EWD630.html

Copyright Notice
The following manuscript

EWD 630: On-the-fly garbage collection: an exercise in
cooperation

was published in
Commun. ACM 21 (1978), 11: 966-975.

© 1978 Association for Computing Machinery. Reprinted by
permission. Permission to make digital or hard copies of all or
part ofthis work for personal or classroom use is granted without
fee, provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, to republish, to
post onservers or to redistribute to lists requires prior specific
permission and/or a fee.

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD630.html

EWD630 - 0

-

Dn-the-~fly garbage collection: an exprcise in cooperation.

by

Edsger W.Dijkstra *)
Leslie Lamport *%)
A.J.Martin *¥%)
C.5.Scholten ****)

t L

. E.F.M.5teffens * 1)

%) Burroughs, Plataanstraat 5, 5671 AL NUENEN, The Netherlands
**) Massachusetts Computer Associates Inc., 26 Princess Street,
WAKEFIELD, Mass. 01880, U.G.A.
*%%) Philips Research Laboratories, EINDHOVEN, The Netherlands
#¥¥%) Philips-Electrologica Q.V., APELDOORN, The Netherlands

Abstract. As an example of cooperation between sequential processes with very
little mutual interference despite frequent manipulationslmf a large shared
data space, a technique is developed which allows nearly all of the activity
needed for garbage detection and collection to be performed by an additional
processor operating concurrently with' the processor devoted to the computation
proper. Exclusion and synchronization constraints have been kept as weak a8s

could be achieved; the severe complexities engendered by doing so are illustrated.

Key Words and Phrases: multiprocessing, fine-grained interleaving, cooperatian
between sequential processes with minimized mutual exclusion, program correct-

ness fér multiprogramming tasks, garbage collection.
CR Categories: 4.32, 4.%4, 4.35, 4.39, 5.24 .

(For reference purposes a glossary of names has been added at the end of the

article.)

-

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD630.html

EWD630 - 1

-

On-the-fly garbage collection: an exprcise in cooperation.

'1-_12_29.@_%&9-1-

‘ In any large-scale computer installation today, & considerable amount of
time of the (ganeral purpose) processor is spent on “operating the system™. With
the advent of multiprocessor installations the question arises to what extent
such "housekeeping activities™ can be carried out concurrently wifh the compu-
tatiun(s) proper. One of the probleqs that have to be dealt with is that of
organizing the cooperation of the concurrent processes in such a way &8s to
keep exclusion and synchronization constraints extremely week, in spite of very
frequent manipulations (by.all prOCESSES involved) of a large shared data space.
The problem of garbage collection was selected as one of the most challenging
problems in this respect {and hopefully a very instructive one). Our exercise
has not only been very instructive, but at times even humiliating, as we have
fallen into nearly every logical trap that we could paossibly fall intoe, In
our presentation we have tried to blend a condensed design history ~-in order
not to hide the heuristics too much-- with a rather detailed justification aof
our final solution. We have tried to keep exclusion and synchronization con-
streints between the processes as weak as possible, and how to deal with the

complexities engendered by doing oo is the main topic of this paper.

I+ has hardly been our purpose to contribute specifically to the art of
garbage collection, and consequently no practical significance is claimed for
our solution. For that reason we felt justified in tackling a specific form cf
the garbage collection problem as it presents itself in the traditiopal implemen—
tatiﬁn environment of pure LISP, We are aware of the fact that we have left out
of consideration several aspects of the garbage collection problem thet are im-

portant from other points of view (seg, for instance, [2]).

In our abstract form of the problem, we consider a directed graph of
varying structure but with a fixed number of nodes, in which sach node has at
most two Dqtgoing edges. More precisely, each node may have a left-hand gutgoing
edge and may have a right-hand outgoing edge, but either of them or both may
‘be missing. In this graph @ fixed set of nodes exists, called "the roots".

A node is called #reachable™ if it is reachable from at ieast one root via

EWDE30 - 2

-

a directed path along the edges. The subgraﬁh consisting of all reachable nodes

and their interconnections is called "the data structure%; non-reachable %Ddes,

i.e. nodes that do not belong to the data structure, are called "garbage nodes".

The data structure cen be modified by actions of the following types: |

(1) redirecting an outgoing edge of a reachable node towards an already
reachable one '

(2) redirecting an outgoing edge of a reachable node towards a not yet
reachable ane without outgoing edges R

(3) edding --where an outgoing edge was missing-- an edge pointing from a
reachable node towards sn already reachable one

(4) =adding --where an outgoing edge was missing~- an edge pointing from a
reachable node towards a not yet reachable one without outgoing edges

(5) removing an outgoing edge of a reachable node.)

In actions (1), (2), and (5) nodes may be disconnected from the data structure

and thus become garbage. In actions (2) and (4) a garbage node is "recycled",

ji.e. made reachable again.

The representation ﬁf the graph is such that each node can be identifie&
independently of the structure of the graph, and that finding the left- or right-
hand successor of a node can be regarded as a primitive operation, whereas find-
ing its predecessor nodes would imﬁly a search through the complete collection
of nodes. Because of this representation, finding garbage is a non-trivial
task, which is delegated to a so-called "garbage collector™. The garbage
collector meintains a so-called "free list", i.e. a collection of nodes that
have been identified as garbage and are available to be added to the data

structure.

