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Abstract. A methodology for integrating model checking into object-oriented soft-
ware development processes is defined, developed, and demonstrated. Model checking
is applied to object-oriented analysis(OOA) models that have executable semantics
specified as state machines rather than as programs in conventional programming
languages. The complexity level of an OOA model yields a manageable state space
for model checking. An automata based approach to model checking is used. The
OOA models are automatically translated to automaton models. Predicates over the
behaviors of the OOA models are mapped to predicates over the automaton models
and evaluated by a model checker. Algorithms for translating OOA models to au-
tomaton models are given. Procedures for management of dynamic object instance
sets and unbounded event queues are given. The algorithms and procedures have
been implemented for OOA models constructed in the SES/Objectbench implemen-
tation of the Shlaer-Mellor method that provides executable semantics for a subset of
Unified Modeling Language. Translation is to the S/R automaton language and the
COSPAN system is used for model checking. The algorithms are readily adapted to
other OOA models with executable semantics and other model checking systems. A
simple example to demonstrate the capabilities is included in this paper. The com-
panion paper[7] gives design rules for constructing OOA models which yield tractable
automaton models upon translation and reports on application of the methodology
to an OOA model of modest complexity, a minimal robot control system.

1 Introduction and Overview

Software control of everyday systems is becoming pervasive. Software control systems are
frequently complex and concurrent. Development technologies that achieve more reliable
complex concurrent software systems are becoming increasingly important. This paper de-
fines and demonstrates the integration of formal verification by model checking into object-
oriented(OO) software development processes.

OO software development processes are increasingly used for the development of com-
plex concurrent software systems, particularly embedded software systems. Figure 1 is a
schematic of the conventional OO software development processes.

Most OO software development processes still largely rely on conventional testing of
the source code to validate the correctness of software systems. The detection of errors in
Object-oriented Analysis(OOA) models is delayed to the integration test step. Errors in
OOA models caught in the integration test may force modifications in the OOA models
and consequent redo of design, programming, and testing. In addition, conventional testing
can never provide a complete validation of a software system due to the lack of coverage of
execution paths.

Model checking [1] is a method for evaluating predicates about the behaviors of systems
of concurrently executing finite state machines. Predicates are expressed as temporal logic
formulas and efficient algorithms are used to evaluate the correctness of the predicates.
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Fig. 1. OO Software Development Process

Model checking evaluates the behaviors of a system for ALL possible execution paths. Thus
if a predicate is evaluated to be true under model checking, it has been rigorously verified
that this predicate will hold for all executions of the system.

It is impractical to apply model checking to software systems written in conventional
procedural, even OO programming languages because of the state space explosion prob-
lem. There are, however, OO software development processes, such as Shlaer-Mellor(S-M)
Method [2], which express the execution behaviors of a software system as a set of con-
currently executing state machines at the OOA level. The complexity level of OOA models
reduces the state space explosion problem to a manageable level. This makes it conceptually
possible to apply model checking to verify that the behaviors of software systems represented
as OOA models conform to specifications expressed in temporal logic predicates provided
that the OOA models have executable semantics.

The Object Management Group(OMG) has adopted an execution semantics for a subset
of the formalizable portion of Unified Modeling Language(UML)[3]. The semantics of S-M
OOA and the notation of UML define an executable subset of UML(xUML), which is con-
sistent with the execution semantics adopted by the OMG. We are, on the recommendation
of Stephen J. Mellor [private communication], referring to the OOA models developed under
the S-M method as xUML OOA models.

This paper defines a methodology for integrating model checking into a commercially
supported and widely used OO software development processes by application of model
checking to verification of OOA models with executable semantics, describes an imple-
mentation of the methodology, and discusses applications of the methodology. In particu-
lar, model checking is applied to xUML OOA models of software systems developed using
SES/Objectbench[4]. The xUML OOA models are translated to the S/R[5] automaton lan-
guage and predicates against the OOA models are evaluated by the COSPAN[5] model
checker, which implements the automata-theoretic approach to model checking[6]. Appli-
cation of the automata-theoretic approach to model checking on xUML OOA models is
practical and can be effective because:

– xUML OOA models have executable semantics.
– The execution behaviors of xUML OOA models are expressed as concurrently executing

state machines.
– xUML OOA models can be (and frequently are) compiled directly to conventional pro-

gramming language source code, which avoids the error-prone manual coding of OOA
models.

