EwD317 ~ O

Un_a methodology of design.

Cr an occasicn like this it is very tempting to look backwards, to
play the madern historian, to give a survey of what has happened over the last
25 years and to interpret this history in terms of trends and the liks. This
is so tempting that 1 shall try to resist the temptation. Instead, I would
like to pose a guestion and to speculate about its answer. The guestion is
roughly "Can we expect a methodology of design to emerge in, say, the rext

ten years?",

Let me first explain why I pose this guestian imn my capacity as a
programmer. There is s very primitive conception of the programmer's taskg,
in which the programs produced by him are regarded as his final product. It
is that conception which has led to the erromeous idea that a programmer's
productivity can be measured meaningfully in terms of number af lines of
code produced per month, a yardstick whichw when accepted, is guaranteed to
promote the production of insipid code. A sounder attitude regerds as the
programmer's fimal product the class of computations that may be evoked by
his program: the gquality of his program will depend among many other things
on the effectiveness with which these computations will establish their desired
net effect. In this point of wview = programmer designs & class of computaticns,
a class of happenings in time and the program itsslf then emerges as a kind of
generic description of these happenings, as the mechanism that evokes them.
1 regard programming a&s one of the more creative branches of applied mathematics
and the view of a program as an abstract mechanism makes it perfectly clear that
designing will play en essential role in the activity of programming. Conversely,
the view of a program as an abstract mechanism suggests us that a good under—
standing of the programming activity will teasch us something relevant about
the design process in gereral. In actual fact this hope is one of the major
reasons for my being interested in the task of programming for digitel avtomata,
digitsl automata who confrent us with a unigque combination of basic simplicity
and ultimate saphistication. On the one hand programming is very, very simple;
on the other hand processing units are now so fast and stores are now so huge
that what can be built on top of this simple basis has outgrown its original
level of triviality by several orders of magnitude. And it is this fascinating
contrast that seems to make programming the proving ground par excellence for

anyone interested in the design process of non=trivial mechanisms.

../transcriptions/EWD03xx/EWD317.html

EWDZ17 — 1

It is this combination of basic simplicity and ultimate sophistication
which presents the programming task as a unique and rather formidable intellect—
val challenge. I consider it as a great gain that by now scope and size of
that chailenge have heen recogrized. Looking hackwards we can only regret that
in the past the difficulty of the programming task has been so grossly under—
estimated and that apparertly we first needed the so—called "software failure!
to drive home the message that in any mon—trivial programming task it tends

to be very difficult to keep one's construction intellectually manageable,

As soon as programming emerges ss a battle against unmastered complexity,
it is gquite matural that one turns to that mental discipline whose mair purpose
has been since centuries ta apply effective structuring to otherwise unmastersd
complexity., That mental discipline is more or less familiar to all of us, it
is called Mathematics, If we take the existence of the impressive body of
Mathematics as the experimental evidence for the opinion that for the human
mind the mathematical methed is indeed the most effective way to come to grips
with complexity, we have no choice any longer: we should reshape our field of
programming in such a way that the mathematician's methods become equally
applicable to our programming problems, for there are no other means., It is
my personal hope and expectastion that in the years to come programming will
become more and more an activity of mathematical nature. I am tempted tc add
that & development in that direction can already be gbserved, but I refrain
from doing 2%: such a statement has too much the flavour of wishful .thinking
and besides that, such a statement could easily be an overestimation of the
relative importance of the rather limited part of the field that lies within

my mental horizon,

I have used vague terms like "the mathematician‘'s method" and "an activity

of mathematical nature"; I did so on purpose and let me try to explain why.

In one meaning of the word we identify Mathematics with the body of
mathematical knowledge, with the subhject matter dealt with in mathematical
theses, articles appearing in mathematical journals etc. I am not ashamed of
admitting that most of it never passes my eyes; [also have a feeling that mast
of it —~although of course one mever knows= is hardly of any relevance for the
programming task. If we identify Mathematics with the subject matter with which

mathematicians# have occupied themselves over the last centuries, it iIs indeed

EwD317 - 2

hard to see how mathematics could be highly relevant to the art of programming.
In view of the programming problems facirg us now, we can only regretfully
observe that preceding generaticns of mathematicians have neglected a now
important field. There is of course no point in blaming our fathers and
grandfathers for this neglects Ih their time, prior to the advent of the actual
computing equipment, there was very little incentive® for lack of machires

programming was no prablem.

In & second meaning of the word we identify Mathematics with a human activity,
with patterns of reasoning, with methads of exploiting our powers of abstraction,
with tr;ditions of mixing rigeur with vagueness, with ways of finding solutions.

