should
be humble and shguld avoid clever solutions like the plague. BMEXXMEXMEKXXXXXXY
K00 0t XK B A MO X R 0 X XK D€ o D0 24 X X DK N EPCX P XX e i i o X R M X RICK X XK ik e
AR PO X4 OCH MR XDORR B X o i i 0 D XX XS OO X 3 B X XA R KK X
BAXEEL X PEap KON X ALK KK L A ML A XM KA XN E XU XK MY XK ABUAXY In the period
under discussion higher level programming languages have been accepted as
general programming tools and they have beer hailed as a tremendous step forward,
0K, but is it sufficient? Higher level programming languges enable us perhaps to
cope with a factor of 10 in scope but not with a factor of 1000. In the old days,
programs of one aor two thousand assembly code instructions were horrors, but in
the mean time highler level language programmers produce —admittedly— larger
programs of exactly the same degree of unreadability and unmreliability, in which
the role of old machine=code tricks has been taken over by cunning higher level
language tricks. Truly, I cannot see the difference... The conclusion is that,
in spite of the factor thousand in scope, present day programming tries to solve

its problems with the same cld methods. And therefore, if we want to improve
matters, we should meke it our serious business to minimize the usage of what is
now by far ocur scarcest resource, viz. brainpower. The burning question is

"Can we get a better understanding of the nature of the programming task, so that
by virtue of this understanding, programming becomes an order of magnitude easier,

so that cur ability to compose reliable programs is incressed by a similar order

Ewn303% - 2

of magitude?".

The fact that program reliability becomes a key issue is not only shown
by the evidence around us, it is also guite easy to see why. A very large program
is, by necessity, composed from & large number, say N, individual components and
the fact the N is large implies that the individuasl program components must be
produced with a very high cenfidence level. If for each individual component the
probability of being right eguals p, for the whole program the probability P of

being right will satisfy p <3pN

and if we want P to differ appreciable from zero, p must be very close to one,
because N is so large. And we shall never be able to exploit the power of computers

unless we can cope with the case of wvery large N.

A common approach to get a program correct is called "debugging" and when
the most patent bugs have heen found and removed one tries to raise the confidence
level further by subjecting the program to numerous test cases. From the failures
around us we can derive ample evidence that this appraach is inadequate. To remedy
the situation it has bheen suggested that what we really need now are "automatic
test case generators" by which the pieces of program to be validated can be

exercised still more extensively. But will this really help? I don't think sa.

Whe faced with a mechanism =be it hardware or softwarse~ one can ask
oneself "How can I convince myself of its being correct?" As long as we regard the
mechanism as a black hox, fhe only thing we can do is to subject it to. all possible
inputs and checking whether it produces the correct outputs, But for the kind of
mechanisms we are considering this is absolutely cut of the guestion. I have a pet
example to demonstrate this. At my University we have a machine ¥XXK and one should
for inmstance like to know, whether the fixed point multiplication instruction
works properly. The machine has a rather short word length of 27 bits, as a result

5

their are cnly 2 4 KHEKXKXE different fixed point multiplications possible. So,

why not try them all? With 214 multiplications per second, 254 multiplications =
240 Sec = 1012 5eC. = 107 days = 30.000 years! It takes 30.000 years to have all
passible multiplications performed just once. DOne of the consegquences of this
number -is that in XXEXKXBXEXXXEEXX the whole 1ife time of the machine, the
number of fixed point multiplicaticns actually performed by our machine is a
truly negligeable fraction of the set of possible multiplications. KXEMYXEXKEXEWK
EEXMXXHRXNAEN From a simple-minded point of view we are only interested in the
correct execution of tiny set of multiplication the machine is actually called

the
KA X X R ¢

EWD303% ~ 3

to perform. But because in programming we think not in terms of numerical values
but in terms of variables, we have abstracted from the values actually processed

by the arithmetic umit and we are only allowed to make this abstraction when

the multiplier would do any multiplication correctly. I make this point becauss

it as often not realised that the at first sight extreme and ridiculous reliability
requirements imposed by us on the hardware is a direct consequence of the fact
that without it we could not afford this vital abstraction. Anaother conseguence of
the number of 30.000 years that sampling testing is hopelessly inadequate to convince
gurselves of the correctness even of a simple piece of equipment as a multiplier:
whole classes of in some sense critical cases can and will be missed! Al this
apllies a fortiori to programs that claim to cope with many more cases and take
more time for escht single execution. The first moral of the story is that program
testing can be used very effectively to show the presence of bugs but never to

show their ahsence.