– The automata-theoretic approach to model checking admits powerful reduction algo-
rithms that, although only heuristics, often can break through the computational com-
plexity barrier that impedes model checking of many problems.
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The development process that integrates object-oriented development and model checking,
shown in Figure 2 has the following steps:
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Fig. 2. Integration of Model Checking and OO Software Development Process

a. The OOA model of the system under development is obtained by analyzing the require-
ment specification with an OOA methodology that provides executable semantics for
OOA models.

b. The OOA model is validated by execution with a discrete event simulator to obtain an
OOA model that is largely correct.

c. The OOA model is fully automatically translated to an automaton model that can be
checked by a model checker.

d. Predicates covering important execution behaviors of the system are specified by the
designers of the OOA model.

e. These predicates is formally verified against the automaton model by model checkers.
Errors found in the OOA model may result in additional validations to identify the
source of the errors and/or modifications to the OOA model.

f. The steps from b. through e. are repeated until the OOA model has been verified to
have the required behaviors.

g. The validated and verified OOA model is either manually programmed or more desirably,
directly compiled to conventional programming language source code.

The core elements of the methodology and its implementation are:

a. Design rules for constructing OOA models to which model checking can be practically
applied;

b. Algorithms for translating the semantics of executable OOA models to the semantics of
the automaton models;

c. Implementation of a translator based on these algorithms;
d. Translation of predicates formulated on OOA models to predicates that can be evaluated

against automaton models by model checkers.
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This paper defines, describes, and illustrates elements b, c, and d. It will be shown
that integrating model checking into OO software development processes by applying model
checking to OOA models with executable semantics can be accomplished and is potentially
scalable for application to substantial systems. Effective translations of legal but completely
arbitrary OOA models is impractical. Design rules is discussed separately in [7].

2 Background

2.1 Concepts of xUML OOA Models

This section presents major concepts of xUML models.

Domains and Subsystems In building a typical large software system, analysts generally
have to deal with several distinctly different subject matters, or domains. Large domains
can be partitioned into subsystems. Subsystems can be viewed as clusters of classes in a
domain: groups of classes that are closely interconnected with one another by relationships,
but relatively few relationships connect classes of different subsystems.

Classes A class is an abstraction of a set of real-world entities such that all the entities in
the set, the instances, have the same characteristics, and all instances are subject to and
conform to the same model of behaviors. There are two kinds of classes:

– Active classes that have dynamic behaviors;
– Passive classes that have no dynamic behavior and are used to record information.

Every class has associated attributes. An attribute is an abstraction of a single characteristic
possessed by all instances of the class. In the following discussion, we will interchangeably
refer to instances of classes as “object instances”.

Lifecycles The common behavior patterns of all the instances of an active class are ab-
stracted into a lifecycle and every lifecycle is expressed as an extended Moore state machine,
that consists of:

– States. Each state represents a stage in the lifecycle of a typical instance of the class.
– Events. Each event defines a type of message that an instance of the class can receive

during system executions.
– Transition Rules. A transition rule specifies which new state is realized when an instance

of the class in a given state receives an instance of a particular event.
– Actions. An action is an activity or operation that must be executed when an instance

arrives in a state. One action is associated with each state. An action can be composed
of computations such as:
• Calculation
• Generation of event instances
• Access of attributes of object instances
• Creation or Deletion of object instances

All computations have well defined execution semantics.

Associations An association is an abstraction of a set of relationships that hold system-
atically between different classes. For example, hard disks are controlled by bus controllers.

There are three forms of associations: one-to-one, one-to-many, and many-to-many. One-
to-one and one-to-many associations are simply specified as the attributes of associated
classes. For each many-to-many association, a separate associative class is defined, instances
of which are used to record the association. The associative class can also have a lifecycle
that models the dynamics of the association.
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An association can involve competition between participants. When this happens, a
special lifecycle, the assigner lifecycle, is built for the association. The assigner lifecycle
is responsible for creating instances of the associative class to associate instances of the
associated classes according to the rules of competition. There is only one instance of each
assigner lifecycle during a system execution.

