EwDeg2 - 0

The Nature of Computer Science. (first draft)

0. Preface.

In the title of my previous book --"A Discipline of Programming"--
the indefinite article was chosen quite intentionally; the definite article
in the title of this one is equally intentional. In the previous book I
presented a style of programming and offered a methodology because I had
found them helpful;y in this book I want to convince my readers of what I

now feel to be essential,

I want to give my readers a feeling for the flavour of the guintessence
of Computer Science as I see it, and I want to do so because there is too
much unclarity and confusion about what Computer Science ought to be. The
sources of this unclarity and confusion are many, one of them being the
difference of opinion amaong the so-called "experts", i.e. the people called
"computer scientists", who have a quite understandable tendency to regard
their work as falling under --or sometimes even: characteristic for-- "Com-
puter Science”. And their professional activities cover a very broad spec-
trum, so broad that the confusion about what constitutes Computer Science is
only too understandable. The incoherent diversity af all these activities is,
however, fairly easily disposed of: upon closer scrutiny one will often dis-
cover that either the major concern is not with computers or the activity
has very little to do with science (Dr both}, But in the meantime, the

seed of confusion has been sown!

This booklet addresses itself to the most ready and most serious
victims of this confusion, of this unclarity, and of all this misunder-
standing: the otherwise educated layman, I have mainly two specimina in

mind,

The one is the general scientist --the astronomer, the biologist,
the chemist, etc., but possibly alsc the mathematician-- whose scientific
education and professional experience have been in areas other than Computer
Science, but who now regrets that he has no feeling for the flavour of the
subject, The other one is the young student who hasn't yet made up his mind

what kind of scientist he would like %o become and wonders whether compyter

EWD6s2 - 1

science would be an attractive subject, I shall he very happy if I can
assist him, for he has a very difficult choice to make, as he will know its

full consegquences anly many years after he has made it.

A warning to the reader might be appropriate. Knowing that I am ad-
dressing the uninitiated and remembering that it is my purpose to make him
understand, I shall do my best to be as clear as possible. Even if I would
have attained my goal, the reader should ﬂgi expect a text that is Yeasy to
read" if "ease of reading™ is related to the number of pages of print, the
contents of which the reader can absorb per unit of time. This measure of
the "ease of reading" --although not unusual-- is irrelevant, as it allows
the author to score high by the simple device of making his text unnecessari-
ly verbase. The relevant criterion --although much harder to guantify and,
therefore, applied less frequently-- would be something like the quotient
"insights gained by reading / effort spent on reading"., It is in this last
sense that I aim at scoring high. In other words: I hope that, after an hour
of intense (and possibly hard) reading, my reader will enjoy how much he has
learned, rather than be disappointed by how few pages he has progressed. {After
all: it is only a slim volume!) Writing for the uninitiated does not imply
--as is scometimes thought-- adopting a style that would fit a Sunday paper;
daing so would, as a matter of fact, defeat my purpose, as I intend to do

serious business.

In order to avoid false expectatians (and also to forestall forseeable,
but unjustified criticisms) I would like to stress why this booklet did not

get the title "An Introduction to Computer Science".

From having read an "Introduction" we can expect very specific forms
of assistance when embarking upon a more detailed study of whatever aspect has
taken our fancy. It so happens that nowadays, rightly or wrongly, the members
of the brotherhood that is associated with each identified intellectual disci-
pline use in their internal communication an extensive jargan that is spe-
cific for their brotherhood. In this respect Computer Science --and also
even many of its subfields!-- is no exception. (On the contrary, 1 am tempted
to add.) From an "Introduction" one is entitled to expect an adequate coverage

of the more important part of the jargon of the field it introduces the reader

EWDE82 ~ 2

to: the apprentice needs to know the meaning of these terms in order to

understand what the experts say to each other.

It is my clear purpase, however, to leave my reader the option of pot
pursuing the topic of Computer Science any further. In cansequence I intend

to avoid jargon as much as possible.

