EWD571 - O

A simple consideration with far-reaching consegquences.

"I believe that there will be no real progress until program-
mers learn to distinguish clearly between a language (defini-
timn) and its implementation in terms of compiler and computer.
The faormer must be understoad without knowledge of the latter.
And we can only expect programmers tc understand this wvital
distinction, if language designers take the lead [...]. Hence
we conclude that the first criterion that any future program-
ming language must satisfy, and that customers must ask for,

ig a complete definition without reference to compiler pr com-

puter.”
Niklaus Wirth [1]

In a truly decomposed system, as we have when a whole is regarded as com-
posed of a number of parts, the composition defines how the relevant properties
of the whole depend functionally on the explicitly postulated properties of the
parts, a functional dependence which is given without any reference o the inter-

nal structure of the parts.

For instance, when a mathematical proof of a theorem appeals to a lemma,
it appels to what the lemma zsserts, and not to how the lemma has been proved:
making the remainder of the proof of the theorem clearly independent of the spe-
cific way in which the lemma may have been proved, is one of the main justific-
ations for the lemma's introductionm, Similarly: when a pregram in machine code
contains a multiply instruction, its aeccurrence has to be justified by what the
multiplier, when invoked, should achieve, regardless of how the multiplier happens
to waork. (No mathematician using a proven lemma will complain, when the known
procof for that lemmaz is replaced by & more elegant one; similarly, no machine code
programmer will complain when the multiplier in his machine is replaced by a new

multiplier with, say, a lower heat dissipatian.)

The fact that the relevant properties of the whole depend in a defined
way on the explicitly postulated properties of the parts has two important con-
sequences. Firstly --as indicated above-- it creates the environment in which a

correct part can safely be replaced by a different correct part, viz. provided



EWD571 - 1

that it has the same postulated properties. Secondly, it localizes errors in the
case of malfunctioning: eithexr the desired properties of the whole do, in this
composition, not follow from the postulated properties of the parts, in which case
at least the upper level design needs a revision, or the flaw can be pinpocinted

to the malfunctioning part(s), viz. each part that does not display the properties
of which it has been postulated that it should have them. Note that without true
decomposition, we can at most observe that the whole does not have the desired
preperties, but that the question which of the parts is to be blamed, is void.
(More specifically: a program that has not been truly (de)composed is either
correct or wrong: in the latter case it makes no sense to try to count "the number

of bugs. For lack of "bug identity" the only defensible answer would be "one".

There is an overwhelming experimental evidence that such a true (de)com—
pesition is indispensable for the design of a logical system above the level of
simplicity such that it can be designed with a single stroke of the pen. (If we
take --and I do-- the analegy with mathematics seriously, we can even add: more
than twenty centuries of experience.) The experimental evidence is so overwhelm-
ing that I find it very hard to defend any design effort of some ambition that

is tried without such an explicit, true (de)cnmpnsitiun.

* *
*

High~level programming languages certainly serve as the carriers of de-
signs above the level of simplicity where a single stroke of the pen suffices,
and in the whole system envisaged we can identify as "a part" teh machinery that
should be able to execute programs written in the bigh-level programming language
used: that part has even a name, viz. the "implementation" of that language. (The
significance of that part is considerably increased by the circumstance that it
is common to many applications.) It is, therefore, indispensable to have an ex-
plicit statement of the relevant properties of that part, independent of its in-
ternal structure; we must have a statement of what that 'part should achieve, in-
dependent of how it might work, It is only then, that the language users knows
what he can rely upon and is in a position to prove that his design has all the
relevant properties, it is only then that the language implementer knows his

obligations and his freedam.

All this is so obvious that it is nearly embarrassing to write it down.




EWD571 - 2

And, indeed, 1 would feel like flogging a dead horse, were it not for the fact
that the above conditions are more often vioclated than met, and that this status

quo has even its defenders.

From a historical point of view this is understandable. Many programmers
work with older programming languages, the semantics of which they can only ap-
preciate via the language implementation they are daily working with. Far lack
of adequate definition ihey are seduced to mistake what the implementer has done
for what the implementer should have accomplished, and to forget that deriving
lacking specifications from a non-exhaustive set of explorations remains guess-—
work. They live in an environment where the strictdistinction between {(the def-
inition Df) a programming language and its implementation has never been carried
through, and the suggestion that a crucial language requirement is that its seman-
tics be defined without any reference to implementation details, without any ref-
erence to computers and compilers, woulc very well amaze (Dr perhaps even alarm)

them.

To make matters worse, a number of subsequent efforts at rigorous defini-
tien of programming language semantics have only added to the confusion, viz. all
so-called "operational" language defintions that try to define the semantics via
an interpreter for that language. The definition of the semantics by means of an
interpreting automaton is logically equivalent to defining a language entirely
via a (standard) implementation. Without a formal technique for deriving from
such an operation definition the language properties that the programmer needs
to know, such a definition is useless: as it stands it gives us just enough grip
on the language to perform for a given program and a chosen input a desk simulation!
With a formal technique for deriving (all?) the relevant language properties, such
an operational definition is at least cumbersome (because indirect), usually over-
specific, and certainly misleading. It is misleading because, of all the possible
ways of implementing the language, a special one has been singled out as "the
defining implementaticon™; it is also misleading because it fails to provide a
definition independent of any computational medel. Such a definition, however,
is needed by the conscious programmer whe tries to separate his concern for pro-

gram correctness from his concern for the costs of program execution.

* ¥*
*

For nonoperational (also called "postulaticnal® or "axiomatic") definition



EWBST! - 3

methods see, for instance, Hoare [2]. To nonoperational wmethads two objections
have been raised. The first objection is in theory a serious one, but in practice
it seems less so: the nonmperatiaﬁal methods allow us to define "impossible" pro=-
gramming languages, "impossible" in the sense that they defy implementation. The
second objection I have heard is that the axiomatic method is only particable in
the case of simple and elegant programming languages. If —-what I fervently hope--
that statement is true, I cannot regard it as a shortcoming of the axiomatic

method, on the contrary!

The above has been written because, once a necessary candition for progress
has been identified, it seems such a pity and such a waste when it remains far so

many peapnle unfulfilled.

[1] Wirth, Niklaus "Programming Languages: what to demand and how to assess
them.” Bericht 17 des Instituts fllr Informatik, ETH Z8rich, March 1976.
(Presented at the Symposium on Software Engireering, Belfast, 8 - 9
April 1976.)

[2] Hoare, C.A.R. "An Axiomatic Basis for Computer Programming.™ Comm,ACM

12, 10 (Dct. 1969), 576 - 58%3.

Plataanstraat 5 prof.dr.Edsger W.Dijkstra
NL-4565 NUENEN Burroughs Research Fellow
The Netherlands