Generalizations When distinct specialized classes have certain characteristics in common,
a more general class, the superclass, can be abstracted to represent the characteristics shared
by the original specialized classes, the subclasses. Subclasses inherit the attributes and
events(if defined in the superclass) of the superclass, but the subclasses do not inherit the
lifecycle of the superclass. Every active subclass defines its own lifecycle.

Execution Semantics The execution semantics of OOA models is an interleaving seman-
tics with the following properties:

– Creation and Deletion of Object Instances
Object instances can be created either statically during the initialization of system
executions, or dynamically during system executions.
An active object instance that has a born-to-die lifecycle deletes itself when it enters a
termination state. A passive object instance can be deleted in the execution of a state
action of active object instances during system executions.

– Event Passing Mechanism
Active object instances asynchronously communicate with each other by sending event
instances to each other. Every active object instance has a private event queue that is
FIFO and infinite. All the event instances directed to an active object instance are kept
in its private event queue after being generated and before being consumed.
Event instances in a private event queue are ordered according to their arrival order. If
an active object instance generates multiple event instances to a single receiving object
instance, those event instances will be enqueued in the order generated.

– Active Object Instance Scheduling
Active object instances are scheduled for execution as follows:
• An active object instance is ready to be scheduled if either it has entered its current

state and is ready to execute the associated action of the state, or it has finished the
action of its current state and is ready to perform a state transition by consuming
an event instance and there are event instances in its private event queue.

• At any given moment of a system execution, exactly one active object instance is
scheduled nondeterministically to execute among all ready active object instances.

• The scheduled active object instance either performs a state transition by consuming
an event instance in its private event queue, which changes its state, or executes a
state action, which can create or delete object instances, send event instances to
other active object instances, access its own attributes, or access the attributes of
other object instances.

• Both the execution of a state action and the performance of a state transition are
run-to-completion.

2.2 Automata-theoretic Approach to Model Checking

This section gives a brief introduction to the automata-theoretic approach to model checking.

ω-automata and Their Languages ω-automata are the same as conventional automata
that accept strings, except that the final states of the latter(signaling the end of an accepted
string) are replaced by an acceptance condition on the set of states visited infinitely often.
The language of ω-automaton A, L(A), is defined to be the set of all infinite sequences
accepted by A.
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Approach Overview The automata-theoretic approach to model checking is founded on
L-ω-automata, a class of ω-automata defined in [6]. The system is modeled by an L-ω-
automaton P , where P represented as a synchronous parallel composition P = P1 ⊗ P2 ⊗
. . .⊗Pk of component processes(all modeled as L-ω-automata). The property to be checked
is represented by the L-ω-automaton T . Verification consists of the automata language
containment test

L(P ) ⊂ L(T ),

whether the language of P is contained in the language of T .
In the following discussion, automata refers to L-ω-automata and automaton models

refer to L-ω-automaton models.

Automata as Processes In the S/R automaton language, an automaton is represented
as a process. A system is composed of a set of processes that are synchronously interacting
with each other.

A process consists of

– State Variables. The current values of all state variables define the current state of the
process. The state space of the process is determined by the ranges of all state variables.

– Selection Variables. Selection variables define the selections, outputs of the process,
corresponding to each state. Selections differ from conventional state machine outputs
in that the latter are assumed to be a deterministic function of the states, whereas
selections are nondeterministic outputs, the ranges of which are a function of the states.

– Inputs. Each process chooses a subset of all the selection variables of other processes in
the system as its inputs.

– State Transition Predicates. State transition predicates specify how the process changes
its state by updating its state variables as a function of its current state and inputs.

– Selection Rules. Selection rules assign values to selection variables as functions of state
variables, other selection variables, and inputs.

The Selection/Resolution Model The system execution model, defined in the automata-
theoretic approach to model checking, namely the “selection/resolution” model is a clock-
driven synchronous execution model, under which a system of processes behaves in a two-step
procedure every clock cycle as shown in Figure 3:

P1 P2 resolution

selection

. . .

Pk
local(private) memory

process state

global(public) memory
process selections

Fig. 3. Selection/Resolution Model

– Each process “selects” a selection possible from its current state for each of its selection
variables. The values of all the selection variables of all the processes form the global
selection of the system.

– Each process “resolves” the current global selection by moving to a new state through
a transition whose associated predicate is enabled by the current global selection.