From an "Introduction" one is similarly entitled to expect a broad-
ness of coverage, a certain completeness: all in some sense "major" areas
should be covered. But the transfer of knowledge in the form of transmission
of facts is most definitely not the purpose of this bock., I shall not hesitate
to mention facts when I need them to make my points (fnr instance, when I feel
that I should provide at least one example of what I am talking about); com-—
pleteness not being my purpose, I shall also not hesitate to omit them when

I feel that they are not really necessary.

(Prefa:e to be continued later.)

1. The notion of "algorithms".

"But if thought can corrupt language, language
can also corrupt thought.”
George Orwell (in "Politics and the

English Language.")

1 think the way in which people use --or misuse-~ words always most
revealing. (At a seminar I recently attended, one of the speakers con-
sistently referred to people as "human beings"; he turned out to have been
trained as a psychologist.) Bearing that in mind and, furthermore, remember-
ing that the majority of the people in the field regards computers primarily
as tools, we should notice that the English speaking world coined the term
"Computer Science". We should do so, because it is very exceptional that a

tool gives its name to a discipline: we don't call painting "brush art", nor

EWD682 - 3

surgery "knife science"., Fraom these observatiens we can only conclude that
when the term "Computer Scisnce" was coined, computers were regarded —-either
in fact, or meinly potentially-- as exceptional gadgets. A question to be
answered before proceeding is, whether this view of computers as exceptional

gadgets is justified or net. (I hope to convince my readers it is.)

If there were nothing exceptional about computers, we should regard
the term "Computer Sciermce" as a misnomer, and at least the title of this
book should have been different, perhaps this book shouln't even have been
written at all, If, on the other hand, there is indeed something exceptional
about computers, we had better know precisely what, I even go further: in
that case we should never forget that --and why-- computers are properly
regarded as exceptional gadgets, because then their exceptionality could
very well invalidate (and should at least challenge) many cpinions and
assumptions about computers and their usage that, upcn closer scrutiny, are
solely supported by analogies from other fields. (Whan in 1968 the term
"Software Engineering" was coined in Europe, 1 was very happy with it, because
I felt that it captured both the programmer's commitment tc complete in time
the design of a reliable artefact, and the constructive nature of his work
very well, Ten years later I have reasons to regret its wide-spread adoption,
for, to my taste shallow, analogies with engineering practices established in
other fields seem now to have created more confusion than enlightment.) In
short, the question why and to what extent computers are exceptional gadgets

is a vital one, and the first two chapters will mainly be devoted to it.

The Computer's exceptionality manifests itself in two different ways that
can be dealt with separately to a very large extent. The bore way is a primarily
quantitative aspect, made possible by modern electronic technology: not
only can they process informatiun‘-—here, forgive me, I am using still
loose terminology~- but they can do so very, very fast indeed, and not only
can they store information --here, again, I am using still loose terminology--
but at any moment in time they can store very, very vast amounts of information
indeed, In these guantitative aspects, all by themselves, the computer is
already quite remarkable, because it is in these aspects that the modern com-
puter can justly be regarded as one of the major triumphs of electronic tech-

nology. We shall deal with these quantitative aspects in cur next chapter.

EWD682 -~ 4

The other way in which the computer manifests its exceptionality is of
a more qualitative nature and is reflected by its ability to carry out (in =
sense) "any" algorithm, and, please, don't ask me now what is meant by that:
the remainder of this chapter will be devoted to its explanation, Before em-
barking upon that explanation, however, it is worth noticing thst also in
this aspect, all by itself, the computer is already quite remarkable. If
it had not been for this qualitative aspect of his work, Charles Babbage,
if remembered at all, would only be remembered as one of the last century's
major influence on mechanical toolmaking. Now he is remembered as one of
the redical and revolutionary minds of the previous century —--sadly misun-
derstood in his time-- , whose vision would require another hundred years

to become reality and to have its full impact,

In the preceding paragraphs I have anly indiceted two very different
ways in which the computer is remarkable: it is their combination that makes
the computer exceptional., (It is this combination that we find reflected
in popular titles such as "Faster than Thought" or "Giant Brains, or Machines
that Think" --mentioning these titles does not mean that I recommend the
corresponding books—- .} For the sake of clarity we shall deal with these

two so different aspects in turn.