In classical LISP implementations the computation proper (i.e. the modi-
fications of the data structure as described abéva)pruceeds until the free
list is exhausted (Dr.nearly so). Then the computation proper comes to a grinding
halt, after which garbage is collected: starting from the roots, all reachable.
nodes are marked; upon completion of this marking cycle all unmarked nodes can
be concluded to be garbage, and are appended to the free list, after which the

computation proper is resumed.

The minor disadvantage of this arrangement is the delay of the computation

EWDE30 - 3

-

proper; its major disadvantage is the unpredictability of these garbage collect-
ing interludes, which makes it hard to design such systems so as to meet’ real-
time requirements as weli. It was therefore tempting to investigate whether

a second processor --called "the collector'-- could collect garbage concurrently
with the activity of the other processor ——for the purpose of this discussion
called "the mutator"--— which would be dedicated to the computation proper.

In order to investigate an exemplary problem, we have imposed upon our solu-

tion a number of constraints (compare 27.

*

‘Firstly, we wanted the synchronization and exclusion constraints between the
mutator and the collector to be as weak as possible. (The classical implementa-
tion presents in this respect the other extreme: a garbage collecting interlude
can in its entifety be regarded as a single critical section that excludes all
mutator activity!) We wanted in particular to avoid highly frequent mutual
exclusion of "elaborate" activities, as this would defy our aim of concurrent
activity: our ultimate aim was something like no more interference than the
mutual exclusion of a single read and/nr write of the same single variable. 0One
synchronization measure is evidently unavoidable: when needing a new node from
the free list, the mutater may have to be delayed until the collector has appended

some nodes to the free list.

Secondly, we wanted to keep the overhead on the activity of the mutator

(as required for the cooperation with the collector) as small as possible.

Thirdly, we did not want the mutator's engoing activity to impair the
collector's ability %0 identify garbage more than we could avoid. With a major
cycie of the collector consisting of a marking phase followed by an appending
phase, it is impossiblé to guarantee that the appending phase will append all
garbage existing at its beginning: ‘new garbage could have been created between
an appending phase and the preceding marking phase. We do require, however,
that such garbage, existing at the beginning of an appending phase but not iden-
tified as such by the collector, will be appended in the next major cycle of
the collector. Moreover, we have rejected solutions in which garbage created
during a marking phase was guaranteed pot to be appended during the next append-

"ing phase.

1

EWD630 - 4

2, The grain of action.

The fact that we require concurrent operation of two or more Processes
raises the problem of defining the net effect of such concurrent operation. In
order to explain the problem we introduce the terms "jpcal variable" for those
varisbles that are accessed by one process only, and "shared variable" for those
that are accessed by at least two pPIOCESSES.

As long as our concurrent Procgsses only eperate on local variables, there
is no problem: we SUppose that no one will have any doubt as to the net result

of the concurrent operation of the two programs SO and S given hy

1
So: x1= 0 and 51: yi= 3 .
This, however, changes radically as soon as we consider shared variables.
With shared "z" , some readers may assume that the concurrent ocperation of

52 and 53 , given by

52: z:= 0 and 53: z:= 3
will yield either z = 0 or z =23 , but in that case we must destroy that

illusion! We need only assume 2 to consist of two bits =z and z

0 1
(z = 211 + zo) , and 52 and 53 on closer scrutiny te be composed as follows:
: = H : 1= 13
52 z, 03 and 53 z4 :
21:=0 F4 te= 1

to reach the conclusion that z =1 and 2z = 5 are slso possible results.

In order to express Our intentions unambiguously, we introduce the notion
of "atomic operations”, denoted in our texts by a piece of program placed between
a psir of angle brackets (we don't allow nested use of such pairs). We further
require all accesses to shared variables to be part of an atomic operation and
postulate that the net effect of our concurrently operating processes is ag if
atomic operations are mutually exclusive, i.e. the execution periods of atomic
operations don't overlap. (We note in passing that it is pointless %o introduce
atomic operations accessing local variables unly.) As a result it is now clear

- thet concurrent operation af

S, < zi= 0 > and S < zi= 3 >

2’ 3

EWDE30 - 5

-

will, indeed, yield either z =0 or z = 3 (even if, upon closer scrutiny,
the assignments to =z turn out to be composed of successive operations on the
individual bits). |

. Having introduced atomic operations, we are mnow in a position to define
a (partial) ordering batwéen programs based on the notions "coarser-grained" and
"¢iner-grained” ("a is coarser-grained than B" is equivalent with "B is finer-
grained than A"). We say that A is coarser-grained than B (9; alternatively,
Yhas a coarser grain of action") if 'B is the result of replacing an atomic

operation of A by a piece of program containing at least two atomic operations,

and having all by itself the same net effect as the original operation.

Since a passible sequencing of the atomic operations in a coarse-grained
sclution of a problem can always be regarded as a possible sequencing of the
atomic operations in a finér—grained solution, the proof that the finer-grained
solution is correct implies the same for the coarse-grained solutien. Hence,
the advantage of coarser-grained colutions is that their correciness proofs are
easier than those for finer-grained ones; their disadvantage, however, is that
their implementatian usually requires more severe mutual exclusion measures,

which tend to defeat the aim of concurTéncy.

3. A reformulation of the problem.

Qur first step was to restate the problem in as simple a form as we

could. We found two important simplifications.

