17th of September 1975 EWDS14 - O

Gn & language proposal for the Department of Defense.

"For fools rush in where angels fear to tread."
from "An Essay on Criticism" by Alexander Pope, 1688 - 1744

Introduction.

If some of the following comments scund (unusually) grim, it should be
borne in mind that I write these comments not in my native tongue and that
combining in Englisk clarity with the subtle use of the understatement is not
my greatest strength.

1 have screened the report "strawnman" -second cut- in my usual way, which
I have found most effective in the past, asking myself the following questioms.

1) How careful use has been made of the (English) language?
This I have found to be ane of the most revealing criteria. It has nothing
to de with grammatical pedantry or anything of that sort: I firmly believe
that no project can result inm a product better than the language in which
the product has been discussed and carried out. For anything non-trivial
careful use of language is not a luxury, but a must.

2) Is the juétification of the goals convincing?
If it is nct, it may mean a number of things. It may mean, tnat the author
is concsciously unconvinced of the worthiness of the goals: in that case
he should abandon it. It may be, that the author is subconsciously uncon-
vinced of their worthiness, but has been "talken inio it": in that case
he should clear up his mind.

3) Are the goals compatible with each other and well-und=-stand?

If they are nut,jearly discovery is often possible and then saves a lot
of vain effort.

4) Are the most difficult aspects of the project well-identified and is it
pravable that their difficulties can be surmounted?
No chain is stronger than the weakest link, so sea:ch for the latter.

5) Has the author separated his concerns in o helpful manner?
Far any complicated undertaking 1 heve learnec to appreciate a clear
separation of concerns as a (technical) conditio sine qua non; as a result
1 have learned to appreciate its absence/presence as one oY the more

telling indications for judging the expected (in)competenme for the task
at hand.

Whenever on the verge of embarking on a sizeable project -—hefore speeding
up towards the point-of-no-return, so to speak-— 1 myself have always played
with respect to my awn projects the role of the doubter, of the advacatus diaboli,
trying to kill the project. Embarking on an impossible task end failing is a
most time-consuming and expensive way to demonstrate its irpossibility. What
is worse, the failure often fails to convince, because the stubhorn optimists
will say: "Well, if a mext time we avoid those and those mistakes, we may
succeed.". In such circumstances a piece of a priori reesaoning that argues why
a project, even without mistakes in its develapment, is bound to fail, is, althoug
in itself non-constructive, a rewarding exercise. The Froject "strawmzn" seems
to be in a stage that just fies such a SCLRENRLNG; DT is its impetus already so
large, that the point-of-no-return has been passed?

../transcriptions/EWD05xx/EWD514.html

EWDS14 - 1

1 _The Use of language.

The spellings --they occur with great "consistsncy"-- "kernal" and
"encapsolation"'are somewhat piculier. But it is not only spelling: in section
2 "A Common Programming Language" (paga 5) tre author writes about "improvements
in ... risks", and he titles a section "Criteria to Aid Existing Software Problem:
He writes --"IV. A. [riteria to Satisfy Specialized Application Requirements"--

"... it must be possible t0 write programs which will continue to

operate in the presence of faults."

Te start with: "it must be possible” as very ambiguous: ejther this sentence
concludes the existence of a possibility, or states the extreme denirability
of a possibility, and by using "must" in this way, the author is close to
confusing encs and means. My next objection is that programs don't "cperate:
a program is as static as a drawing, a preof, a novel or a bill. But, finally,
‘what is meant by "continue to operate"? In the way that we can ensure that a
machine will continue to operate by disabling the parity check? I will return
to this section later.

On the same page is written

+
"Applications which must interface with equipment or people in real 't
must have access to a real time programming capability."

How can an application interface? How does an application have access to0 a
programming capability? (Reference to "capabilities" in connection with programmin
is, I am afraid, nearly always a symptom of fuzzy thinking; I, at least, don't
have them for understanding them!)

I stop my linguistic comments here (but not for lack of further material).
Pointing out that the signzlled linguistic sloppiness is quite usual and accepted
in computing circles, is no excuse; for, if it is true, that could very well be
an explanation for today's sorry state of the art.

2 Justification of the goals.

A considerable part of the given justification is financial. Now, although
coins are very concrete objects, maney is a highly abstract notion, and the
author does: not seem to understand it. How, utherwise,:can he write "Software
is very expensive™? (I1I The Most Pressing Software Problems. A.High Cost.)

