EWD375 - O

EWD375.html

A non algebraic example of a constructive correctness proof.

We consider a text built from five types of characters, viz. digits,
operators, "{", "}v ang ";". The text can be read from left to right by
means of the primitive "move" which assigns to the variable named "x" the next
character of the text. Initially the value of. x is undefined, after the
First execution of "move", x equals the left-most character of the text. The
text has infinite length and it is required to write a recognizer called
"sent" that has to estsblish whether the text starts with a < sent = '

given by the fullowing syntax.

< aent o o= < exp > g

“oexp - = < term >'§<Imperator,>< term§>}

< torm o= < digit > < digit >} | (< exp =))
Here Lo,] should be read as "zero or more times the enclosed”. An

alternative syntax would have beean

< sent > 1= <Cexp > ;

< exp - i= {<fterm.>< uperatmr->} < term >

< term > r:= {< digit >} < digit > | (< exp =) (2)
We regard {1) and {2) as trivially equivalent.

In order to carry out this investigation, the routine has at its
disposal five boolean functlons. deflned when x his a- value,.v1z. ‘digit(x)"
operator{x}, open(x), “close(x) and seml(), such that always exactly one of

the five has the value true.

The result of the investigaticn has to be recorded in the glohal
boolearn ramed "c" (short for: correct). In order to specify more rigorously
the met effect to b= established by a call on "sent", we introduce the following

notations,

Let 9 be the nom*ehpty string of characters read by "sent"; by definition
x then equals the right-monst character of S and by 9 = x we denote the

string of characters of $§ up to and excluding this right-most character.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD375.html

EWD375 = 1

We now wanl to express two things: if a < sent > is found, S should
equal that sentence, if, however, sent has established that the text does
not start with a < sent >, no more characters than are needed for this
conclusion should have been read. In view of aur later needs, we introduce
two new syntactic categories, viz., < pbo sent > and < ho sent ™. Here
< pbo sent - stands for "proper begin af a sentence but not a camplete
sentence, 1.n, a string of characters not forming a sentence all by itself,
but that still can be extended to form a correct sentence; << bo sent > ,
being short for ”begiv cf sentence", is either a correct sentence all hy

itself, or allowing extension to a correct sentence, In other words

< bo sent X 1:= < pbo sent > |‘< sent =

Similarly we: Introduce
< hg nxp » 1:= < pho exp = \‘i exp =
~ b term ;= L pbn term P’l < term >

Note: A < phs Y ..~ has not been defined as a string that by a non—empty
extrnuion can be transformed intoc a < Y > ; it has also been required not

to be a < Y .~ all by itself.

In terms of S and the notion < pho sent ™ we now specify the desired

net effect of "sent"™ by reguiring that upon completion

w
I

X

1l

< pbo sent > and

3 # <t pba sent > and

c !75:<SEHJC>]

L

The first af these terms is required to ensure that nct too much has
been read, the second guarantees that enough has been read and the final
term defines the value of c. Ncte that specificstion (6) has been given

without taking syntax (1) into account! All proper initial strings cf 5 are

of the syntactical category < phbo sent > : the empty string is,: anduas e

as reading has progressed such that the first tws terms are true, reading

stops and ¢ will get its proper value.

In order to proceed with (6] in which that syntactic category

<< pbo sent > cccurs, we derive from the first line of (1)

<< pbo sent & :1:= << bo exp &

{4)
(5)

(6)

EwD375 - 2

where < bo exp = comprises sll expressinns and sequences that can be

extended to an expression.

(Note: According to {4) it is not excluded that a proper initial string of
an expression by itself is an expression!)

Relation (7), together with the first line af the'syﬂtaxi1) enables us
1t

to rewrite the desired net effect of Ysent® as follows: upon termination of

"sent" we require

S - x = <C bhp exp > and

3 E <" bo #xp > and

c=] 5-x= < exp > and Semin)] (8)

The second line shows that the concept < bo exp > is relaied tao the
complete string 5. As a result, when we wish to express "sent" in terms of
a primitive "exp", whose analysis has to embody the syntactical rules of an

< exp > and that shall read a Gtring £, then E and S should be identical,

Irn terms of o primitive "exp", reading a string E, such that Lpon

termination

E = x 2~ bo uxp > and

E # =~ bo exp > and

c o= [£ = x=<pxp>] (9)
the body
proc sent: exp; ci= c and semi(x) corp {10)

satisfies requirement (8). A formal praaf of the correctness of (10) relies
on the axicm of assignment only: with post-condition (8) we derive on account

of (1) as the post—condition for its call of "exp"

S - x =< bo exp > and
] # << bo exp > and

c and semi(x) = [5 - x = < exp > and semi{x)]

which is obviously satisfied by E =5 and specification (9). Tre equality
' = 5 is guaranteed when, prior to its call on "exp", "sent" will not command

any "move". It does not: it opens with Texp".