* *

The informal analogue of the algorithm is quite familiar to us, from
our fairy tales, from our daily life, and from our professional activities.
It is the set of rules that, when followed faithfully, is guaranteed to
establish a8 certain result. I mention a few examples:

- the magic formula that, when spoken correctly, will cause some wonder
to happen {will open a rock, cause a jinnee to return to its bottle or a devil
to leave the body it has taken possession of)

- a recipe for a dish or a cocktail

- a knitting pattern

——— the answer one gets after having asked for the way from A +to B

- the Instructions for Use that accompany a piece of equipment

- the rules how to add or multiply two decimal numbers.

Although only informal analogues, they can teach us something about

EWDES2 - 5

algorithms, For example, the total result is reached as the cumulative
effect of acts, each of a simpler nature than the total one. In an old caookery
book I found the following recipe for peppered hare: “One takes a hare and

prepares peppered hare from it." It is not actually wrong, but hardly helpful.

The performance of the individual acts must be possible. They must
be logically possible: the advice, given after someone had asked for the way:
"Go straight shead and turn to the left at the last traffic lights." presents
such a logical impossibility. It must also be physicelly possible: "Go
to the devil!"™ --or "Walk to the moon!" as we say in Dutch-- is, for its
sheer impossibility, not a command, but a curse., A little more subtle is
the case of the instructions for use of some heating eguipment, telling you
that, in order to light it, you have to press button A until a flame appears.
If, before getting tired of pressing button A , you see the flame appear,
you are OK, but what if it does not? How lang arte you going to continue to
press that button? We cannot solve the problem by saying: "Well, the in-
structions only apply to a heater in proper condition,", for how do we know
that our heater is not in preper condition? We cannot conclude that from
the fact that the flame has not appeared yet. We would have been in much
better shape if the instructions had said: "Light the flame by pressing

button A for at most 10 seconds."

Clarity, in the sense that there is no misunderstanding about the acts
to be performed, is also essential. In this respect knitting patterns --at
least when published in a ladies journal of high standards-- are as a rule
not too bad, and on the average much better than recipes, in which it is
not unusual that the instruction that, finally, spices have to be added
according to taste, leaves the major decision to the cook. (And, according-
ly, as most of us know from sad experience, following cooking instructions

as faithfully as we can is not guaranteed to estahlish the desired result.)

With the exception of the rules for adding or multiplying two decimal
numbers, the above examples all have the familiarity of daily life. That
familiarity is their strength, but also their weakness, for, if you come to
think about it, daily life is very confusing. The worst of such examples

is that it is never clear where the example ends and the confusion of daily

life begins.

EWD682 ~ 6

I would, for instance, like to argue that most of the examples given
are too simple in the sense that they are algorithms which, when fol-
lowed, always lead to the same result. The magic formula that opens the rock
only works for a very specific rock, and everytime the formula is spoken,
the rock opens up in exactly the same manner. But does it? 1Is opening the
rock on a Sunday the same as opening it on a friday? Are we sure that opening
it on a friday the 13th does not have a deep, hitherto unsuspected, mystical
meaning? If we follow the instructions how to walk fram A to B twice,
have we made the same walk twice? Both times we arrived at B , but what if
we did it once on a sunny day, and once in a pouring rain? Let us follow
the knitting pattern twice, once with blue and once with red wool: +to what

extent are the two resulting sweaters the same?

For centuries such questions have been the delight of philosophers,
1 like to believe that by now mest of us would regard them as pretty meaning-

less. In any case our business is not philosophy, but science.

The scientist's escape from philosophy is --in principle at least!--

a simple one: he replaces the fuzzy, open-ended universe of discourse as
ingpired by our daily experiences ~--also referred to as "reality"-- by a
postulated universe of discourse of his own invention, in which, by definition,
what he talks about is ... what he talks about! It will be remarked that this
postulated universe of discourse of his awn invention "has been inspired by

his intuitive understanding of reality", but to the extent that this postulated
universe of discourse is truly his "universe™ of discourse, the scientist is

entitled to regard that remark as irrelevant.