As that paragraph continues, we must conclude that the author would agree to
the remark that "poetry and platinum are very inexpensive", because only little
money is spent procuring them. As most of the costs involved in the development
etc. of software are perscnel costs

1) the "high price" is due to the great numher of programmers engaged; in
these timss of unemplayment, that may not be a bad thing at all
2) a@lternatively the DaD could halve all programmers' salaries.

I ceme to the conclusion that money is not the real issue. (I know that those.
whose unit of thought is the dollar, will not understand this, and will therefore
feel entitled to disagree, but never mind' that.}

At various places —-and that is a much more forceful justification-- the
author expresses his concern about the quality of today's software ("Prngramming
errors can have catastrophic censequences.") and in the section "Timeliness™
he justly points out "a common reaction is to eggravate the situation by adding
additional manpower”. The word "aggravate" is a true one: it is not so much the
additional costs involved in addinggthe additional manpower, it is its degrading

EWD514 - 2

effect upon the quality of the final product that shoyuld WOLTY US.

So I decided to read the document as a propasal aimed at improving the
quality of DoD software, If this can be achieved, it can probably only he
achieved by making Tewer mistakes and from that a cost reduction is only to
be expected. (Not software, but mistakes are expensive!) In short: I regard
a possible cost reduction as a (possibly considerable) fringe benefit, the
higher guality as the main goal, I though that I could do so while doing full
justice to the author.

5. Are the goals compatible and well-understaod?

The author writes "The distinction between high crder and low level
languages ;is that between people and machines". 1 can enlarge or that: in the
past, when we used "low level languages" it was considered to be the purpose
of our programs to instruct our machines; now, when using "high order languages"
we would like to regard it as the purpose of our machines io execute our
programs. Run time ipefficiency rcan be viewed as a mismatch between the program
as stated and the machinery executing it. The difference betwesn past and
present is that in the past the programmer was always blamed for such a mismatct
he should have written a more efficient, mare "cunning™ program! With the
programming discipline acquiring some maturity, with a better urderstanding of
what it means to write a program so that the belief in its correctness can ke
justified, we tend to accept such a program as "a good program” if matching
hardware is thinkable, and if with resprect ta a given machine aforementioned
mismatch then occures, we now tend to blame that computer as ill—designed,%
inadequate and unsuitable for proper ueage. In such a situation there are only
a few true ways out of the dilemma

1) accept the mismatch
2) continue bit pushing inm the old way, with all the known i1l effects
3) reject the hardware, because it has been identified as inadeguate.

The author concludes his discussion of High Order vs. Low Level Programmir
Languages with:
"The fourth approasch, and the ane which to our mind is most reasanable
when object efficiency is important, acknowledges that the major limitatic
on automated optimization is lack of information. It may have been a misto
to attempt to use programming languages in which the programmer can under-
specify his task and hide information from the compiler. [...] High level
programs should contain a great deal of information of value to the
compiler ..." ete.

But I have some guestions. With "information of value to the compiler" is
probably mean’, informatiorn that will cause the compiler to produce a more
efficient object program; what kind of "helpful® information does the author
have in mind? Does the author believe, that the netion "helpful" is machine
independent? And is also compiler independent? If sa, why? If not, the purpose
of the high order programming language is defeated, for, in order to write a
good program, the programmer must then not only krnow the target machine well,
but in addition the HOL compiler for it! Has the auvthor any notion of the
algorithms that could be used in the compilers, so as to exploit that additional
helpful information? Does the author believe that the desired efficiency can
be achieved by such "assisted actomated optimization"? At this place --where
the controversy has to be talked away-- he suggests so. later he insists on
the possibility to include "machine language"!i

EWD514 - 3

When mentioning the possibility of inserting machine language, the author
does not seem toc enthusiastic --and rightly so: has he yielded to pressure?--:
he mentions that it would defeat the purpose of machine independence. I would
like te point oult that in all probability the mere possibility of inserting

machine language --whether used or not'!-- will defeat much more!