First, we followed the not unusual practice of introducing a special
root node, called "NILY, whose iwo outgoing edges point to itself, and repre-
senting a formerly missing edge now, by an edge with the node NIL as its
target. (In order to shorten our discussions we use the terms "sgurce®" and
"target" of an edge: if an edge points from node A to node B, them A
is said to be the source and B is said to be the target of that edge.)
For us, the introduction of the node NIL was definitely much more then just
a coding trick. It allowed us to view data structure modifications of types
(3} and (5) as special cases of type (1), and those of type (4) as special cases
of type (2), so that we were left with twa types of modification only. In

the sequel it will become clear that the reduced diversity thus achieved has

EWD630 -6

been absolutely essential for our purposes.

A second simplification was 0b£ained by viewing the nodes of the free
l%st no longer as garbage, but as part of the data structure. This was achieved
by introducing one or more special rocot nodes, and by linking the free nodes in
such a way that NIL and all free nodes, hut no others, are reachable from
these special root nodes. This implies that from now on the nodes on the free
list are reachable, and thus considered to be part of the data structure. A
modification of type (2) is now replaced by a sequence of modifications of type
(1): first redirecting an edge towards a node in the free list, then redirecting
edges of free list nodes so as to remove that node from the free list. (Note
that the operations must be performed in such an order that the node in question
remains permanently reachable.) Making the free list part of the data structure
is again no mere coding trick. It allowed us to eliminate modifications of
type (2): now only one type of modification of the dats structure is left to
the mutator, namaly'type (1) "redirecting an outgoing edge of a reachable node
towards an already reachable one". (Even the actions of the collector, required
for appending an identified garbage node to the free list, are very close to
the one operation available to the mutator. The mnlyrdifference is that we
have to allow the collector to redirect the outgoing edge of a reachable node

towards a not yet reachable nne.)-

The activities of mutator and collecior can now be described as repeated

executions of:

mutator: "redirect an outgoing edge of & reachable node towards an

already reachable one"

collecter: marking phase:
"mark all reachable nodes'";
appending phase:
"append all unmarked nodes to the free list and remove-

the markings from all marked nodes™ .

The mutator and the collector must cocperate in such a fashion that the

following two correctness criteria are satisfied.

CCl: FEvery garbage node is eventuslly appended to the free list. More precisely,
every garbage node present at the beginning of an appending phase will

have been appended by the end of the next appending phase.

EWD630 - 7

-

CC2: Appending a garbage rode to the free list is the collector's only modi-

fication of (the shape Df) the data structure.

Our final goal was a fine-grained solution in which each atomic operation
would be something like a single read or write of a variable. More precisely,
we wented in our final solution to accept the following atomic operations:
"redirecting an edge", "finding the (left— or right—hand) successor of a node",
and "testing and/or setting certain attributes of a node". (The latter class
of operations is obvicusly needed for marking the nodes.) The implementaticn

of these atomic operations falls outside the scope of this paper.

Moreover, we allow ourselves the (nnt essential but convenient) luxury of
considering "append node nr. i to the free list" to be an atomic operation availl
able to the collector. We felt entitled to do so because its finer-grained
implementation in terms of a succession of redirection of edges is simple
provided the free list remains long enough, for then the nodes involved
are not touched by the mutator. Nor do we describe how to prevent the free
list from getting too shnrt, i.e. how to delay the mutator, if necessary,
when it is about to take a node from the free list, (The latter is the
familiar Consumer/producar cnupllng, a fine-~grained solution of which has

been given in [3])
We have taken the course of first finding a coarse-grained solution,

and then transforming it inte a finer-grained one. This two-stage approach

has been of great heuristic value; it was, however, not without pitfalls.

4. The first coarse-grained solution.

A counterexample taught us, tnat the goal "no extra overhead for the
mutator" is unattainable. Suppase that the nodes A and B are permanently .
reachable via a constant set of edges, while nade C is initially reachable
only via an edge from A +to C . Suppose furthermore that from then on, the
mutator performs repeatedly a sequence of redirections with the following
- results:

1) making an outgoing edée fram B point to [
2) making the edge from A to C disappear

EWD630 - 8

-

3) making an outgeing edge from A puinf to C
4) making the edge from J to L disappear.)

Since the collector ohserves naodes pae 8t a time, it may never discover that

C is reachable: while the collector is aobserving A for its successors, C
méy be reachable via B only, and the other way round. We therefore expect
that the mutator may have to mark in some way the target nodes of edges it
redirects.

Marking will be described in terms of colours. We start with all nodes
white, and will design the algorithm so that the combined activity of the
collector's marking phase and the mutator will make all reaéhable nades black.
All nodes that are still white after the marking phase will thus be garbage.

For any repetitive process --and the marking phase certainly is one-- we have
always two concerns (see [1]): firstly, we must have a manctonicity argument

on which to base ocur proof of termination, and secondly, we must find an in-
variant relation which ig initially true and not destroyed during the repetition,
so0 that it still holds upon termination. For the monotonicity argument we
choose (fairly Obviously) that during the marking phase no node will go back
from black to white. Since we will soon introduce the colour "grey", we

restate this more generally as: "during the marking phase no node will becoms
lighter". (Erey is darker than white and lighter than black.) For the invariant
relation —--which must be satisfied both before and after the collector's marking
cycle-- we must generalize the initial and final states of the marking cyele.