The oldest example of this technique of liberating ourselves from
the shackles of empiricism are of course the "Elements" of Euclid, whom E.T.
Bell characterizes as "the great perfector, if not the sole creator, of what
is today celled the postulational method, the central nervous system of
living mathematics," []
[] Bell, E.T., The Development of Mathematics, McGraw-Hill Book Company,
New York - London, 1945, p.72

EWDE82 - 7

(Many people find it hard to swallow that the best thing scientists
--gven applied scientistsl!-~ can do with "the real world" is to ignore it.

As E.T.Bell remarks in this connection:

"Mathematicians and scientists of the conservative pexsuasion may feel
that 2 science constrained by an explicitly formulated set of assumptions
has lost some of its freedom and is almost dead. Experience shows that
the only loss is denial of the privilege of making avoidable mistakes

in reasoning. As 1s perhaps but humanly natural, each new encroachment
of the postulational method is vigorously resisted by some as an in-
vasion of hallowed tradition. Dbjection to the method is neither more

nor less than objection to mathematics.")

What Euclid did for peints, straight lines and circles, was done in
this century for algorithms --or, as they are also called,"effective procedures"--
by A,M,Turing. The algorithm (or prncedure) consists of a finite set of rules
such that the application of any such rule only requires the distinction be-
tween a finite number of different cases; the applicaticn of the next rule is
called tHe next "step", and the procedure is called effective when it is
guaranteed to terminate after a finite number of steps. The rule for adding
two decimal numbers is an example of an effective procedure: besides the rule
telling us when we have finished there is almost only one other rule, viz,
what to do at each decimal position before moving to the next. In general
we are faced at esach decimal position with 1 out of 200 , and thus a finite
number of possibilities: 10 for the one digit, 10 for the other, and 2

for the absence or presence of a carry from the right.

The above is still much toa loose for serving as the basis for a
mathematical theory of algorithms: what is, and what is not, a permissible
individual rule is, for instance, still much too woolly., Because the indi-
vidual digits of the numbers to be added are "given", but the carry from the
right only emerges as the calculation proceeds, it could be argued that it
is more proper to introduce two rules, one for the absence of a carry from
the right and one for the presence of a carry from the right, and each of
them catering for the 100 +two-digit combinations from the numbers to be

added.

EWD6B2 - 8

Turing put an effective end to such discussions by proposing a very
rigid scheme, and an algorithm given in accordance with that rigid scheme is
now known as "a Turing Machine", In order to drive home the message that an
algorithm can be carried out mechanically, i.e, without further insight,
guesswork, experience, tacit understanding, and divine ingpiration, Turing
defined a class of automata and claimed that for each effective procedure

an automaton from that class could be designed.

This is not the place to present the theory of Turing Machines in any
detail; yet I hope that the following sketch will suffice to give the reader a
first glimpse of Turing's achievement. A Turing Machine consists of a
finite part and an infinite part (of which in each terminating computatien

only a finite section will be used).

The infinite part consists of the so-called "tape", an infinite
sequence of "sguares", each of them capable of holding one character from
a finite alphabet. In the beginning all squares of the tape hold the same
neutral character --usually called "blank"-- with the exception of a finite
sequence of squares that may hold other characters from the alphabet, thus
presenting "the input". The contact between the infinite tape and the finite
part of the Turing Machine cansists of the circumstance that one of the

squares enjoys the privilege of being "the scanned square",

The construction of the finite part embodies the algorithm proper.
The finite part is a so-called "finite state machine", with a state for
each rule. Its canstruction can be given in tabular form, as the permissible
rules follow a rigid format: a rule prescribes for each of the values of the
character currently held in the scanned square
?) the new character to be written in the scanned square
2) whether thereafter the tape has to be moved one place to the left or
one place to the right --i.e. which of its two neighbours will be the scanned
square on the next step

3) the (number of the) rule to be applied in the next step.

One special state of the finite part is called "the halting state";
when it is reached, the computation is regarded as successfully executed and

the contents of the squares of the tape at that stage are regarded as the

EwWD682 - 9

final result., That is all!

Turing Machines are in two ways a very remarkable conception. As we
described them, squares hold a character from a finite alphabet, but nothing
essential is lost if we restrict ourselves to alphabets of two characters
only. More precisely: given a Turing Machine in a multi-character alphabet,
we can derive --at the "expense" of introducing many more states in the finite
part-— an equivelent Turing Machine in which communication at the scanned

square takes place via a two-character alphabet anly.