2.3 Symbolic Verification

Symbolic verification is based on the symbolic search of the model’s state transition graph [8].
At each step of the symbolic search, the reached set of states is symbolically represented as
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a whole by a boolean function and the latter is stored as a Binary Decision Diagram [9].
Since symbolic search can manipulate a set of states at a time, it is capable of searching
exponentially larger state spaces than is possible with explicit search. Thus, symbolic verifi-
cation offers, at least, potentially a relief of the state space exponential explosion that is the
main obstacle in incorporation of model checking into software development. It is the rea-
son that motivates our choice of the automata-theoretic approach of model checking, which
intrinsically allows symbolic verification. However, with this choice we get a synchronous
automaton semantics and, hence, a non-trivial task of translation from the asynchronous
software semantics into the synchronous automaton semantics, which is discussed next.

3 Translation of OOA Models to Automaton Models

The translation is from OOA models with an asynchronous interleaving semantics of exe-
cution, dynamic creation and deletion of object instances, and potentially unbounded state
spaces to automaton models with a synchronous parallel semantics of execution, a static set
of interacting automata, and finite state spaces. The translation must not only map across
these disparate semantic domains, but also ensure that the state spaces of the resulting
automaton models are not only finite but also of manageable size. The algorithms given in
this section enable demonstration of effective translation and model checking of interesting
OOA models but there are significant open problems and much further work on translation
algorithms is needed. Some automated transformation of OOA models is also done by the
translator prior to translation to automata models.

3.1 Modeling Asynchrony with Synchrony

The execution semantics of OOA models is intrinsically asynchronous while automaton
models have an inherently synchronous execution semantics. To translate OOA models to
automaton models, we simulate the asynchronous execution semantics of OOA models with
the synchronous execution semantics of automaton models.

Modeling Asynchronous Event Passing The event passing mechanism employed by
OOA models is asynchronous. Suppose I1 and I2 are two active object instances, defined
in the OOA model of a particular software system, and they communicate with each other
by event passing. When I1 sends an event instance, e, to I2, e is put into the private event
queue of I2 when it is generated by I1. No acknowledgment to e is required from I2 before
I1 can proceed with other processing. I2 is not aware of the arrival of e until it is ready for
consuming an event instance and e is the first event instance in its private event queue.

The execution semantics of the automata model specifies synchronous communication.
Each automaton posts its selection variables for a clock cycle and each automata inputs
selection variables of other automata in the same clock cycle

The asynchronous event passing mechanism of OOA models can be simulated by the
synchronous communication mechanism of automaton models through modeling the private
event queue of every active object instance as an automaton. Suppose automata IA1 and IA2
model two active object instances and automata QA1 and QA2 model their corresponding
private event queues. An event instance, e, can be sent from IA1 to IA2 by the following
steps:

– [IA1 → QA2] IA1 passes e to QA2 through synchronous communication.
– [Buffered] QA2 keeps e until IA2 is ready for consuming a event instance and e is the

event instance at the head of the queue modeled by QA2.
– [QA2 → IA2] IA2 receives e from QA2 through synchronous communication.

There is no synchronization between IA1 and IA2. QA2 may keep several event instances
for IA2 at any given moment of a system execution. After the first event instance in the
queue is received by IA2, QA2 deletes the first event instance by moving the other event
instances in the queue one slot toward the head of the queue simultaneously.
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Modeling Asynchronous Execution Under the execution semantics of OOA models,
only one active object instance can execute a state action or perform a state transition at a
given moment while under the execution semantics of automaton models, in any given clock
cycle, every automaton resolves the current global selection by making a state transition
simultaneously.

The asynchronous execution of active object instances can be simulated by the syn-
chronous execution of automata as follows:

– Every automaton modeling an active object instance has a selection variable, the ready
indicator, which indicates whether the active object instance modeled is ready for exe-
cuting an OOA state action, or performing an OOA state transition.

– A global scheduler, also modeled as an automaton, inputs the ready indicators of all
the automata modeling active object instances. When a rescheduling occurs, the global
scheduler nondeterministically selects one active object instance among all the active
object instances that are ready. The global scheduler has a selection variable, the grant
indicator, which indicates which active object instance is selected at a given moment.

– All the automata modeling active object instances input the grant indicator. Only the
automaton that models the selected active object instance can perform an automaton
state transition corresponding to an OOA state action or an OOA state transition in the
lifecycle of the selected active object instance. All other automata modeling active object
instances follow a self-loop automaton state transition back to their current automaton
states.