Our first chojice (perhaps less obvious, but not unnaturai) was:

P1: "no edge points fram a black node to a white one"

Additional action is now required from the mutator when it is about to
introduce an edge from a hlack node to a white one, since just placing it would
cause a violation of P1 . The mono%nnicity argument requires that the black
source node of the new edge has to remain black, so P1 tells-us that the
target node of the new edge cannot be allowed to remain white. But the mutator
cannot just make it black, because that could cause a violation of P! between
the neJ target node and its immediate Successors. We therefore introduce the
_intermediate colour "grey", and let the mutator change the new target's colour
from white to grey; for reasons- of simplicity, the mutatﬁr shall do so in-

dependently of the colour of the rew edge's source. Our choice wWa8s a coarse-

EWDE30 - 9

-

grained mutator that repeatedly performs the following atomic operation, in
which "shading a node" means making it grey if it is white, and leaving ‘it

unchanged if it is grey or black:

'pﬁ. < redirect an outgoing edge of a reachable node towards an already

reachable one, and shade the new target > .

Note 1. Disregarding P1 , the problem of node € from the countersxample at
the beginning of this section could also have been solved by hawing the mutater
shade the old target instead of the .new one. This, however, would lead to a
solutian in which garbage created during a marking phase is guaranteed not to
be collected during the next sppending phase. Hence, we rejected this solution

in asccordance with the last sentence of section 1. (End of note 1.)

We have decided that the collector's merking phase should make all
reachable nodes black while keeping P1 invariant. This decision leads fairly
directly to a coarse-grained collector. Like the mutator, the collector's
marking phase uses the intermediate colour grey to preserve P1 . Grey nodes
are then ones which must.be made black, but which might still have white

' successors. Hence, whenedar it encounters a grey node, the marking phase must
meke it black and shade its successors. For our coarse-grained collector, let the
entire operatien of blackening a érey node and shading its successors be a single
atomic operation. Since the marking phase must make all grey nodes black, it
can terminate only when there are no more grey nodes. The obvious way of trying
to guarantee the absence of grey nodes is to let the marking phase terminate
when the collector had observed all nodes in some order without finding any
grey ones. This produces the collector given below; it is described with the
"if...fi" and "do...od" constructs introduced in [1]. (The idea of "B - S" ,

a so-called "guarded command®, is that the statement list S5 is only eligible
for execution in those initial states for which B is true. Below we need
only a few simple cases. The repetitive construct "dg B -+ S od" is semanti-
cally equivalent to the now traditional "while B do 5 od". The alternative
construct "if Bl ~ 51]| B2 - 52 fi" requires B! or B2 to hold to start

with; if B2 were pon B! , it would be semantically equivalent to the now

traditicnal "if B! then 51 eglge 52 fi" .} As before, angle brackets are used
to enclase atomic operations. Comments have been inserted between braces, and

labels have been inserted for future refeien:e.

EWD630 - 10

The collector has two local integer variables i and k , and a local
variable c of type colour; the nodes are assumed to be numbered from O through

M~1 . Our coarse-grained collector then repeatedly executes the following
program:
marking phase:
begin {there are no black nodes }
"shade all roots" {P1 and there are no white roots};
ii= 0; k:= M;
marking cycle:
| do k>0 - {P1 and there are no white rnnts}
< ¢:= colour of node nr.i > ;
if c = grey - ki= M; : *
C1: < shade the successors of node
ﬁr.i,and make node nr.i black >
ﬂ c # grey - k:= k - 1
fi;
it= (i+1) mod M
od
end {PT and there are no white roots and no grey nodes,
hence --as is easily seen—- all white nodes are garbage};
appending phase:
beqin i:= 0;
appending cycle:
do i <M~ { all nodes with a number < i sre nonblack;
all naodes with a number > i are nongrey,
and are garbage, if whita}

< c:= colour of node nr.i > ;

e

f ¢ = white - < append 'node nr.i to the free list >

H ¢ = black - <<make node nr.i white >
i

—h

-
]

= i

o

od {thera are no black nodes}

EWDE30 - 11

-

Note 2. Appending node nr.i to the free list includes redirecting its outgoing
edges so that no other nodes than NIL or free nodes can be reached from it

(see our second simplification as described in sectian 3). (End of note 2.)

Na%e 3. It deoes not matter in which order nodes are examined during the marking
phase, so we could have written a more general algorithm that does not specify
any fixed order. Such an algorithm would allow more efficient implementations

of the marking phase, in which the collector maintains a list of grey or probably

grey nodes. For the sake of simplicity, we have not done so. {(End of note 3.)

We shall now demonstrate that the correctness criteria CC1 and CC2

are met.

Proof. In order to prove that CC2 is met, we observe that, because in the
marking phase the collectof does not change (the shape of) the data structure,

it suffices to show that during the appending phase it appends only garbage

nodes to the free list. Because node nr.i is appended after having been observed

to be white, it suffices to show that the relation

"a white node with a number > i is garbage"

1) is an invariant of the appending cycle's repeatable action
2) . holds when the collector enters its appending cycle.
1) We shall demonstrate the invariance first, and shall do so by first proving

it for the appending cycle's repeatable action in isolation, and then showing that

the mutator leaves that proof's assertions invariant.

Because in the appending cycle's repeatable action i is increased, the
collector could only violate the relation by making a non-garbage node white
or by making a (white) garbage node into non-garbage. By the alternative
construct either violation is possible, but only with respect to node nr.i;
we can still guarantee "a white node with a number > i is garbage", from which

it follows that the subsequent increase i:= i+1 restores the original relation.