1) it may be expected to constrain implementation techniques

2) it may be expected to complicate diagnostics which, remember, should be
given in source language components

3) it may be expected to impair security: type checking conventions can be
circumvented. -

4) it may be expected to impair the ability to exclude im multiprogramming

situations a priori s large class of ugly time-dependent bugs. Don't forget

that in real time applications, scope rules --tuthlessly checked by the compiler--
are a powerful toc! for emsuring that one of the sequential processes will not
interfere in an uncontrolled fashion with local variables of one of the other
sequential processes of the aggregate. The same holds far a number of independent
programs executed in an interleaved faskion; in the latter case it is not un-

likely that the correct execution of my program depends on you not having inserted
sneaky machine code!

I cannot suggest strongly enough each time to select one of the three ways
out of the dilemma, and not to mix them. When thke second altermative "continue
bit pushing in the old way, with all the known i1l effects" is chosen, let
that be an activity with which the HOL project does not concern itself: if it

does, the "ill effects" will propagate through the whole system,
*

*
*

I agree with the author's remark in "Simplicity vs. Specialization":
"Probably the grestest contributor to unnecessary complexity in programs is
the use of overly elsborated languages with large numbers of complex features."
I would like to point out that a vital word in that sentence is the word
"unnecessary": the remark should not seduce us to believing that programming
will become easy when we have a simple programming language, because the
intrinsic complexity as might follow from the task, will remain. The author
has not analyzed what caused the emergence of those barocue tools, nor does
he indicate how he proposes to prevent that his "extensihle (!) HOL" results
in @s many such baroque horrors as extensions are made. The answer "Yes, but
that is not the HOL, that is only an extension" is not adequate!

I agree with his remark in "Programming Ease vs. Security"; indeed, many
people mistake ease of programming with the ease of making undetected errors.
His remarks in 3. "Object Efficiency vs. Clarity and Correctness" are uncanclusive:

s0 are the ones in the section 4. "Machine Independence vs. Machine Dependence".

*x *
*

By the time that I read under the heading Fault Tolerant Programs:

"In many weapon systems and control programs it must be possible to write
programs which will continue to operate in the presence of faults, whether
in the computer hardware, in input data, in operator procedures, or in
other software. Crucial to fault tolerant programs is the ability af the

program to specify the action to be taken at all (!) run time exception
conditions."

I wonder, whether the author has read what he has writtes. You cee, we have to
write "programs which will continue to operate". The language should therefore
contain as one of the basic primitive building hlocks the procedure called: -

EWD514 - 4

"get_me_out_of_the mess"; its body consists of a faithful copy of the Philo-

sapher's Stone. * % *

4. Are the most difficult aspects identified?

I don't think so. The author has a dream about a nice kerrel --and a lot
of things he writes about that kernel are quite sensible-- but the word "kernel”
itself is an OK-word that should mske us suspicious. We have already seen {hat
all machine-dependent characteristics --special peripherals, stc.-- are pushed
into the extensions, and it is nnt inconceivable that tna+ can be done. (In
a great number of cases this has been done guite successfully, e.g. a bunch
of standard library procedures manipulating an incremental plotier.) By the tiwe,
hawever, that {9. Standard Evtensions, c) I read:

"Any selected common language must be capable of interfacing with data
base systems; and, because standards are limited and there is engoing
research in this area, the dats base interface should be defired as an
extension which can grow at the user level without inventing a new
language.™

I shudder. This might turn cut to be a non-trivial task, and, given a mechanism
for "language extension", it is not clear to me at all that that mechanism will
enable us te cater for any conceivable data base interface. In all probability
it won't. And that would imply that the design of the exiension mechanism
implicitly delireates the class!of data base interfaces to which the HOL can

be extended so as to fit. In this sense we can regard the pessibilities and
limitations of the extension rechanism as a "downward meta-interface™ towards
the data base, Nowhere the author gives a hint that, for instance, here the
HOL-designers have a very serious responsibility. A mare careful scrutiny of
the proposal, I am afraid, will reveal similar instances of unawareness.

5. Separation of concerns.

The author makes, for instsnce, an insufficiently clear separation
between the definition of the language and its implementation. A+ "Source
Language Characteristics" 3. Variables, Literals,' Canstants, c (page 10) 14
lines from below, he writes:

"Whether a variables will be assigned a value is in general unsolvable

at compile time, but in those cases in which it is not easily determined
by the|translator, it will not be easily determined by the programmer and
those who must maintain the program and should therefore te considered

an error."