It is in this second meaning that 1 judge mathematics as highly relevant for

the programming task.

It is perhaps worth nating that, at lsast at present, the second inter—
pretation of mathematics does not seem to be the predominant one at the Uni-
versities. In the academic curricula the fruits of research are transmitted
very explicitly, how one does du research, however, is taught only very
implicitly, at most as a kind of by-product. We teach solutions, we teach
hardly how to solve. At first sight this is amazing, taking into account
that one of the assumptions underlying the University is that we can educate

researches! But there are explanations.

Ore obgservation is that many mathematicians of the current generation
=in Euler's time it may have been different- seem to worry very little about
problems of methodology, strongergl they resist it end are shocked by the mere
suggestion thst, say, a methodology of mathematical invention could exist.
Although we profess to be yearning for knowledge, insight and understanding,
we are fascinsted by the unkrown and many a crestive mathematician is fascinated
by his own inventive ability tharks to the fact that he does pgt know how he
invents. He enjoys his share in the spark of genius, .unternished by any

understanding of the inventive process. We just like mysteries.

Secdndly, with the growth of matbematical literature, particularly the
publications of the type "Lemma, Proof, Lemma, Proof etc." mathematics has
very much acquired the image of a "hard" scierce. BEXXXKMXEXXMXX [t is regarded

by many as the prototype uf a "hard" sciemce. But the result is that the mathe-

EWD317 = 3

matician tends to feel himself superiog that he locks disdainfully down upon

all the "soft" sciencesz surrounding him. As a result a serious research effort
into discovery and development of a methodology of mathematical invention would
have a hard fight for academic respectability. And we all know that the pressures
for academic respectability are very strong. It takes a respectable scientist,
supported by fame, to embark uporn it. Polya did it with his "Mathematics and

the Art eof Plausible Reasoning™ and I admire his courage.

The final reason why we teach so little sbout problem solving, however,
is that we knew sc little about it, that we did not know how to do it, But I
hanestly believe that in the last fifteer years the scenery has changed. Polya
has writtern XXMX¥MK the book I mertiored, Koestler hes written & book of 600
pages called "The Act of Creation", Simon delivers at the IFIP Congress 197t
a talk on "The Theory of Problem Solvimg", just to mention a few examples. And
thers is a fair chance that this development will influence our teaching of

mathematics. I think it will.

After this digression we return to ocer original question, can we expect
a methodolegy of design to emerge? In designing cne designs a "thing" that doss
"something"”. Over the last decades the most complxated things designed to do
something have beer programs; on account of their abstract nzture we can regard
NEXMEER% programs as the "purest" mechanisms we can think of and if we can
find some sort of question REXKXXXKKXXX to the specific guestion "What about
a programming methodology?", that answer seems relevant with respect to our

criginal question.

It is my impression that there is a point in discussing programming
methodology separate from problem solving as it is treated usually, Most of
the literature about problem solving that I have seen deals with how to hit an
unexpected but simple solution -simple of course once you have found it. In
the case of programming this simplicity of the final solution is very often
an illusion: programs, even the best programs we can think of for a given task,
are ®ften essentially very large and complicated. And by structure they are
more akin to complete mathematical thecries tham to an ingengous solution to
some sort of combinatorial puzzle. In other words, programming tasks seem to

be af a different size.

EwWDZ17 - 4

From a pragramming methodology we require two main things. It should
assis% us in making hetter programs —i.e. we have desires regarding the final
product— it should also assist us in the procsss of composition of the design
-i,e. even if we have established what kind of programs we should like to
desigr, we would like toc discover ways leading to such 2 design. As it is hard
to talk about strategies that might assist you in reaching your goal without
having a clear picture of the goal itself, we shall deal with the first question
first: what kind of programs should we like to make? If we talk about "better

programs", what standards do we apply in judging their quality?

I have raised this guestion urgently and repeatedly in the first half off
the sixties but at that time it turned out to be impossible to reach even the
illusion of a consensus of opimion and the guestion was discarded by the attitude
that it was all a matter of taste. The common experience of the next fiue years
has certainly changed the situation. This common experience with large and
vital programs was very often disastrously bad, and as a result of this
schering experience more and more people agres that reguirement number one is
not only that a progrem should be eorrect, but that its correctness can be
established beyond reasonable doubts, An analysis of the possible ways for
increasing the confidence level of programs has shown that for that purpose,
pragram testing must be regarded as insufficient: program testing can be used
very effectively to shaw the presence of bugs, but never to show their absence.
Proving program correctness remained as the only sufficiently powerful alternative.
And here I deon't necessarily mean "formal prcofs": I regard axiomatics as the
accountancy of mathematics, or to use another metaphor: a formal treatment

relates to my powsr of understanding as a legal document 4o my sense of justice.