Because i is a local variable of the collector, also .the mutator could
only violate the assertions either by meking a non-garbage node white --which

it doesn't, because M] only shades-- or by making a (white) garbage node into

EWD630 - 12

-~

non-gaerbage --which it doesn't either, because M1 only redirects edges towards
already reachable nodes and, hence, leaves garhage garbage-- . ‘Therefore, the
mutator's actions do not invalidate the demonstration that the relation is an

invariant of the appending cyclet's repeatable action.

2) To show, next, that the relation holds at the beginning of the appending
cycle, we have to demonstrate (because i=0) that the marking phase has
established that "all white nodes are garbage", which shall be shown under the
assumption thet, at the beginning of the marking phase, there were no bleck

nodes.

Because the absence of black nodes implies P1 , and because M1 and €1
have been carefully designed so as to leave P1 invariant and not to introduce)
white roots, "P1 and there are no white roois" is clearly established before
and kept inveriant during the marking cycle. When furthermore all grey nodes

have disappeared, our target state, in which all reachable nodes are black and

all white nodes are garbage, has been reached.

The marking cycle terminates with & scan past all nodes, during whicﬁ no
grey nodes are encountered. If we had only the collector to consider, the conclu-
sion that at the end of such a scan grey nodes are absent —-and hence the target
state has been reached-- would be trivial. Due to the ongoing activity of the
mutstior -~the shading activity of which can introduce grey nodes!-- a more

subtle argument, which now follows, is-required.

Firstly, we observe that the target state, charscterized by the absence of
grey nodes, is stable: the absence of white reachable nodes prevents the mutator
from introducing grey ones, and the absence of grey nodes prevents the collector

from doing so.

Secondly, we show that a collector scan past all nodes, during which no
grey nodes are encountered, implies that the stable target state has already
been reached at the beginning of that scan: because the mutator leaves grey .
nodes grey and the collector did not colour any nodes during that scan, a grey
‘node existing at its beginning would, in contradiction to the assumpiion, have

been encountered during that scan. Hence we can conlude that upon termination

EWDE30 - 13

of the marking phase all white nodes are, inﬁeed, garbage,

Because the appending phase makés all black nodes white, and the mutator
dngs not introduce biack nodes, there are no black nodes at the end of the .
appending phase; this justifies the assumption made above, that there would
be no black nodes at the beginning of the marking phase. Thus we have completed
the proof that starting the collector in the absence of black nodes ensures

that CC2 is met.

* *
. *

To prove that CC1 is met, we must first show that the collector's twao
phases terminate properly.

Proper termination of the appending phase is obvious, except for one thing:
node nr.i must be black or white, because the alternative construct does not
cater for the case "c = grey". But we have already proved that at the end of
the marking phase, there are no grey nodes and every white node is garbage.

Since the mutator cannot shade a garbage node, and shading & black node has no
effect, it is clear that every node is either black or white when it is examined

during the appending phase.

Termination of the marking phase follows from the fact that the integral

quantity k +M *(the number of non-black nodee)

--which, by definition, is non-negative-- is left invariant by the activity of
the mutator, and is decreased by at least cne in each iteration of the marking

cycle.

Consider now the situation at the beginning of an appending phase. At that
moment, the nodes sre partitioned into three sets:
~- the set of reachable nodes (they are black)
-~ the set of white garbage nodes (during the first appending phase to come,
they will be appended to the free list)
-— the get of black garbage nodes (during the first appending phase %o come,'
they will not be appended to the free list, but they will be made white).
‘Calling the last set the set of “D-nodes", we have to show that all D-nodes will

be appended during the second appending phase to come.

EWDE30 - 14

-

We call an edge "leading into D" when its target is a D-node, but its
source is not. Because D-nodes are garbage, we can state that at the beglnnlng
of the first appending phase, sources of edges leading into D are white garbage

nodes.

Since the D-nodes are garbage, the mutator will not redirect edges so0 as
to make them point to a D-node, and since they are black to start with, during
“the first appending phase the collector won't do so either. The'collector,
however, will append all white garbage nodes, which includes —-see Note 2--
redirecting outgoing edges of the nodes appended, so that, as a result, we
can state that at the end of the first appending phase
=~ 8ll D-nodes are white garbage nodes

-- there are no edges leading into D ,

The absence of edgesrleading into D is an invariant for the subsequent
merking phase: the mutator does nat introduce them, because D-nodes are garbage,
and the collector does not redirect edges during its marking phase. The
continued absence of edges leading into D, Plus the fact that all D-naodes
are white garbage to start with, implies that the D-nodes remain white
garbage nodes during the subsequent marking phase: because they are géfbagé,
the mutator leaves them as they are, and because they are all white, the
collector is prevented from shading Ehem. (Shading the first D-node by the
collector would require the ex1stence of an Edge polntlng to it from a grey
node; 'in view of the ahsence of edges leadlng into D, this grey node would
have to be a D- —-node, which is impossible.) Consequently, at the end of the
marking phase, all D-nodes are still white garbage and will be appended to
the ¥ree list during the subsequent appending phase. Hence, CC1 is also met.
(End of proof.)