Now we are left with the duty of constructing a recognizer "exp", reading

EWD375 - 3

a string E given by the firet two lines of (9) and assigning to c the value
given by thie last line of (9). Because (9) mentions the syntactic category
< bo exp >, we kad better derive its syntactic definition, now from the
second line of the syntax. Syntax {2) is the most convenient and we find

“because < operator > ig always a single character! -

< bo exp o iz (< term > operator >} < bo term >

The braces ="zerc or more timeg"— suggest a while loop and therefore
we must try to find a convenient invariant, implied by (9). It is certainly

necessary to maintain
E ~ x = < hg exp =

as this takes care of the requirement that not too much will be read. On

account of (11) we can ther write

E = {< term ==l operatorf>} T

with T' = x = <l ho term .=

Cquatian (11) tells us that the necessary and sufficient condition for

E = <bo exp > ic in terms of Ty as given by (12),

T' = << bo term > or T!' = < tern - operator >

The necessary and sufficient conditian for E # < bo exp > is therefore

T # < bo term > and T! # < term > gperatar >
or '

T! # “~ ho term > and naon [T' = x = < term > and Dperator(x)]
Furthermore is follows fram (12) and the syntax for < exp > that

E - x =<exp> (from the third line of (9)) is equivalent to

Tt = x = < term >, Therefore we can rewrite (9) as

Q and non | o and operatar{x) |

with @Q: E = x =< ho exp ™ and
T' =~ % = < ba term <> and

It £ < ba term > and

c = L T" - x = <itermi>]

where we have combined in Q all assertions about the total text read by "exp".

Now the invariance theorem for loops suggests a body for "exp" of the form

(11)

(12)

(13)

EWD375 - 4

establisn Q;

while c and Dperator{x)_gg something withaut violating Q od

Analogous to (9) we try a primitive "term", such that upon completion

the string T read by it and ¢ satisfy

T - x =< bo term > and
T # = ho term > and

c=| T=~x < term] (14)

Rulationg {1?), (13} and (14) suggest that we try o prove that
E = < term E<Iaperatnrl>} (15)

is a sufficient precondition for "term" g énsure the postcandition Q. As
far as the effect on F of the primitive "term" is concerned, an exscution

of "term" ig equivalent tg
L B+ T
(where we have used the wigw for concatenation) or

E - x 'z F + 7 - *

3

The post-caondition £ — ﬁ|§1bo EXp > reduces thanks fD’thewéxib&igk;gésignmentﬁ
and (11) to the pre-condition

-

E 4T - x = ﬁ< term =< aperatarf>}'< bo term > .

Because T - x - < bg term > . (15) is a sufficient precandition, allowing
the identification T! - T, guaranteeing on account of (14) the last three
lines of Q a5 well, Because [= < empty > is g specific instamnce of (15},
the initialization of the loap -i.e, establishing @ to start with— can be
done by & single call an Merm™, As repeatable statement "tepmt would be

acceptable, provided that we can show that
0 and c and aperator(x) == relation (15)

The left—hang implies”

E - x = {< term > operator>} T' - x ang
TV = % = < tarm > and

operator(x)
end therefare (15) holds, but (15) was & sufficient pre-conditian for "term"

not to viclate Q and we have found the pragram

EWD375 - 5

Rroc exp: term; while ¢ and Dperator{x) do term ad corp

We are left with the duty to construct a primitive "term" such that the
string T, read by it, and e will satisfy (14) upon completion. In ardsr to

corstruct it, we derive from the third line of syntax (2) the syntactic rule

a

M‘._ﬁw-
S bo term e (< digit} | (< boraxp > | (< exp =) (16)
- : b "‘-r"" : "“&‘;7*;:-

and the primary duty of "term" is to establish a string T such that

T - x = <bo term > and

T # < bo term =

According to the syntax (16) we have three cases

A) T % - (< digit >}

In this ceuye x ;{ << digit),“r:u: ;;ccnumt of the requirement T ,é < bo term > |

and o dn Loogel the value Ltrue when 1 - x ;é <= empty >

B} T-x = (< hn exp =

ar, with _ T -{FE 17

we then know that
E*x:<boﬁxp>aﬂd€%<boexp> . (18)
But we krow alsno

nan [E -~ x = <exp> ang Clase{x)] {19),

because otherwise T = <- bo term > (%rd alternative) would have been true, In
this case c must gel the value false, because from T = x =< term > would
follow E - x =<l exp >} and this is incompatible with E — x = < bo exp 3
because via mathematical induction it is easily proved that in an < exp >
the number of ppening hrackets equals the number of closing brackets while
in a < bo exp > the number of closing brackets does not exceed the number
of ovpening brackets.
C) . T = x= (<expi>)
In this case, regarcless the value of x, T ;é =bo term > hglds and c must
get the value Erue. With
T-x=1(¢E
—in contrast to 17), cavering case B- we have again relation (18) but also
E - x=<exp - and close(x).

But this is exactly the n'égi;ajcion of relation (19)! Thus we are led to the

following program (with comments inserted between bI‘aCES)

EWD375 — 6

proc term: move ;
| if apen(x)
then {case B and case C} exp;
Af c end close{x)

then {case C} move

else %case B} c:= false
i

else %case A} Ci= digit(x);

while digit{x) do move od

fi
car
* *
«*.
Cormclusion., The primary purpose of the above exercise was to demonstrate that

the applicahility of the technigue of developing correctness proof and program
hand in hand is not confined to simple programs dealirg with algebraic relatiaons
between integers but can also be applied to non—arithmetic data processing.

Some readers might argue that this example rather weaskens my pcint, because

the essay is rather long compared to the length of the program, My answer to them
is the followings:

1) A program need nat be long in order to be difficult to conceive and also,
unless one has produced shsolutely insipid code, a final program is always a

a very compact product of one's intellectual labour.

2) We have not made streng assumptions about the reader's familiarity with
the thecry of recursively defined syntaxes and therefore have derivéd explicitly
all we needed.

3) Anyone who thinks that he can make relisble programs without a sufficient

"thecry" about the subject matter of the computations, fools himself.
Finally, although the alert reader will have noticed it, it seems warth-

while to draw attention to the fact, that in all our reasoning in the above

exercise we have not given a single example of a sentence, nar of a non—sentence.

Eindhaven, 18th May 1973 Edsger W.Dijkstra