3.2 Model Checking Optimization via Model Transformation

State space reduction is a critical problem for scalable application of model checking. Differ-
ent algorithms for state space reduction are applicable in each of the several modes of model
checking. Symbolic verification is readily applied to synchronous automata while partial
order reduction [10] [11] [12] is readily applied to asynchronous interleaving automata

Partial order reduction follows the observation that in many cases, when components of
a system are not tightly coupled, different orders of execution of two or more transitions
that belong to different components may result in the same global state. Then, under some
conditions (in particular, when the interim global states are not relevant to the property
being checked), entirely formulated in [10] [11] [12], model checking may explore just along
one of the possible execution orders, yet preserving the property.

The asynchronous interleaving semantics of the OOA models suggests implementation of
a static partial order reduction on the OOA models prior to the translation to synchronous
automata, namely, as model transformation. This transformation follows the procedure spec-
ified in [13]. This enables integrated application of the static partial order reduction algo-
rithms when applying symbolic verification to the OOA models using synchronous automata.

3.3 Mapping Object Instances to Automata

A passive object instance is translated to a single automaton while an active object instance
is mapped to a pair of automata, one modeling its lifecycle and the other modeling its
private event queue.

Translation of Attributes Attributes of a passive object instance are translated to the
state variables of the corresponding automaton while attributes of an active object instance
are translated to the state variables of the automaton that models its lifecycle.

In OOA models, the attributes of an object instance may be accessed by other object
instances. Read accesses are implemented through variable inputing between automata while
since state variables of automata cannot be directly updated by other automata, write
accesses are simulated as follows:
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– If an attribute of an object instance, the owner, is write accessed by other object in-
stances, the writers, during system executions, in every writer’s corresponding automa-
ton an additional selection variable is defined, which is assigned the value for the at-
tribute when the write access is executed.

– All these selection variables are inputted by the owner’s corresponding automaton. The
state variable corresponding to the attribute in the owner automaton is updated accord-
ing to the value of the selection variables inputted when the writer automata execute
write accesses.

There are some attributes of classes, whose values never change during system execu-
tions. Such attributes are translated into selection variables that do not contribute into the
state space, instead of state variables. This is a crucially important optimization for model
checking because it leads to an automaton model with a smaller state space.

Translation of Lifecycles The lifecycle of an active object instance is translated into the
transition structure of the corresponding automaton as follows:

– Every OOA state in the lifecycle is translated into an automaton state, namely the
transition state.

– Every OOA action is translated into a set of automaton states, namely action states.
Every action state has associated transition predicates leading to its successive action
states in the set or the corresponding transition state.

– Every transition rule is translated into a transition predicate associated with the corre-
sponding transition state and leading to one of the action states corresponding to the
target OOA state of the OOA transition in the lifecycle.

– An event labeling a transition rule is translated into a condition expression that checks
whether the first event instances kept in the automaton modeling the private queue of
the object instance is of the event required.

3.4 Translating Associations

An association relationship is entirely defined by the attributes and lifecycles of the two
associated classes and the associative class(if the association is many-to-many), and the
assigner lifecycle(if the association models competition). Translation of an association rela-
tionship is reduced to the translation of the object instances involved in the association and
the translation of the assigner lifecycle. All the involved object instances are translated as
discussed above and every assigner lifecycle is modeled by a pair of automata, one modeling
the lifecycle and the other modeling its private event queue.

3.5 Translation Generalizations

In the translation of a generalization, the attributes defined in the superclass and inherited
by the subclasses are treated the same as the attributes defined in the subclasses.

The core execution behavior conveyed by a subclass/superclass relationship among active
classes is the dynamic dispatching of instances of superclass events(events defined in the
superclass), to instances of the subclasses. The translator deals with the dynamic dispatching
as follows:

– In every automaton corresponding to an instance of a subclass, for every superclass
event, a corresponding subclass event is defined. Every appearance of the superclass
event is replaced by the corresponding subclass event.

– In the translation of every state action in which a superclass event instance is generated
to a subclass instance, a dynamic mapping mechanism is inserted, which converts the
superclass event instance to an instance of the corresponding subclass event according
to which subclass the target object instance belongs to and the resulting subclass event
instance is sent to the subclass instance.
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3.6 Guaranteeing Fixed Finite State Spaces

Model checkers require that the models that are passed to them for checking have finite state
spaces and these finite state spaces cannot be expanded and contracted through dynamic
creation and deletion of components of the models.