By keeping P! invariant during the marking cycle, we obtained our
coarse-grained soluticn. Encouraged by this success, we tried to keep P{
also invariant in a finer-grained solution --a solution in which the mutator's
action -MT_ was split into two atomic operations: one for redirecting the edge
and one for shading the new target-- . In order to keep P1 invariant, the
mutator had to shade the future target first,and then redirect the edge towards

the node just shaded. This finer-grained sclution --although presented in

EWD630 - 15

a way sufficiently convincing 1o fool ourselves—- contained the following bug,

discovered by N,Stenning and M.Woodger (5. . .

Consider the following sequence of events:
1) prior to introducing an edge from node A to node B , the mutator shades
node B (and goes ta slaep)
2) the collector goes through a complete marking phase, followed by an
appending phase (nede B is now white, i.e. the mutator's shading has been
undone! We further note that there is no garbage) ’
3) the collector goes through parf of the next marking phase (and then goes
to sleep), during which it sa happens that node A is made black and node B
is left white
4) the mutator (wakes up and) introduces without making garbage the edge
from A to B (P! is now violated) _
5) the mutator removes all other ingoing edges of B -—the absence of garbage
makes this possible-— and goes to sleep again (node B is now only reachable
via the edge from A) .
6) the collector completes its merking phase (node B has remained white)
7) the ecollector goes through its eappending phase, during which the reachable

node B is erroneously appended to the free list.

This ill-fated effort convinced us that in the finer-grained solution we
were heading for, total absence of ap edge from a black node to a white one
was a stronger relation than we could maintain. However, it still seemed
reasanable to retain the notion of "grey" as "semi-marked", more precisely,
as representing an unfulfilled marking obligation. This meant that we could use
the same collector. However, wé had to find a different coarse-grained mutator

that we could use as a stepping stone to our ultimate fine-grained solution.

5. A new coarse-grained solution.

For cur new coarse-grained sclﬁtion, we had to replace P} bg a weaker
relatiorn. (It was replaced by P2 and P3 , defined below.) In our first
solution, we had made essentisl use of the fact that during the marking cycle,
‘the validity of P1 allowed us to conclude that the existence of a white

reachable node implied the existence of a grey node. (It even implied the

EWD630 - 16

-

existence of a grey reachable node, but the reachability of the grey node was
not esssntial.) For our new solutien we needed a weaker relation p2 , from
which the same conclusion could be drawn. We defined 2 "propagation-path" to
be one consisting solely of edges with white targets, and starting from a grey

nnée, and chose the following relation

P2 "for each white reachable node, there exists a propagation path leading

to it" .

Note 4. The grey nade of the propagation path is not necessarily reachable.
(End of note 4.)

Corollsry 1. If each root is grey or black, the absence of edges from black
to white clearly implies that relation P2 is satisfied. 1In particular, P2
is true at the beginning of the marking cycle, because all roots have been

shaded and there are no black nodes. (End of corollary 1.)

In proving the correctness of our first solution, the invariance of P1
was only needed to prove fhat, during the marking cycle, the absence of grey
nodes implies that all white nodes are garbage. We cen clearly use P2 instead
of P1 to draw the same conclusion. Therefore, to prove the correctness of our
new solution, we need only prove tﬁat both the mutator and the marking collec-
tor leave P2 invariant. 'However, p2 turned out to be too weak a relation
from which to conclude that its truth will not be destroyed. To keep P2 in-
variant, we had to restrict the existeﬁce of black-to-white edges by the

following further relation --analogous to P1 , but weaker--

P3: . "only the last edge placed by the mutator may lead from a hlack node

to a white one" .

Corollary 2. In the absence of black nodes, P3 is ¢rivially satisfied. Hence
it holds at the beginning of the marking cycle. (End of corollary 2.)

By corollaries { and 2, P2gnd P3 is true at the beginning of the
marking cycle. To show that the marking cycle of pur»coarse—grained collector
eaves P2 and P3 invariant, we must show that the atomic upgration £C1 cannot

destroy its truth. Shading a node can cause neither P2 nor P3 to become

EWD630 - 17

false; shading the successors of a node implies that its outgoing edges are no
longer part of any propagation path, so making that node black immediately
afterwards does not make P2 false esither. Moreover, since its successors have
just been shaded, making the node hléck does not introduce a black-to-white edge,
and, hence, cannot make P3 false either. Combining these results we conclude

that in its marking cycle the collector leaves P2 and P3 invariant.

All that remains to be done now in ordef to construct a correct coarse-
grained solution is to define a mutator operation that leaves P2 and P35 in-
varisnt. When the mutator redefines an outgoing edge of a black node, it may
direct it towards s white node. This new black-to-white edge is the one per-
mitted by P3 ., We must prevent, however, the previously redirected edge from
also being a black-to-white edge, and we therefore consider for vur coarse- v

grained mutator the following atomic operation:

M2 < shade the target of the previously redirected edge, and redirect an

outgoing edge of a reachable node towards a reachable node > ,

Note 5. For the very first time that the mutator redirects an edge, we can
assume that (for lack of a previously redirected edge) either the shading will
be suppressed or else an arbitrary reachable node will be shaded. The choice

does not matter for the sequel. (End of note 5.)

Action M2 has been carefully chesen in such a way that it leaves P3
invariant, We now prove that it leaves the stronger relation P2 and P3 in-
variant as well, thereby showing that the new mutator with our original collector

gives a correct solution.