But as long as we regard the mechanism as a black box, testing is the only
thing we can do. The conclusiaon is that we cannot afford to regard the mechanism
as a black box, i.e. we have to take its internal structure into account. One
studies its internal structure and on account of this analysis ane convinces oneself
that i€ such and such cases wark "all others must work as well". That is, the
internal structure is exploited to reduce the number of still necessary testcases,
for all the other ones (the vast majority) one tries to canvince oneself by
reasoning, the only problem being that the amcunt of reasoning often becomes

excessive, with the sad result that bugs remain.

This function aof the mechanism's internal structure opens a new way to
attack the reliability problem. Once we have seen that the confidence level can
only be reached by virtue of the structure of the mechanism, that the extent to
which the program correctness is not purely s function of its external specifications
and behaviour, but depends critically upon its internal structure, then we can
invert the question and ask ourselves "What forms of program structuring can we
find, what elements of programming style and what forms of discipline, all for

the benefit of the confidence level of our final product?".

Instead of trying to EXXXKXXKX devise methods to establish the correctness
of arbitrary, given programs, we are now looking for the subclass of what I would
like to call "intellectually manageasble programs", which can be understood and

for which we can justify our belief in their proper operation under all circumstances

EWD30% - 4

without excessive amounts of reasoning. This is done in aorder to reduce the number
of testcases needed; in the case of software 1 see no reason at all why this approach
could not be so effective that the number of testcases needed is eventually reduced
to zero, i.e. that correctness can be shown a priocri. Already now, debugging strikes
me as putting the cart before the horse: instead of looking for more elaborate
debugging aids, I would rather try to identify and to remave the more productive

bug—generators!

In short, I suggest that the programmer should continue to understand what
he is daoing, that his growing product femains firmsly within his intellectual grip.
It is my sad experience that this suggestion is repulsive to the average experienced
programmer, who clearly derives a major part of his professional excitement from
hot quite understanding what he is doing. In this treamlined age, one of our
most undernourished psychological needs is the craving for Black Magic and apparedntly
the automatic computer canm satisfy this reed for the professional software enginzer,
who is secretly enthralled by the gigantic risks he takes in his daring irresponsibility.

For his frustrations I have no remedy..... .

We return to our question "Can the programmer arrange his activity in such
a way that his growing product remains firmly in his intellectuasl grip, that he
continues to understand what he is doing?" Well, let me state my firm belief: yes,
he can, it is possible to increase cur programming ability by an order of magnitude.
And as a corrolary: there is no otber way, for when the programmer looses his
intellectual grip on his product, he will never get the program in such a state
that we can rely upon it. I will now try to convey the guintessence of the
considerations upon XKXK which this XgXXWIX¥XK confidence is founded. The
reliable design of a highly scphisticated program is anyway a very difficult task
and we could place our question in & much broader perspective and ask ourselves
"How does the buman mind invent something very MXXKIKMX intricate, how does the
human mind think difficult thoughts?" Fascinating as those KMXXXXHNX genersl
questions are, [shall not touch upon them, I shall restrict myself to the more
limited field of programming, because already in the programming field we can
distinguish fiue elements af mental discipline, each of which is a great help
in keeping aur programs understandable. In order te be able to talk about them,
I must name them, I have called them sequencing discipline, operational abstraction,
representational abstractior, configurational abstraction and textual encapsulatien.
In acrder to avoid false hopes: all these elements are known, all higher level

programming languages cater more or less succesfully for some of them.