Ranging Data Types A finite range must be provided for each integer type and each
enumeration type. A continuous infinite type, like the float type, must be discretized and
represented by an integer interval type or an enumeration type. All these are reasonable
requirements posted to the designers of software systems because no computer system sup-
ports integer types of infinite range and float types with infinite precision.

Ranging data types can also help detect out of range errors since if a variable is assigned
a value out of range, it will be detected by the model checker.

Simulating Dynamic Creation and Deletion of Object Instances If instances of
a class O, can be dynamically created and deleted during system executions, the dynamic
creation and deletion is simulated in automaton models as follows:

– The upper bound, N , of the number of instances of O that can exist at the same time
during system executions, is estimated.

– The translator generates N automata, A[0] . . . A[N − 1], and each A[i], 0 ≤ i ≤ N − 1,
models an instance of O.

– In every A[i], 0 ≤ i ≤ N − 1, an additional state variable, liveness, is added to indicate
whether the automaton is currently representing an existing instance of O.

– When an instance of O is created, A[j], 0 ≤ j ≤ N − 1, whose liveness is false, is
selected and its liveness is set to be true. Then it participates in the system execution
by interacting with other automata.

– When an instance of O is deleted, liveness of the corresponding A[k], 0 ≤ k ≤ N − 1,
is set to be false and A[k] stops interacting with other automata.

Managing Event Queue Overflow Under the semantics of OOA models, every active
object instance has an associated private event queue that is assumed to have an infinite
number of slots. In the automaton models, every private event queue is modeled by an
automaton that clearly cannot model an event queue that has an infinite number of slots.
This opens the possibility of event queue overflow that may affect verification results. We
currently deal with event queue overflow as follows:

– An upper bound of the number of slots needed during system executions is heuristically
estimated for every event queue by the designer of the OOA models. How to automati-
cally estimate these upper bounds based on the OOA models of the system is an open
problem.

– The automata modeling the private event queues are constructed based on the upper
bounds estimated.

– When the verification of a query reports false, an error track processing tool is used to
analyze for actions becoming blocked by attempting to place a generated event instance
into a full queue. When there is such a blockage, the verification will be invalidated and
should be redone with a larger size for the queue that caused the blockage.

4 Implementation Issues

This section discusses some implementation issues. In the following discussion, we refer to
the translator that translates OOA models to automaton models as OOA-to-Automaton
translator.
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4.1 Textualization of Graphical OOA Models

OOA models are represented graphically. It is not suitable to use the graphical OOA models
directly as the input to the OOA-to-Automaton translator.

We have defined a textual representation of OOA models that

– Is readily parsed;
– Correctly captures all the information that graphical OOA models convey.

We have implemented a preprocessor for the OOA-to-automaton translator that takes graph-
ical OOA models as input, and textualizes them to generate textual OOA models.

4.2 Implementation of OOA-to-Automaton Translator

The current implementation of the OOA-to-Automaton Translator is based upon extending
a SDL-to-S/R translator [13] [14] that is currently being developed by Levin, et.al. The
SDL-to-S/R translator first translates a SDL program to the abstract syntax tree(AST)
for the SDL program and the AST is then translated to an automaton model in the S/R
automaton language. It requires two extensions to the SDL-to-S/R translator to implement
the transition from OOA models to automaton models. The AST for SDL programs was
extended to cover the OOA model semantics and the SDL-to-S/R translator was extended to
cover the OOA model semantics now represented in the extended SDL AST. An OOA model
is translated to its corresponding automaton model using the sequence of transformations
shown in Figure 4:

Extended SDL−to−S/R Translator

Automaton Model

Extended AST of SDL

AST Transformer

AST of OOA Model

Textual OOA Model Parser

Textual OOA Model

Fig. 4. Sequence of Model Transformations

– The Textual OOA Model Parser takes the textual OOA model of a system as input and
outputs the AST of the OOA model.

– The AST Transformer inputs the AST of the OOA model and transforms it to the
corresponding extended SDL AST.

– The Extended SDL-to-S/R Translator inputs the resulting extended SDL AST and
generates the corresponding automaton model.

