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More on Hauck's warning.

In EWD525 "On a warning from €.A.Hauck" I mentioned without proof that
with n=2" bit there exist 2p-m-1 different messages --1 called them
"codes™, but that is an unusual terminology for which I apolaogize-- , such
that any two different messages differ in at least four bit positions, thus
allowing correction of one-bit errors and detection of two-bit errors. Since

then I have been shown a proof of that theorem; I report that proof because

it is so nice, and because it gives some further insights,

For the sake of brevity I shall demonstrate the theorem for 16=24 bits
{in a way which is readily generalized for other values of m ). We consider

16 bits numbered from @ through 15, writing their index in binary:

%0000" “o001” %oorordoort’ teer dypay :
With "xxx1" we denote the set of odd indices, with "xxTx" the set {0010, 0011,
0110, 0111, 1010, 1011, 1110, 1111}, in general the set abtained by all

possible substitutions of 2 QO ora 1 at a place marked "x", and define

h0 = parity(dx ) , bl = parity(dx ), h2 = parity(dx ), b3 = parity(d1x

xx1 x1x 1xx
where the function "parity" is = Q if among the (8) bits with an index from
the indicated set, the number of 1's is even, and =1 4if it is odd. Further

we introduce h = parity(dxxxx) » which is just the sum of all the 16 bits
module 2,

.

The 211 correct messages are then characterized by the equations
Y hO =kl = h2=h3 =h =0,

Note.The ahove equations have indeed 211 different solutions: the 11 bits
d3, ds, d6, d7, dg’ diO’ d11, d12, d13, d14, and d15 can be chosen freely,
we then solve hO for d1, h1 for d2, hZ for d4, and h% for d8' and finally
h f'DI‘ do .

We now denote by "a" the binary number formed by "h3 h2 h1 hO" and

observe:
0) for each correct message we have
h=0,a=z=0
1) for a one-bit error at bit position i we have

h =1, a=j
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2) for a two-bit error at bit positiéﬁs i and j
h =0, a = the bit-wise sum of i and j
(because i # J + we conclude that a # 0, thereby distinguishing this case
‘from a correct message)
3) for a three-bit error at positions i, j , and k
h =1, a = the bit-wise sum of i, j , and k.
4) for a four-bit error at positions i, j, k, and 1
h =0, a = the bit-wise sumof i, j, k, and 1 ,

etc.

Under the assumption that one- and two-bit errors are the only errors

that can occur, the rules are

h =0 and a = 0: accept the bit sequence as given
h =1 : invert bit da
h =0 and a # 0: alarm, as two-bit error has been detected.

From the above, however, we see that all errors in 3, 5, 7, .... bits
will then erroneously be interpreted as ome-bit errors, i.e. in those cases
our error correction indeed increases the probability of a wrong result being
produced as if it were a correct one. The above gives'a clear demonstration
of the possible "harmfulness" of error correction alluded to in EWD525's

last paragraph. Hence this note.
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