EWD303 - 5

[t is just that by making these elements of discipline more expliicit, that we
can exploit them more consciously and that we can get mere of a yardstick along

which to compare the respective qualities of different programming languages.

The sequencing discipline first. We should be very well aware of the fact
that although the written program is the final product that leaves the pragrammer's
hand, the true subject matter of his trade is formed by the possible computations
—the maing of which he leaves to the machine- that may be evoked by his program.
Whenever we make a statement about the correctness of a program it is a statement
about the correspanding computatians that may be evoked by it. The subject matter
is dynamic, it is the happening in time, while the last thing we can lay our hands
JUpon is the static program text. It is on account of the latter that we must be
able to make assertions sbout the former. It is therefors essential to bridge
the conceptual gap between the static program text and the dynamic computations
evolving in time as efffectively as possible. In order to do this I cannot recommend
XEXHEEAKIXYXKAXRUHXXUN too heartily to abolish the goto statement and to restict
oneself for seguencing purposes to the cenventionzl conditional clauses,
alternative clauses, repetitional clauses and recursion. Thz goto statement
has been identifiad @ one of the combirnatorial bug generators we have heen
looking for. I draw attention to the fact that recursion is grouped under
the class "sequencing discipline”, I will return to this in a mament when we have

mentioned operational abstraction.

Operational abstraction is embodied in most programming languages by the
subroutine mechanism. It is an explicit recognition of the fact that aAtutal
net effect canm be effectuated as the cumulative effect of a sequence of subactions
and that this can be done by virtue of ¥KEXXX¥YX what these subactions do for us,
as distinct from how these subactions work. In a main program calling subroutines
we have a level of discourse in which we can ~and should- regard the subroutines
as available primitives whose net effect is known and it is in terms of this
knwoledge that we can and must understand the main program. At that level of
abstraction it should be of no concern how the subroutines work, that is only
relevant on another, more detailed semantic level. The mixing of two such levels
is one of the most comman sources of program bugs. For the sake of completeness I
mention that operational abstraction can also be recognized when the segquencing
clauses are used, viz. in the relation betwsen the whole comstruction and the
statement controlled by the clause; in the latter case it is customary to represent
the AXXREXEAXXXKMEXEXNYXXNARMERXENKY difference of level by indentation. And it is

now clear, why recursion is treated as a sequencing discipline: in the definition

EWD303 - 6

of a recursive operator the level which describes how the operator works coincides
with a level in which the cperator is used and as a result we cannot distinguish

the two different semantic levels.

Operational abstraction deals with the actions occurring in the computatian
and we have the two sides of the coin "What they do" versus "How they work". With
respect to information stored inside the machine we have a similar coin with two
sides. The only thing a computer can do for us is to menipulate but the only reasan
for manipulating symbals is that they stand for something else. Conceptually
the program manipulates rather sbstract objects, while in fact it does so in
terms of a particular representation for them. It is a very common occurrence
that altermative programs for the same job can be viewed as different refinements
of the same algorithm, the same as long as the algorithm is expressed in terms
of rather abstract velues, anly differing in the particular representations
chosen to distinguish between these values. This is called representational
abstraction; by virtue of it it is often possible that alternative programs for
the same job -or as the case may be: programs for similar jobs- can share a large
part of their correctness proafs. I -have the feeling that representational abstraction
is one of the most powerful technigues for understanding programs. Also, it seems
a bit neglected. I do not knaw of any programming language —although it may exist-
that caters for it in a convincing way. Records as structured data types dao not
answer its needs. With records we can introduce composite data types, OK, but
the record structure chosen permeates the program using them. Also, much attention
has been paid to the problem of proving formally the correctness of a pragram,
but as far as [have seen these formal proofs, they were always tied dawn to the
particular representation chasen in this program, because the formal proof did
operate in terms of the primitive data elements. As a result changing the repre-
sentation would require a completely new formal proof. It is this abservation that
may indicate the limits of applicability of highly formalized proaf technigues.