I am all in favour of a programming languzge that dees away with the
phenomenon of the possibly uninitialized variable, and I fully agree with the
author's remark-~--in Llhe same paragraph-- that automatic initialization by
default is a fake solution. The only solution that I know af introduces the
initialization syntactically distinguishable from the zssignment to a variable
that has already a value and ensures by syntectic means that no unitialized
variable can ever be accessed; in this case the syntactic means are provided
by a refinement of the scope rules. (1 once designed such a system for a lapguage
with a pronoueced sequencing discipline; needless to say, the inclusion of go to's
~~another of the requirements in the proposal!-- makes this nroblem very much
hzrder if not insalvable.) Under no circumstances, howeser, the question whether
something is an error or not, should be wade depe~c:mt o~ ine cleverness of a
compiler! And this is exactly what the above, guoied paragraph suggests to me.

EWD514 - 5

6 Additional remarks.

The section 5 "Scope", c. suggests that the scope of a variable declared
at the beginning of 2 block automatically exterds over inner blocks --unless
8 new declaration for that idemtifier is given for the inrer blaock-- like it
was dene in ALGOL 60. Whether this automatic inheritance by an inner bleck of
the global variables is a very safe convention is subject to serinus doubts.

I have experimented with a language in which at the beginning of an inner
block all global identifiers identifying variahles or constants needed in
the inner hlock had to be listed explicitly ~-it even indicated the nature of
the inhecitance: as a constant, as an initialized variable or as a variable
that had to be initialized--, I found this form of redundancy very helpful
and can even argue why such redundancy is in a sense indispensable,

* M *

The most revealing {and also most alarming) passages, however, I found
in the recommendations. "The design of a simple, uniform language ... should
be do-able in six months using gualified language designers/implementers."

I was flabbergasted! (It taught me, again, that the hest way to read documents
is often reading them backwards! In cauda venenum.....) The prablem ig that

I happen to know a few people that I would consider to be "qualified language
designers/implementars", but none af them would regard “he design of a simple,
uniform language as only a six-month job! The design of something worth having
really takes many times longer. If the six-month period mentioned does not
already revesl what the author has in mind, the word "using" does it: how much
nicer the quoted sentence would have been, if he had written "by" instead....

The whole document gives me the uneasy feeling that here I see e proposal
to concoct yet another nil-solution to an unsoluble problem. The worst shock I
got on the next pages "Thus the benefits will grow if new efforts adop* the
standard whatever it is." (7. my undelining) and "Research in the design of
programming languages ..., in programming methodology ... should continue in
parallel with the use of a fixed common language" (10),

If the auvthor krows anything about research, he should know that one of
the most difficult mental gymnastics is to dissociate cnesttf from the inadequate
experiences and prejudices collected in one's past. Section 6 "..through alteratior
of extant languajes" s*trongly suggests a comservative effort. And the outcome
of that comservative six-month effort should present the framework (canstraints?)
for research in programming methodology? Now, come on....

After having stated (7) that the benc”ite will grow if the new effowts
adopt the standard "whatever it is" the text continues oninously "The Lltirate
measure of success must he in cost-savings and failure of a project to adopt
the common language should only he for demorstrateable economic reasons, "

I don't like that sentence at all. The use of the word "failure" in incriminzating
in tkis context, "refusal to adopt the common larguage" would have made the
sentence less offensive. It is perhaps as well that it has been written as it

has been: it betrays a dangerous attitude which otherwise could have remained
hidden.

Is it not amzzing that the lack of "mansgement visibility" can become so
frustrating for the managers that pecple are seriously proposing to enforce
2 standard "whatever it is"? Such an enforcemsrt could easily stiffle all progress.
It has already been sugyested the Red China could win the next war provided that
it manages toc skip the FURTRAN/CDBGL stage, which now paralyses much of computing

EWD514 - 6

in the Western hemisphere,

Note. COBOL has been designed with the intention to eliminete programmers. And
what is the result? COBOL is only used by professional programmers (by about

75 percent of them, as a matter of fact), As COBOL has been pushed very etrongly
by the DoD, this failure of COBOL to meet one of its goals must have been noticed
within the DoD, and I expect that some experts of the DoD must have investigated
why COBOL has failed so miserably in this respect. Has that same group of experts
also studied "strawnan"? (End of note.)

Thke burning question that should be considered is, whether the adoptien

of a common language HOL will really improve "management visibility", 1 doubt
that it will, I seriously doubt....,.

Plataanstraat 5 prof.dr.tdsger W.Dijkstra

NL-4565 NUENEN Burroughs Research Fellow
The Netherlands