4.3 Analysis Tools and Support

Effective use of model checking requires that the inputs to the model checking process be
readily formulated and outputs of the model checking process be readily understood by
the software system designers. A query translator and a post-processor for error tracks are
provided to enable effective application of model checking to OOA models.
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Query Specification Queries to be checked for an OOA model must be expressed as
queries referring to the translation of the OOA model to the automata model. Effective
application of model checking to the OOA model requires that the queries be expressed in
the OOA model representation. An interface for specification of queries in the OOA model
representation is provided along with a translator from the OOA-specified queries to the
automata-specified queries.

Post-Processing of Error Tracks When a query fails, the model checker generates an
error track specifying an execution trace of the automaton model that is inconsistent with
the query. A translator is provided, which maps the error track to a representation in terms
of the OOA model representation.

5 Illustration of Methodology

The real-world application we have been using to test the design and implementation of the
model translating algorithms and the translator is a robotic control system. Space limitations
preclude using the robotic control system as the illustration. A detailed specification of the
robotic control system can be found in [7]. In this section, the dining philosophers problem
is used to illustrate our methodology.

A solution to the problem is designed by applying the S-M method. The OOA model
consists of two classes, philosopher, whose lifecycle is shown in Figure 5, and chopstick,

1. Thinking

2. Requesting_First

3. Requesting_Second

4. Eating

P1: Be_Hungry
 (Phil_ID)

Generate P1: Be_Hungry (Phil_ID);

P2: Grant
 (Phil_ID)

Generate C1:Request (Phil_ID, Phil_ID);

P2: Grant
 (Phil_ID)

Generate C1:Request (Phil_ID%4+1, Phil_ID);

P3: Be_Full
 (Phil_ID)

Generate C2:Free (Phil_ID, Phil_ID);
Generate C2:Free (Phil_ID%4+1, Phil_ID);
Generate P3:Be_Full (Phil_ID);

Fig. 5. Lifecycle of Philosopher

whose lifecycle is shown in Figure 6. Both philosopher and chopstick have four instances.
Each instance of philosopher and chopstick has a unique integer as its Id, ranged in 1. . . 4
and recorded in the attributes, Phil ID and Chop ID respectively. Sending of event instances
is specified as generate statements in lifecycles. For example, in the state of Thinking, a
philosopher sends itself an instance of event P1 by Generate P1: Be Hungry(Phil ID). A
philosopher attempts to pick up first her left chopstick and then her right chopstick when
she is hungry.

The designer can check whether the system is free of deadlock and starvation by the
following query:

DECLARE THINKING <<Philosopher 1>> $Thinking

DECLARE HUNGRY <<Philosopher 1>> $Requesting First

DECLARE EATING <<Philosopher 1>> $Eating

AfterEventually(HUNGRY, EATING)

AfterEventually(EATING, THINKING)
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1. Free

2. Taken_without_Waiting

3. Taken_with_Waiting

C1: Request
 (Chop_ID, P_ID)

C2: Free
 (Chop_ID, P_ID)

C1: Request
 (Chop_ID, P_ID)

if (Phil_Waiting == 0)
{
 Generate P2:Grant (P_ID);
}
else
{
 Generate P2:Grant (Phil_Waiting);
 Phil_Waiting = 0;
}

C2: Free
 (Chop_ID, P_ID)

Phil_Waiting = P_ID;

Fig. 6. Lifecycle of Chopstick

The first statement in the query defines a propositional predicate, THINKING, whose value
is evaluated to be true if and only if Philosopher 1 is in the state of Thinking; The second
statement defines a propositional predicate, HUNGRY, whose value is evaluated to be true
if and only if Philosopher 1 is in the state of Requesting First; The third statement defines a
propositional predicate, EATING, whose value is evaluated to be true if and only if Philoso-
pher 1 is in the state of Eating; The fourth statement declares a temporal predicate over the
system: If at a given moment of the system execution, HUNGRY is true, then eventually
at a following moment, EATING must be true; The fifth statement declares a temporal
predicate: If at a given moment of the system execution, EATING is true, then eventually
at a following moment, THINKING must be true. Since philosophers are symmetric to one
another, only one philosopher must be checked.

To verify the property specified by the query, both the OOA model and the query
are translated into automaton models by our automatic model translator. The resulted
automaton models are verified by COSPAN.

