Copyright Notice

The following manuscript

EWD 528: More on Hauck's warning

is held in copyright by Springer-Verlag New York.

The manuscript was published as pages 172-173 of

Edsger W. Dijkstra, *Selected Writings on Computing: A Personal Perspective*, Springer-Verlag, 1982. ISBN 0-387-90652-5.

Reproduced with permission from Springer-Verlag New York. Any further reproduction is strictly prohibited.

More on Hauck's warning.

In EWD525 "On a warning from E.A.Hauck" I mentioned without proof that with $n=2^m$ bit there exist 2^{n-m-1} different messages --I called them "codes", but that is an unusual terminology for which I apologize--, such that any two different messages differ in at least four bit positions, thus allowing correction of one-bit errors and detection of two-bit errors. Since then I have been shown a proof of that theorem; I report that proof because it is so nice, and because it gives some further insights.

For the sake of brevity I shall demonstrate the theorem for $16=2^4$ bits (in a way which is readily generalized for other values of m). We consider 16 bits numbered from 0 through 15, writing their index in binary:

dooo, dooo,

The 2^{11} correct messages are then characterized by the equations h0 = h1 = h2 = h3 = h = 0.

Note. The above equations have indeed 2^{11} different solutions: the 11 bits d3 , d5 , d6 , d7 , d9 , d10 , d11 , d12 , d13 , d14 , and d15 can be chosen freely, we then solve h0 for d1 , h1 for d2 , h2 for d4 , and h3 for d8 , and finally h for d0 .

We now denote by "a" the binary number formed by "h3 h2 h1 h0" and observe:

O) for each correct message we have

$$h = 0$$
, $a = 0$

1) for a one-bit error at bit position i we have h = 1, a = i

- 2) for a two-bit error at bit positions i and j $h=0, \ a=\text{the bit-wise sum of i and j}}$ (because i \neq j, we conclude that a \neq 0, thereby distinguishing this case from a correct message)
- for a three-bit error at positions i, j, and k. h = 1, a =the bit-wise sum of i, j, and k.
- 4) for a four-bit error at positions i, j, k, and l $h=0, \ a= \ the \ bit-wise \ sum \ of \ i$, j, k, and l. etc.

Under the assumption that one- and two-bit errors are the $\underline{\text{only}}$ errors that can occur, the rules are

h = 0 and a = 0: accept the bit sequence as given

h = 1 : invert bit d_2

h=0 and a $\neq 0$: alarm, as two-bit error has been detected.

From the above, however, we see that all errors in 3, 5, 7, ... bits will then erroneously be interpreted as one-bit errors, i.e. in those cases our error correction indeed increases the probability of a wrong result being produced as if it were a correct one. The above gives a clear demonstration of the possible "harmfulness" of error correction alluded to in EWD525's last paragraph. Hence this note.

Plataanstraat 5 4565 - NUENEN The Netherlands

prof.dr.Edsger W.Dijkstra Burroughs Research Fellow