The concern about correctness proofs had an immediate consequence. If
proofs get longer and lenger they loose their convincing power very, very guickly.
It also emerged that the length of a correctness proof could depend critically
uporn the structure of the program concerned and with this observation a
iegitimats objective of program structuring emerged, viz. to shorten the length
of the proefs required to establish the confidence in the program's correctness.
Such considerations gave rise to a computing science folklore for which I am
partly responsible; it centers around key-words such as "hierarchical design®

and Ylevels of abstraction".

EWD317 - &

The programs skould be Ycorrect", but that is certainly rot the whole
story. Correctness proofs belong to "kard" science = and the mare Tormal the
pronfs, the harder the scierce. Considerations about the relation between
program structure and proof length are already at the outskirts of hard
science. Saofter still is the equally vital reguirement that the2 program, the
mechanism in gereral, be adequate, that it be a3 sufficiently realistic
implemermtation of the model we have in mind, Let me explain this with a simple
example. In ALGOL 60 the integer variable is 2 key concept: whenever it is
manipulated it stands for an integer value, but in understanding a program,
vau don't care about its specific value, you have abstracted from it., Caring
about its actual value is something you leave to the arithmetic unit, you
yourself uncerstand the program in terms of variables and relations between
their values, whatever these values may be. In order not to complicate matters
we restrict aurselves to applications where integer values remaln quite
naturally within the range that might be imposed by the implementation.
Suppose naw that our machine has a very furny adder#, funny in the sense
that each integer addition takes one microsecond except when the sum formed
happens ta be a prime multiple of 7, in which case the addition takes a full
millisecond. How do you program for a machine like that? You might prefer to
ignore this awkward property of the adder, but if you do so [can change the
machire, slowing down the exceptional additions by ancther factor of thaousand,
and if necessary [de so repeatedly. Comes the moment that you can no longer
affaord to ignore this awkward property: by that time you feel obliged to
organize your camputations in such a way that the exceptional additions are
avoided as much as possible. Themyou are in trouble, for a vital abstraction,
viz. that of an integer variable that stands for an integer value but you don't
care which, is denied to you. And when a vital abstraction is denied to a user,

I call the implementation imadequate.

Tre requirement of adequscy has a direct bearing on out hisrarghical
designs, mare precisely on the number of levels we can expect toc be distinguishable
in such a design. Mind you, I am all in favour of hierarchical systems, we have
hierarchical systems all around us. We understand a country in terms of towns,
towns in terms of streets, strzets in terms of buildings, buildings in terms
of floors and walls, floors and walls in terms of bricks, bricks in terms of
molecules, molecules in terms of atoms, atoms in terms of electroms and nuclei,

nuclei in terms of what—have-you etec. It is a patternd you find all over the

SWD31T - 6

complete spectrum ranging from sciermce to childrer's behaviour. At each next
level, towewver, we describe phenamena af a next order of magnitude. In the
example given it is a spatial order of magnitude, in the case of mechanisms wers
we want to understard what happers,we find ourselves faced with happenings to
be ungerstood in different grains of time. It seems characteristic for arm
adequate design that when we ge from one level to the next, the appropriate
grain of time will increase by an order of magnitude. If this impression is
correct, our adequacy requirement imposes an upper bound on the number of
levels admissible in our hierarchby, even if we start at the bottom at nanc-
second level. Then we must conclude that, although essentizl, hierarchical
levelling cannot be the ornly pattern according to which "Divide and Rule"

is to be applied.

Now the desigr process itself, Many of its aspects cam better be treated
by greater experts in the field than myself; let me confine myself to what I
have found lackimg in the literature. On the ore hand you find authors writing
abcut problem solving: they stress psychological conditioning in order to hit
the unexpected solution and search strategies. Their descriptions of the
inventive process seem honest, their guidelinmes seem relevant, but they confine
themselves to small size problems. On the cther hard I have met people trying
to organize large scale design projects. They were mostly Americans and talked
with the self-assurance that we tend to cannect with competence. I am perfectly
willfing to admit that once or twice I have been taken in by their eloguerce,
but never for long and I have come to the conclusion that the crganization
expert, slthough potentially useful, will roit provide the final answer. A few
things have struck me very forcibly. firstly, they persist in thinking in exactly
two dimensigns — this must have something to do with the two-dimensional paper
on which they draw their organization charts. Seccndly, they are obsessed by
reducing the elapse time; this gives them the cpportunity to introduce their
dear tools such as PERT diagrams, base~lines etc. but I am much more interested
in the designs we don't know how fo zchieve even if we are not in such a great
hurry, Thirdly, they have such preset notions about documerntation standards
and the holy rules aof tha game —such as design reviews— that the whole design
efforts loses the ring of reality and degenerates into a complicated parlour
game. Buth thea fourtn thing is probably the worst: apparently they do not know
the essential difference between "vague™ and "abstract" where it is thes function