The verification reports that the first AfterEventually predicate is not satisfied and an
error track is generated by COSPAN, which shows a deadlock that all philosophers are stuck
in the state of Requesting Second, which means they all get one chopstick and request the
second one, but no chopstick is available, thus the system cannot progress.

The deadlock can be avoided as follows. An “odd” philosopher that has an odd integer
as its unique Id, picks up her left chopstick first and then her right chopstick, whereas
an “even” philosopher picks up her right chopstick first and then her left chopstick. The
corrected lifecycle of philosopher is shown in Figure 7.

1. Thinking

2. Requesting_First

3. Requesting_Second

4. Eating

P1: Be_Hungry
 (Phil_ID)

Generate P1: Be_Hungry (Phil_ID);

P2: Grant
 (Phil_ID)

if (Phil_ID%2 == 0)
 Generate C1:Request (Phil_ID, Phil_ID);
else
 Generate C1:Request (Phil_ID%4+1 , Phil_ID);

P2: Grant
 (Phil_ID)

if (Phil_ID%2==0)
 Generate C1:Request (Phil_ID%4+1, Phil_ID);
else
 Generate C1:Request (Phil_ID, Phil_ID);

P3: Be_Full
 (Phil_ID)

Generate C2:Free (Phil_ID, Phil_ID);
Generate C2:Free (Phil_ID%4+1, Phil_ID);
Generate P3:Be_Full (Phil_ID);

Fig. 7. Corrected Lifecycle of Philosopher

The translation and verification steps are repeated. The verification reports a success
that means the corrected system has the property specified by the query.
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6 Related Work

Previous work on application of model checking to software systems has mainly been either
to software systems written in procedural languages or to abstract models extracted from
programs in procedural languages. Feaver[15] targets software systems written in C while
[14], [16], and [17] focus on applying model checking on SDL programs. Havelund and
Pressburger[18] apply model checking to Java programs. Corbett, et.al[19] extract finite
state machines from Java programs to which model checking is applied.

The closest research to this project is the vUML tool described in [20]. The vUML tool
translates a subset of UML into Promela[21] and applies SPIN[21] for model checking. How-
ever, the cited work does not consider the overall OOA methodology enriched with model
checking (cf. Figure 2). The subset of UML which is translated is incompletely specified.
The algorithms for translation are rather simplistic. No model checking optimizations are
suggested, except those which are already embedded in SPIN. State machine actions are
coded in the procedural language of Promela.

This project integrates formal verification by model checking into a commercially sup-
ported and widely applied object-oriented development process. Verification through model
checking is applied at the OOA level. This approach not only has the advantage that OOA
models, being more abstract, lead to automata models which have smaller state spaces than
programs in conventional languages but it also enables detection and correction of analysis
and design errors prior to implementation.

Most previous application of model checking tools to software systems make use of model
checkers based on interleaving automaton models[15], [16], [17], and [20]. We deliberately
choose the COSPAN model checker based on synchronous automaton models to enable
application of both symbolic verification, localized reduction and partial order reduction
with the goal of application to complex systems.

There are also several projects which apply model checking to software developed in
experimental language systems. Quest[22] for Autofocus[23] is one such example.

7 Conclusion and Future Work

This paper defines, demonstrates, and illustrates a methodology for integrating model check-
ing into Object-oriented software development processes through automatic model transla-
tion. The issues of application of model checking to the formal verification of OOA models
with executable semantics have been defined and a framework for resolution described. A
feasibility demonstration implementation based on translation of xUML OOA models as
implemented in SES/Objectbench to the S/R automata language and use of the COSPAN
model checking system has been accomplished. Model checking has been successfully applied
to systems of modest size and issues of scalability explored.

Future work will be devoted to the following topics:

– Translation Optimizations
The complexity of the automaton models strongly affect the efficiency of model checking.
Translation optimizations that can lead to automaton models with relatively small state
spaces need to be explored.

– Timing Verification
S-M method also supports the analysis of timed behaviors of complex concurrent soft-
ware systems. The automata-theoretic approach to model checking is effective at timing
verification. Support to timing verification in the automatic model translation will be
explored.

– Applications to More Complex Systems
Our methodology will be applied to more complex real-world software systems to demon-
strate its scalability.
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