[have now mentioned two forms of abstraction; the inverse processes, viz. chosing

an algorithm for an action or chosing a representation for a variable is called
"refinement", and so we have operational refinement and representational refinement.

We should mention that representational refinement is always accompanied by operational
refinement. 0n the abstract level we have the unanalysed variables with actions
operating upon them: when a particular representation is chosen, our original

actions have to be translated in terms of algorithms operating on the components

of the chosen representation,

EwD303 ~ 7

The fourth is configurational abstraction. To a giver machine we can add
a standard library of subroutines. If we do so, we have in a sense rebuilt our
machine, we have extended its instruction repertoire. But layers of standard
software can rebuild a given machine so much more drastically that a separate
name seems appropriate and I have chosen "configurational abstraction" for that
purpose. I am referring to the functions of an operating system that can rebuild
a single processor installation into a multiple processor installation, that can
rebuild a hierarchy of storage levels into a virtual store etc, I[deaslly, this
rebuilding of a given hardware configuration into a virtual machine serves a
double purpose. Firstly it enables us to map different configurations into the
same wirtual machine, thereby providing a step towards program portability; secandly
the virtual machine should be much more attractive to use than the original machines.
To my great regret I get the impression that the second requirement is often

overlaooked, at least not met.

Finally we have textual encapsulation. If we caonsider any program of &
sizeable complexity, this program should not be regarded as an object all by itself
but as a member of a class of neighbouring programs, alternative programs for either
the same or similar jobs, It is becoming recognized more and more that it is
highly desirable that the transformation of XXEXK¥X¥X¥K a program intoc another
one of the family should anly affect well isolated portions of the program text
and should not require adjustements scattered all through the program text. This
is one of the main aspects of modularity. For some program changes this goal is
very hard to achieve but the aobjective is so clear rnow that I expect it to become
easier in the future, We may either invent programming languages more suited to
this flexibility requirement or we shall devise more elaborate means of exploiting

automatic equipment for the composition of program texts.

With the above I touched on five, what I called "elements of a programming
discipline", all of them ways by which we can increase the understandability of
praograms. They have to do with the ease with which we can understand what a program
is doing, they have to do with the feasibility of correctness proofs., It is to the

pattern of such proofs that we now turn out attention.

EwWD30% - 8

Let me first relate them to patterns of proof for single sequential
programs, because the proving techniques for sequential programs seem e he
better understood than those far a bunch aof parallel programs. If we have a
program consisting of a sequence of statements to be executed inm the order.in
which they are given the proving technique is fairly well understood. If the
net effect of the execution of the HAMEEXUMMEX KA UMMM E XK KXY EUUNXAANKEX constituent
statements is given, the net effect of their successive execution can be
established straightforwardly by what I have called "Enumerative reasoning",
our main concern being that the amount of reasoning neaded for each step does
nat get excessive. It is my impression that the amount of reasoning needed
can be reduced when we can group subsequences into compaound statements,the
net effect of which allows a compact farmulation. This is generally true:
any sizeable piece of pragram, or even a complete program package, is only
a useful KWAXXMXYNMX tool that can be used in a reliable fashion, provided that
the documentation pertinment for the user is much shorter than the program text.
If any machine or system requires a very thick manual, its usefulness becomes
M AN AKX XX KM XXX N XX MM EMMEK FOT that vefy circumstance subject to doubt!
Returning to the correctness proof: the compact formulation of the net effect
of compound statements often requires the introduction of a new terminclogy
and it is not unusual that this terminology is provided for by the wmechanism of
representational abstraction. Se much for a piece of program text without amy
sequencing clauses. In the case of conditional clauses, alternative clauses,
NNMXEKEHXK%N!XXMKXXHM%X%NﬁXNNﬁXHXﬁﬁﬁXXKMKXXﬁﬁxﬁNﬁMXNXNEX%EKHXXN%HXHXKXHX
EXZEXERMEXRUERZBNEXANEXREREXIXIMEXEKAEY case constructions and repetitive clauses,
the whole conmstruction should be regarded as a single compound and itslnet effect
should be formulated in such a way that it is no longer transparent that, internally,
the construction is controlled by such a clause. In particular: if it is cantrolled
by an alternative clause, the description of its net effect should be applicable
regardless which of the two paths have been taken, if it is contralled by a
repetitive clause, the description of its net effect should be applicable to
all possible numbers of repetitions. This is because in the context in which
these constructions occur, they occur on account of what they do for us and rot
on accaunt of how they wark. This is an application of operatiaonal abstraction
possible thanks to our strict sequencing disciplines. We should make this
operational abstraction very explicitly and very consciously: without it the
number of cases to be distinguished between in our reasoning has a tendency to

