EWD440 - 0

EWD440.html

The problem of the most isclated villages.

We consider n villages (n > 1), numbered from O through n - 1 ;

for 0<i<n and 0<j<n, acomputable furction (i, j) is given,

satisfying for some given positive constant M:

for i # j

0<f(i, j) <m

for (i,) =M .

[v8
]
C

For the i-th village, its isolation degree "id(i)" is given by

id(i) = minimum £(i, j) = minimum £(i, j)
Jfd | j

(Here f(i, j); can be interpreted as the distance from i to j; the

rule f(i, i) = M has been added for the purpose of the above simplification.)

-

We are requested to detérmine the set cf'maximally isolated villages,

M

\iiié; the seéﬁof all values of. k’,;uch that;
Dol BRI ,v (A h:“(‘) < h"<_n: id(h) Sid(k)) .
"' The progrém ié”expécted to deliver this set of vgluss és
7¥; ' 'v‘ : ' k_miv(ﬁivgiob), ;;; , miv(miv.hib)

" Note that eventually all values 1 Smiv.d’om,s:n are possible.

A very éimple and Straightforward program computes the n isolation_

degrees in succeséicn and keeps track of their maximum value found thus
far. On account of the bounds‘for f(i,rj) we can take as the minimum

of an empty set the value M and as the maximum of an empty set O.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD440.html

- EWD440 -

begin glocon n, M; virvar miv; privar max, ij;

miv vir int array := (O); max vir int, i vir int := 0, O

.
?

do i # h -

Seqin glocon n,‘ M; glovar miv, max, i; privar min, j;'
min vir int, j vir int := M, O;
doj#n-
do (i, j) <min - min:= f(i, j) od;
je= § + 1
od {min = id(i)};
if max > min - skip
ﬂ max = min - miv:hiext(i) k
ﬂ max < min - miv:': (O, ‘i); maxs= min
fi;
o 1:=i+1
d

en

: : g

The above is a very unsophisticated program: in the Ainnermost loop

o s Yiiem
the value

of win is monotonically non-increasing in time, and the following

alternative construct will react equivalently to any value of ‘min“ satis-
fying min <max . Combining these two observations we coﬁclude that there
is only a point in continuing the innermost repetition as long as min > max .

We can replace the line "do j # n =" therefore by o

"do i # n and min > max -"

- and the assertion after the corresponding od by

hd N

" ’ {id(i) < miﬁ < max '_g_gkid(i), = min > max}

~ EWD440 - 2 X

Let us call the above modification "Optimization 1,

A very different optimization is possible if it is given that
(i, §) = £(5, 1)

and —-because the computation of f is assumed to be time-consuming-- it

is requested never to compute f(i, j) for such values of the argument

that f(j, i) has already been computed. Starting from our original
Pprogram we can achieve that for each unordered argument pair the correspond-

ing f-value will only be computed once by initializing j each time with

-
.

" .
X i+ 1 dnstead of with O --only scannig the upper triangle of the sym-

metric distance matrix, so to speaks- . The program is then only guaranteed

to compute win correctly provided that we initialize min instead of

with M with '
' minimum f(i, h) .
0<h<i .

T

This can be catered for by‘int:oducihg~an array , b say, such that for
k- jsvatisfyirig i<k <n:

“for i =0 : b(k) M

for i:>-0 :: b(k) = minimum f(k, h) o
: R S 0<h<i SRR

v (In wurdsﬁ b(k) is the minihum distantq cdhnecfihg»Village k- that has

‘been computed thus far.)

- The result of Optimization 2 is also fairly straightforward.