As we described it, the finite part comprises a finite number of
states: at the "expense" of greatly enlarging the alphahet we can deduce an

equivalent Turing Machine with only two states (besides the halting state).

The theorems mentioned in the two preceding paragraphs are far from
trivial, and to any mathematician of some maturity their mere existence
strongly suggests that the notion of Turing Machines is something much more
deep and fundamental than might appear at first sight. For practical pur-
poses of computation Turing Machines are without significance; the notion
of Turing Machines is, however, highly significant from a more theoretical
point of view. The rigidity of the regime they embody --their "austerity",
s0 to speak-- made it possible to define functions for which it could be proved
that no Turing Machine can compute them. (This is usually proved by a
‘reductig ad absurdum: One defines a function --using, admittedly, the notion
of Turing Machines-- and shows that the assumed existence of a Turing Machine
computing it leads to a contradiction., The argument of Turing's is very
ingenious --M,L.Minksy [] introduces the final contradiction with the four
words "Now for the killer!"-- ; it would never have been possible, had not
[] Minsky, M.L., Computation: Finite and Iniinite Machines, Prentice-Hall,

Inc., Englewood Cliffs, 1967, p.149

the notion of an algorithm been reduced by Turing to its bare essentials,)

The discovery of well-defined functions that cannot be computed by

a Turing Machine would lose much of ite significance if it could be argued

EWDE82 - 10

that Turing Machines as models for algorithms --and, hence, the existence of

a Turing Machine as criterion for computability-- are unnecessarily restirictive.
The second way in which Turing Machines are very remarkable is that no one

has been able to provide such an argument. Quite a few guite "reasonablz"
alternative definitions of computability of functions have been proposed,

but on closer inspection all these proposals turned out to be equivalent to

the question whether a Turing Machine computing the function was conceivable

or not,

Of Turing we can really say that with his rigid regime he reduced the
notion of an algorithm to its bare essentials: the carefully chosen constraints
that make the concept mathematically manageable don't seem to impair the con-

cept?s generality,

Now, almost half a century after Turing's breathtaking work, the notion
of effective computability of e function is equated with the conceivahility
of a Turing Machine computing it, In the beginning, when the fuzzy notion of
"effective computability" was still given an independent right of existence,
this equivalence was regarded as an article of faith; nowadays this eguivalence

is used to define the notion of effective computahility.

Despite the fact that Turing's paper of 1936 "On computsble numbers,
with an application to the Entscheidungsproblem" was published in such =
respectable journal as the Proceedings of the London Mathematical Society,
and despite the fact that he had done for the theory of algorithms what
Euclid had done for plane geometry, the mathematical world at large has
been amazingly slow in recognizing the profound significance of Turing's
work, (Fmr instance,lE.T.Hell's "The Development of Mathematics™ aof 1945
does not mention Turing at all, whereas it mentions K.G#del about ten times!)
It seems to have hardly attracted any attention for almost fifteen years.

One of the explanations offered for this curious state of affairs is the

very perfection of Turing's original article, in which he created a new

theory but completed it at the same time: for lesser souls he had left

nothing to be added by them, and, hence, his paper did not start an avalanche
of subsequent ones in which it was quoted, (And, as we all know, the standard
criterion for a successful paper is that it gives rise to at least ten sub-

sequent Dnes.)

EWD6BZ - 11

Eventually the significance of Turing's work became wore widely re-
cognized, but this was after Turing had died as an apparently disillusioned

and perhaps even somewhat embittered wman. [See note ! on EWD682 - 13.]

For the theoretically inclined the theory of computability has an
intellectual fascination in its own right; here we bave used Turing's in-
ventiaon only for giving the reader some idea of what a farmal theory of
computation looks like and a somewhat better appreciation of what a mathe-

matician talks about when he talks about an algorithm.

The algorithm is a finite set of rules from a well-defined repertoire
~-ar, equivalently, a finite text in some suitable notation-- and corresponds

to the finite part of the Turing Machine,

The input --also called "the argument" of the function to be computed--
corresponds to the finite sequence of characters from a finite alphahet, as

represented by the initial contents of the squares on the tape.