grow exponentially with the program text.

EWD303 -~ 9

The tonditional, the alternative and the case construction themselves can
be understood by enumerative reasoning, the construction with the repetitive
clause, however, requires a special pattern of reasaning for its understanding
because it must cover all possible numbers of repetitions., Basically, mathematical
induction is our only mental tool adequate for the purpose —and in the case of
understanding a recursive subroutine mathematical induction is often applied
explicitly— but in the case of lecops the understanding often can be sppeded up
by resorting to ane or two theorems, thereby avpiding an explicit asppeal to mathematical
induction. They are invariance theorems. If it cén be shown that a single execution
of the repeatable statement will leave a relation between the values of some
variables invariant —and this itself can be established by enumerative reasoning-—
and if furthermore it can be shown that this same relation is valid before entering
the loop, then the said relation will alsa hold after termination of the repetition.

This turns out to be a very powerful theorem.

I have mentioned the explaitation of invariant relations explicitly
because it appears to be one of our more powerful tools when we wish to make
assertions about the harmonious co-operation of a bunch a parallel programs. In a
number of cases the harmonious co-operation between a number of parallel programs
could be established by showing the invariance of a relation. In this relation
two sorts of quantities occur, on the one hand KK variables, common to the
programs, and an the other hand variables HEXKEKXMXNYXENEXXKAESXERANKEYERKEXHEX
KXEXEXMEHEAU T X R RN R E R RN that are a functian of the state of pragress of the
individual processes. The analysis of the requirements of such a proof, again, is
very illuminating., Suppose that we want to establish the invariance of such a
relation, XXXXMECEAEXANEELXUBELAN K XN XEEXEXXH XX EHAKMXH M A XHE XN AP X LRUHELR Y XX
EAYOMXRKXXAXANN, As long as the variables occurring in the relation remain
untouched, XKEYXEMKELA there values remain unchanged and the validity of the relation
remains invariant. We therefore focus our attention upon all operators occurring
in the totality of the bunch of parallel programs, that may influence the value
of ane or more of the variasbles concerned. Let there number be M, If all these
operators leave the relation invariant, the relation will be invariant. This requires
a study of M cases. But be careful! We are studying the net effect of a bunch of
paraliel programs, so in principle- it is insufficient to establish the invariance
of the relation'under the execution of the individual M operators, bui we should
also establish it under the concurrent execution of all possible combinations,
i.e. 2M (*1) cases, Here again we are faced with exponential growth of the number

of cases to be distinguished between in opur reasaning.