EWD440 ~ 3

begin glocon n, M; virvar miv; privar max, i, bj;.

rJd

miv vir int array := (O); max vir int, i vir int := O, O;

b vir int array := (0); do b.dom # n — b:hiext(M) od;

end {all virgin variables at outer level are initialized};

doifn-—

begin glocon n; glovar miv, max, i, b; privar min, j;
min vir int, b:lopop; j vir int := i + 1;

do j#£n -

beqgin glocon i; glovar min, j,_b; privar ff;
f% vir int := (i, j); |
do ff < min -» mins= ff od;
do-ff < b(;) -.,'b‘:‘,(_j)‘:‘ £F _g_gl_ o '
je=j + f"‘ | -

end |

od {min = id(s)};
if max > min - Zskip -

[max = min - miv:hiext(i) .
n . .. { .‘ el
 max < min - mivei= (0, i); max:= min .

'—»
(8

£3
.

EWD440 - 4

To try to .combine thesé two optimizations presents a problem: in
Optimization 1 the scanning of a row of the distance matrix is aborted if
"min has become small enough, in Optimization 2, however, the scanning of
the row is‘ also the scanning of a column and thaf is done to keep the values
of b(k) up to date. Let us apply Optimization 1 and replace the line

"do j # n -" by
"do j # n and min >max =" .,

The innermost loop can now terminate with j < n ; the values b(k) with
j <k <n, for which updating is still of possible interest are now the

ones with b(k) = max , the other ones are already small enough. The following

“insertion wili do the job:

2

The best place for this insertion is immediately preceding "i:= i + 1,
" .but after the adjustment of max : the higher max, the larger the pro-
bability that a’ b(k) does not need anymore adjustments.

L% . *
- *

&L

o ceitainiy‘more ;ompliﬁated, needing yet another array for storing a sequence

. of villége numbers;‘Tﬁé §ublishedeeréion was only discovgred when writing

EWD440 - 5

The two optimizations that we ﬁave combined‘are of a vastly different
nature: Optimization 2 is just "avoidingkredoing work known to have been
done", and its effectiveness is known a priori. Optimization 1, however, is
a strategy, whose effectiveness depends on the unknown values of f: it it

just one of the many possible strategies in the same vein.

We are looking for those rows of the distance matric whose minimum
element value S exceeds the minimum elements of the remaining rows and
the idea of Optimization 1 is that for that purpose we do not need to
compute for the remaining rows the actual minimum if we can find for each
Tow an upper bound Bi for its minimum, such that Bi <S5 . Inan intexr~

mediate stage of the computation, for some row(s) the minimum S is known

- because all ité/their‘elements have been computed; for other rows we only

know an‘ubper bbund»'Bi . And now the strategic freedom is quite clear: do

'we first compute the smallest number of additional matrix elements still

needed to detérmine'a‘new minimum, in the hope that it will be larger than

 the minimum we had and, therefore, may'exceed a few more B's? Or do we first

compute unknown_elements in rows with a higH B in the hope of cheaply

decreasing that upper bound? Or any mixture?

My original version combining the two strategies postponed the "up-

'datihg of the remaining b(k)" somewhat longer, in the hope that in the mean

time max would have grown still fuither, but whether ifvwas a more efficient

program than the one published in this chapter is subject to doubt: it was

this_;hapter.,_:

EWD440 - 6

In r%gtafpect 1 consider my ingenuity spent on my original program as
wasted: if it was "more efficient" it’could_only be so "on the average".
But on what average? Such an average is only defined provided that we
postulate --quite arbitra;ily!—- a probability distribution for the
distance matrix f(i, j) . On the other hand it was not my intention to

tailor the algorithm te s specific subclass of distance matrices!

The moral of the story is that, in making a general program, we
should hesitate to yield to the temptation to incorporate the smart strategy
that would improve the ﬁerformance in cases that might never occur, if such
incorporation éomplicates the program notably: simplicity of\%he program
is a less ambiguous taréet. (The problem is that we are often so éroud of
our smart strategies that.it hurts te abandon them;) |
: Remark. Our final program combihes twq ideas aﬁd we have found it by first
consideriﬁg ~-as “steﬁpiﬁg stones", soktq speak-- two prdgrams,:each
\'incorborafing on; of thém,'but ﬁoﬁltﬁe othér.’In maﬁy instances 1 found

“’such stepping'?tdnes most helprI. (End,of,remark.)

