Simplifying a proof in our book
In [0], pp.66-69, we show how the conditional distribution of ∧ over ∀ can be derived from the one-point rule and the other axioms. I dragged sets into the picture, for which misbehaviour I apologize; here is a simpler argument. Representing the non-empty range for the dummy x by r.x ∨ [x=y] we show
[〈∀x : r.x ∨ [x=y]: t.x ∧ Q〉 ≡ 〈∀x : r.x ∨ [x=y]: t.x〉∧ Q ]
To this end we observe
〈∀x: r.x ∨ [x=y]: t.x ∧ Q〉
= {splitting the term}
〈∀x: r.x ∨ [x=y]: t.x〉 ∧ 〈∀x: r.x ∨ [x=y]: Q〉
= {see (*) below}
〈∀x: r.x ∨ [x=y]: t.x〉 ∧ Q
(*) We observe
〈∀x: r.x ∨ [x=y]: Q〉
= {splitting the range}
〈∀x: r.x: Q〉∧〈∀x: [x=y]: Q〉
= {one-point rule}
〈∀x: r.x: Q〉∧ Q
= {see (**) below)
Q
(**) We observe
[Q ⇒〈∀x:r.x: Q〉]
= { ⇒ distributes —like ∨— over ∀ in consequent}
[〈∀x: r.x: Q ⇒ Q〉]
= {pred. calc}
[〈∀x: r.x: true〉]
= {pred. calc., e.g. [0], p.66, (90)]
[true]
= {pred. calc.}
true
[0] Edsger W. Dijkstra & Carel S. Scholten Predicate Calculus and Program Semantics, Springer-Verlag New York Inc., 1990