EWD303 - 10

As a result it makes all the difference in the world, whether one has
primitives at one's disposal by means af which mutual exclusicn in time can be
guaranteed. And I am not sure whether all designers of multiprocessor machines,
of programming lanquages for process control etc. have paid enough attention to

this gbservation,

Cur knowledge of how to prove the correctness of programs is far from
complete but it is growing. It will have an increasing influence on the programs
that are going to be produced. It is irrealistic, however, toc expect all
potential benefits from this approach before quite a lot of cleaning up of
pragramming languages has been established. That such forms of cleaning up
are perfectly possible has heen shown by professor Niklaus Wirth from Zurich
who has designed the programming lamguage PASCAL. I quote from his introduction
"The desire for & new language for the purpose of teaching programming is due to
my deep dissatisfaction with the presently used majar languages whose featurss and
constructs too often cannot be explained logically and convincingly and which
too aften represent an insult to minds trained in systematic reasoning. Along
with this dissatisfaction goes my canvinction that the XXEMX¥MXXEXE%KK language
in which the student is taught to express his ideas profoundly influences his
habits of thought and invention, and that the disorder governing these languages
directly imposes itself onto the programming style of the students. I am inclined
to think that the lack of discipline and structure in professiaonal programming
style is the major reason for the present appalling lack of reliability of
practically all larger software products." End of quotaticn. We shall never learn
to write good and eanvincing programs as lang as we identify the task af programming
with the task of writing programs in FORTRAN =a programming tool which, indeed,
was & great step fnrwarq when it was conceived some fifteen years ago but which,
by now, should be regarded as a lower level language, as a low grade coding device.
REXAX KR MENEEXXXXKRORMOIME This programming tool, and the thinking habits induced
by it, have grown hopelessly inadequate. As a teacher it is my jab to help programmers
in clearing up their own thinking. Often this is a highly rewarding activity,
Equally delightful and instructive for both parties. But when talking to the
praduce as grown in what is getting known as "the pure FORTRAN environment®, I am
usually baffled, for unsuspected depths of misunderstanding open themselves before
my very eyes. It is well known that we don't gain aitomatically fram experience,
an the contrary, that the wrong experience may easily corrput the soundness of our
judgement. In the case of FORTRAN, it is my impression that it's intellectually
degrading influenmce is not commonly recognized, that too few people realizs that

the sooner we can forget that it ever existed, the better, as it is now tao

EWD303 - 11

inadequate, too difficult and therefore too expensive and too risky to use,

Ladies and gentlemen, let me come to my final conclusions. Automatic
computers are with us for twenty years and in that period of time they have proved
to be extremely flexible and powerful taols, the usage of which seems to be changing
the face af the earth (and the moon, for that matter!) In spite of their tremendous
influence on nearly every activity whenever they are called to assist, it is my
considered opinion that we underestimate the computer's significance for aur
culture as long as we only view them in their capacity of tools that can be used.

In the long run that may turn out to be a mere ripple on the surface of our
culture. They have taught us much more: they have taught us that programming any
non—trivial performance is really very difficult and I expect 2 much more:profound
influence from the advent of the automatic computer in its capacity of a formidahle
intellectual challenge which is ureqgualled in the history of mankind, This gpinigon
is meant as a very practical remark, for it means that unless the scope af this
challenge is realized, unless we admit that the tasks ahead are so difficult that
even the best of tools and methods will be hardly sufficient, the software failure
will remain with us, We may continue to think that programming is not essentially
difficult, that it can be dore by accurate morons, provided you have enough of them,
but then we continue to fool ourselves and no one can do so for a long time

unpunished.

Finally,let me summarize as instructed., BXEEXNEXXEXXXXNEN Reliability
concerns force us to restrict ourselves to intellectually manageable pragrams.
This faces us with the gquestions "But how do we manage complex stru:tufe intellectually?
What mental aids do we have, what patterns of thought are efficient? What are the
intrisic limitations of the human mind that we had better respect?" Without knowledge
and experience, such questions would be very hard to answer, but luckily enough,
our culture harbours with a tradition of centuries an intellectual discipline
whose main purpose it is io apply efficient structuring to otherwise intellectually
unmanageable complexity, This discipline is called "Mathematics". If we take the
existence of the impressive body of Mathematics as the experimental evidence for
the opinion that for the human mind the mathematical method is, indeed, the maost
effective way to come tg grips with complexity, we have no choice any longer: we
should reshape our field of programming in such a way that their methods of

understanding become equally applicable, for there are no other means.

Thank you.