FProof. The action M2 cannot introduce new reachable nodes. Hence, every

white node which is reachable after the operation had a propagation path leading
to it before the operation. If the node whese successor is redefined is black,
then its outgoing edge was not part of any propagation path, so the edges.nf |
the old propagation paths will be sufficient to provide the propagation paths
rneeded to maintain P2 . (We may not need all of them because of the shading
operation, and because some white reacheble nodes may have been made unreachable.)
If the node whose successor is redefined wes white or grey to start with, then

the net result of action M2 will be a graph without edges from a black node to

EWD630 - 18

8 white one: if one existed, then its terget has now been shaded, and no new
one has been introduced since the source of the new edge is not hlack. The
roots must still be grey or black, so‘bQ corollary 1 , P2 still holds., {End
ef proof.)

6. A_fine—grained solution.

To complete our task, we now use the coarse-grained solution aof section §
as a stepping stone tp a fine-grained one. For our fine-grained mutator, M2

is split up into the following succession of atomic operations:

M2.1: < shade the target of the previously redirected edge > ;
M2.2: < redirect an outgoing edge of a reachable node towards a reachable

node > .'

In the collector, we hreak open C1 as the sequence of five atomic operations

(ml and m2 being local variables of the collector):

Cl.1: < ml:= number of the left-hand suceessor of node nr.i > ;
£1.2: < shade naode nr.m} >

C1.3: < m2:i= number of the right-hand successor of node nr.i > ;
C1.4: < shade node nr.m2 > ;

C1.5: < make node nr.i black > .

We first observe that the collecfor's action of shading a node commutes
with any number of mutator actions M2.1 and M2.2 ; without loss of generality
we can, therefore, continue our discussion as if the fnﬁr atomic operations
E1.1‘thr0ugh €1.4 were replaced by a succession of the following two atomic

operations:

Cl.1a: < shade the left-hand successor of node nr.i > ;

Cl.3a: < shade the right-hand successor of node nr.i > .

Examlnlng the proof for our coarse-grained solution, it is clear that in
order to prove the cerrectness of this fine-grained one, it suffices to prove
that P2 and P3 is still invariant during the (flnevgralned) marklng cycle.
We shall prove the invariance of P2 and P3 by proving the invariance of a

stronger relation,

EWD630 - 19

-

For the purpose of its definition, we first introduce the noticn of so-
called "C-edges". Loosely formulated, C-edges are the edges the sources ‘of which
have been detected as grey by the collector's marking cycle. More precisely,
the set of C-edges is empty at the beginning of the marking cycle, and the actions
C1;1a and C1.3a add to it the left-hand and right-hand outgaoing edge of node
nr.i, respectively. Note that the formulation has been chosen so as to make it-
clear that, from Cl.ta onwards, being a C-edge is a property of the left-hand
outgoing edge of node nr.i, independent of the node it points to: In partic-

ular, being a C-edge is invariant with respect to redirection of that edge by

the mutator.

Note 6. We only define the set of C-edges for opur benefit. The set is not

explicitly updated, although the collector could easily do so. In the jargon,

the term "ghost variable" is sometimes used for such an entity. {End of note 6.)

The strengthened versions of P2 and P3 can now be formulated as follows:

P2a: "every root is grey or black, and for each white reachable node there

exists a propagation peth leasding to it, containing no C-edges"

P3a: "there exists at most one edge "E" satisfying

pr: “(E is a black-to-white edge) or
(E dis a C-edge with a white target)" ;

the existence of such an E satisfying pr implies that the mutator
is between action M2.2 and the subsequent action M2,1, and that E

is identical with the edge most recently redirected by the mutator" .

We now prove that P2a and P3a holds when the collector executes its
marking cycle.
Proof. We first observe that P2a holds at the beginning of the marking cycle,
thanks to corollary 1 and the fact that the set of C-edges is then empty. As
there are neither C-edges nor black nodes at the beginning of the marking cycle,
there iﬁ no edge E satisfying pr , so at the beginning of the marking cycle

P%a holds as well.

We further make the general remark that none of the operations M2.1,

M2,2, Cl.1a, C1,3a, and C1.5 introduces new white reachable nodes. Consequently,

EWD63Q - 20

when proving the invariance of P2a under these operations, it suffices to
show that the existence, before the ocperation, of a propagation .path without
C-edges, leading to a reachable node that is white before and after the operatiocn,

implies the existence afterwards of such a propagation path leading to that node.

The invariance of P2a gnd P%a with respect to the three shading operations
M2.,1 , Cl.1a , and C1.%a can be dealt with simultaneously. Propagation paths
leading to a reachable node that is white both before and after the shading
operation are either left intact or are shortered by it. If thes; propagation
paths did not contain C-edges before'the shading operation, then they won't do
s0 afterwards. The shading operations of the collector do create new C-edges,
but these are C-edges with grey or hlack targets, and, therefore, carnot belong
to any propagation path. This proves the invariance of P2a . Relation P3a v
is invariant as well, because the collector's shading acts introduce neither
a black-to-white edge, nor a C-edge with & white target, and operation MZ2,1

only removes the edge E if it did exist.

Action C1.5 leaves P2a invariant: because the ocutgoing edges of the
grey nade nr.i are C-edges, they don't belong to existing propagation paths with-
out C-edges, and hence making that node black leaves the existence of such paths
unaffected. Action C1.5 alseo leaves P3a invarient, as it introduces no new
golutions E of pr : it may introduce a black-to-white edge, but then that

edge was already a C-edge with a white target.