The butput --alse called "the result" of the computation or "the value"
of the function to be computed-- corresponds similarly to the final state of
the tape (under the assumption that the Turing Machine has reached its balting

state).

By its very construction a Turing Machine defines a final character
sequence for each initial character sequence that would lead to a properly
terminating computation of that Turing Machine: for all thase "arguments"
it defines a "result". Different arguments may correspond to the same result,
but no argument may correspond to different results; in other words it is a

many-to-one-correspondence, i.e. a function.

It is -~and this is important to remember-- characteristic for such a
function to be defined for very many --usually even for infinitely many--
different values of the argument, Loosely speaking, the algorithm "captures"
what all computations from that very large --and, as said, usually infinite--

class "have in common".

EWDEB2 -~ 12

For the designer of algorithms this has a far-reaching consequence
when combined with a requirement mentioned earlier, vii. that the algorithm,
"when followed faithfully, is guaranteed to establish a certain result", If
the number of different arguments for which a result is prescribed is small
enough, such a guarantee could be based on experiment: one applies the pro-
pased algorithm in turn to the distinct arguments and inspects each time
whether the actual result equals the prescribed one, This simple method
for creating confidence in the correctness of a proposed algarithm is,
however, almost never feasible, because the function to be computed is almost
always defined for a prohibitively large number of different arguments: the
set of individual computations that can be tried is almost always an absolutely
negligible fraction of the class of possible computations. Under such cir-
cumstances we would prefer to base our confidence on a reasoning that is
independent of the specific argument value with which the computation started.
Being indespendent of that specific argument value, such a reasoning applies
to the whole class of computations. Remembering the loose remark that, in a
sense, "the algorithm captures what all computations from that whole class
have in common", we shouldn't be surprised to see the algorithm in the form
of "a finite text in some suitable notation" playing the central role in such
reasonings, We shall return to this later; for the time being we confine
ourselves to the remark that this paragraph reveals why competent design of

algorithms is intrinsically an activity of a mathematical natura.[NDtE 2, next Page]

Remazk. In retrospect I am willing to regret the terminology in which
Turing couched his message: the metaphoxr of the Turing Machine (with its
infinite tape of squares moving to the left or to the right) is too vivid.

It is so vivid that too often it blurs the fact that the true status of a
Turing Machine is that of a mental experiment, neither more nor less: it

is a concept to which the attributes of space and time are not applicable,

A Turing Machine never "exists" to the extent that it could make sense to ask
"Where did that computation of that Turing Machine take place?" or "How much
time took that computation of that Turing Machine?", It does not even make
sense to ask "How many steps took that computation?” A meaningful question

could be "To how many éteps amounts that computation?",

I don't blame Turing too much for the vividness of his metaphor: even

EWD682 - 13

if he had chosen a more sober terminology with fewer connotations, he could
probably not have prevented senseless comments such as that "Turing Machines
are too slow and inefficient for practical purposes"™. Such a remark makes
as much sense as talking about the honesty of a painting, the temperature

of & poem, or the health of a thunderstorm. (End af remark)

---- note 1, to be inserted EWD68Z2 - 11

Still in 1978, Turing is supposed to be unknown among the members of
the Association for Computing Machinery. 1In the following quotation (Comm.
ACM, 21, 9 (Sep. 1978), p.798) the indefinite article tells the whole story
all by itself: "The Turing Award is presented in commemoration of Dr.A.M,
Turing, an £nglish mathematician who made many important contributions to

the field of computing.™

-——- note 2, to be inserted EWD682 - 12

To present a contrary opinion, picked at random (Comm.ACM, 21, 9,
(Sep. 1978), p.SOO): "A panel chaired by Stanley Winkler, IBM, concluded
that computer science is primarily an experimental discipline in which
students require a spectrum of facilities to develop their understanding.
Drawing an analogy to the medical profession in which anmatomy is learned by
dissection of cadavers, Winkler's panel suggested that the computer science
field should adopt the cese-study method for teaching. The computer science
curriculum should stress a braod background, goal orientaticn, and team
experience. Universities should recognize that projects and the teaching of

the design concept are quite impartant." stc.