of abstraction toc create a level of discourse where one can then be absolutely

EWD317 =~ 7

precize!

Let me now give you what I regard as my expectations. I ieave it to you

to decide whether you prefer to regard them as my hopes.

Our insight in the effectiveness of patterns of reasoning when applied
to the task of understanding why mechanisms work correctly and adequately, has

been growing considerably in the recent past and I sxpect it to grow still

further.

Our insight in the deésign process will alsc ircrease. Inm particular I
expect that more recognition will be given to *he circumstance that desigrirg
something large and sophisticated takes a long time. As a result we must take
the intermediate stages of the design into considerastion and must be clear shoct
their status in relation to each other snd to the complete desigr. [expect

a clearer insight in the abstractions invelved in postponing = =ommitment.

From & better understanding of the relation between the final design and
its intermediate stages I expect a body of knowledge that will enable us to

judge the adequacy of descriptive tools such as programming languages.

In the course of the design process we are envisaging a final product:
how well it behaves will ultimately KMMXKHHKXXK only be known by the time the
design is completed and the mechanism is actually used. By its very nature thse
design process makes heavy demards on our predictive powers. Ir connection with
that I expect two things toc happen. On the one hand cur predictive technigues
will be refined: at present, for instance, the outcome of simulation studies
tends to be the source of heated argumerts and it appears that we can simulate
but lack the proper discipline that tells us what weight to attach to these
simulations. Refinement of predictive technigques is ome thing, the other
thing I expect is that we shall learn how to reduce the need for them. In the
design process it is not unusual that some sort of performance measure is
dependent in a complicated and only partislly known way on a design parameter
whose value has to be chasen. There are two usual approaches to this problem
and they seem to be =qually desastrous. Ore of them is to give a group the
duty to discover the best value of the parameter, As they don't know how to

do this, any answer they produce will fail to be cenvincing and as a rule this

EwWD317 - 8

approach leads to heated arguments and en overall paralysis of the design
process. The other approach leaves thes parameter free, so that the user can set
it, suited to his own needs. Hers the desigrer has shirked his responsibilities
and leaves to thke user that part of hiz task that Fe could not do P mself: this
second approach is disastrous because often the user is equally urable to fix
the parameter in & sensible way, Both approaches heirg equally unattractive

I expect the competent designer to become more alert when the prablem of

the parameter with unknown optimum value presents itself. The most efficient
way to solve a problem is still toc run away from it if you can, and one can try
to restructure a design in such a way that the parameter in gusstion lonses its
significance. In irdividual applications the performance might be lesz than
optimal but this can be easily outweighed by greater adequacy aver a widsr
range of applications and the easier justification of the remaining decisions.
This is an example of the impact of the requirement of "desigrahility" upon

the fimal product.

This was a very rough sketch of a few of my expectations of an emerging
methodology of design. I am not going to refine in this talk the picture any
further for part of my expectation is that further refinemernt will require the
next ten years. But by that time I expect a body of teachable knowledge that
can be justly called "a wethodology of design". Cther authors are less modest
in their expectation: Hernert A.Simon argues in iz little booklet "The Sciences
of the Artificial”, which I can recommend warmly, that what he dares to call
"a science of desigr" is already emerging. He may very well be right; personally

I feel that I lack the wide experience needed to judze his prophecies.

I would like to end with a final remark in order not to raise false
hopes. The remark is that a methodology is very fine but in isclation empty.
We expect a true methodology of design to be relevant for a wide class of VETY
different design activities. The counterpart of its gererality is by necessity
that it ean only have a moderate influsnce on each specific design asctivity,
i.e. we must expect each specific design activity to be heavily influenced by
the pecularities of the problem to be solved. Ans that is where knowledge shout
and deep understanding of the specific problem enters the picture. Yet a methodology,
although absolutely insufficient in itseif, may be of great value. It should
give as the delimitation of our human abilities, it could very well result in
a mocest list of "don't"'s, rules that we must obey and can only tramsgress

at our own peril.