Action M2.2 1leaves P3a invariant because, if P3a held before M2.2 ,
no edge E satisfying pr existed, and the redirection can create at most one
such‘edge. We finally prove the invariénce of P2a wunder M2.2 . If the edge
to be redirected is a {-edge or if its source is black, it does not belong toc a
propagation psth without C-edges. Since, furthermore, M2.2 does not create
C-edges, the existence of such paths remains in this case unaffected. In the
other case --i.e. if the edge to be redirected is not a C-edge and has a white
or grey source-- the already established invariance of P3%a implies after M2.2
the sbsence of black-to-white edges and the absence of C-edges with a white
target. Inrview of Corollsary 1, these absences imply for all white reachable

nodes the existence of propagation paths without C-edges. (End of prouf.)

EWD630 - 21

In retrospect.

It has been surprisingly hard to find the published solution and justifi-
cation. It was only too easy to design what looked -—-sometimes even for weeks
and to many people-- like a perfectly valid solution, until the effort to prove
it to be correct revealed a (sometimés deep) bug. The reasoning we have used
contains most of the ideas needed for a formal proof in the style of [3] or [4] .
Because the inclusion of such a proof would result in a paper, possibly tedious,
but in any case very different from what we intended to write this time, we .
have confined ourselves to our informal justification (which we do pot regard
as an adequate substitute for a formal correctness promf). Whether our stepwise
approech is more generally applicable, is at the moment of writing still an

open question.

When it is objected that we still neededrrather subtle arguments, we
can only agree whole-heartedly: all of us would have preferred a simpler
argument! Perhaps we should conclude that constructions that give rise to
such tricky problems are not to be recommended. One firm conclusion, however,
can be drawn: to believe that such solutions can be found without a very

careful justification is optimism on the verge of foolishness.

History and acknowledgements. (As in this combination this is our first

exercise in international and inter-company cooperation, some internal credit

is given as well.,) After careful consideration of a wider class of problems the
third and the fifth authors selected, and formulated this problem, and did most

of the preliminary investigations; the first author found a first solution during
a discussion with the fifth author, W.H.J.fFeijen and M.Rem. It was independently
improved by the second author --to give the free list a root and mark its nodes l
as well, was his suggestion-- and, on a suggestion made by John M.Mazola, by

the first and the third author. The first and the fourth merged these embellish-
ments, but introduced the bug that was found by N.Stenning and M.Woodger. The
final version and its justification are the result of several cross-Atlantic

iterations. The active and inspiring interest shown by David Gries is mentioned

EWD630 - 22

-

in gratitude. As with gach new version of the manuscript the proofs became simpler,
we also express our indebtedness to R.Stockton Gaines whose comments on an earlier

version caused two further iterations.

Reférances. _

1. Dijkstra, Edsger W., Guarded Commands, Nondeterminacy and Formal Derivation
of Programs. Comm. ACM 18, 8 (Aug. 1975), 453-457.

2. Steele Jr., Guy L., Multiprocessing Compactifying Garbage CDll;ction.
Camm. ACM 18, 9 (Sep. 1975), 495-508.

%, Lamport, Leslie, Proving the Correctness of Multiprocess Programs. IEEE
Trans. on Software Engineering SE-3, 2 (Mar. 1977), 125-143.

4. Gries, David, An Exercise in Proving Parallel Programs Correct. (submitted

to the Comm. ACM.)

5. Woodger, M., Private Communications.

EWDB30 - 25

Glossary af names,

Correctness criteria:

CC1: Every garbage node is eventually appended to the free list. More precisely,
. every garbage node present at the beginning of an appending phase will

have been appended by the end of ths next appending phase.

CC2: Appending a garbage node to the free list is the collector's ocnly modi-

fication of (the shape Df) the data structure,

Atomic operations of the mutater:

Mi: < redirect an outgoing edge of a reachable node towards an already
reachable one, and shmde the new target > ,

M2: < shade the target of the previously redirected edge, and redirect an
Dutgaing‘edge of a reachable node towards & reachable node > .

M2.1: < shade the target of the previously rédirected edge > ,

M2,2: < redirect an outgoing edge of & reachable node towards a reachable

node > .

Atomic operations of the collector:

Cl1: < shade the successors of no'de nr.i and make node nr.i black > .
CT.1: < mi:= number of the left-hand successor of node nr.i >,

C1.2: < shade node nr.ml > ,

C1.3: <m2:= number of the right-hand successor of node nr.i >,

Ci.4: < shade node nr.m2 > ,

C1.5: < make node nr.i black > ,

Cl.ta:< shade the left-hand successor of node nr.i > .

C1.3a:< shade the right-hand successor of node nr.i >,

Invariant relations:

Pl1: No edge points from a black node to a white one.

p2: For each white reachable node, there exists a propagation path leading
to it.

P3: Only the last edge placed by the mutator way lead from a black node

to a white one.

P2a:

P3a;

EWD630 - 24

Every root is greylur bEack, and for each white reachable node there
exists a propagation path leading to it, containing no C-edges.
There exists at most one edge "EM satisfying
pr: "(£ is a black-to-white edge) or

(£ isa C-edge with a white target)®
the existence of such an E satisfying pr implies that the mutator
is between action MZ2.2 and the subsequent action M2.1, and that E

is identical with the edge most recently redirected by the mutator.

*

