
                   CS 312 – Exam 2 – Fall 2019  1 

CS 312 – Exam 2 – Fall 2019
 

Your Name____________________________________ 

 

Your UTEID __________________________________  

 

Circle your TA's Name:  Andrew  Anthony Carla  Fatima Kate 

 

     Larry  Rebecca Tim  Varshinee  

 

Problem  

Number Topic 

Points  

Possible 

Points  

Off 

1 code trace 22  

2 array code trace 5  

3 program logic  8  

4 scanners & strings  18  

5 scanners 15  

6 arrays  16  

7 arrays  16  

TOTAL POINTS OFF:        

 
Instructions:  

1. You have 2 hours to complete the exam. 

2. You must use a pencil to write your answers on the exam. 

3. You may not use any electronic devices, notes, or other resources. 

4. When code is required, write Java code. Limit yourself to the features from chapters 1 - 7 

of the book and topics 1 - 25 in class. Do not use 2d arrays in your answers. 

5. Ensure you follow the restrictions of the question. 

6. You may write and call your own helper methods. 

7. The exam proctors will not answer questions. If you believe there is an error or a question 

is ambiguous, state your assumptions and answer based on those assumptions. 

8. When you finish, show the proctor your UTID, turn in the exam and all scratch paper. 

 

 
  



                   CS 312 – Exam 2 – Fall 2019  2 

1. Evaluating Code. 22 points, 2 points each.  Assume all necessary imports have been made. 

If the snippet contains a syntax error or compiler error, answer compile error.  

If the snippet results in a runtime error or exception answer runtime error. 

If the code results in an infinite loop answer infinite loop.  

 

A. What is the largest possible value the following code could print out? 
 

double a1 = Math.random(); 

double b1 = Math.random(); 

int x1 = (int) (a1 * 10) - 5; 

int y1 = (int) (b1 * 10) - 5; 

System.out.print(x1 + y1);  

  

Answer A: __________________________ 

 

 

B. Are the two boolean expressions logically equivalent? p, q and r are boolean variables.   
 

Expression 1: p || !(!q && r) 

 

Expression 1: !q || !p || !r 

  

Answer B: __________________________ 

 

 

C. What is output by the following code? 
 

String c1 = "JAVA"; 

String c2 = "jaVa"; 

c2 = c2.toUpperCase(); 

System.out.print(c1.equals(c2) + " " + (c1 == c2)); 

 

Output C: __________________________ 

 

D. What is output by the following code? 

 
int xd = 80; 

int yd = 0; 

while (xd > 2) { 

 xd = xd / 2; 

 yd += 2; 

} 

System.out.print(xd + " " + yd); 

 

Output D: __________________________ 

 

 

E. What is output by the following code? 
 

Scanner sc = new Scanner("12 BLUE  3  RED"); 

System.out.print(sc.nextInt() + sc.nextInt()); 

 

Output E: __________________________ 



                   CS 312 – Exam 2 – Fall 2019  3 

F. What is output by the following code? 
 

Scanner sc2 = new Scanner("0.5  0.0  1.5  1.5  3.5  0.5"); 

double a2 = 0.0; 

for (int i = 0; i < 4; i++) { 

 a2 += sc2.nextDouble(); 

} 

System.out.print(a2); 

 

Output E: __________________________ 

 

 

G. What is output by the following code? 
 

double[] ga = new double[5]; 

System.out.print(ga.length + " " + ga[2]); 

 

 

Output G: ______________________________________ 

 

 

H. What is output by the following code?  
 

int[] h1 = {5, 2, 4, 1}; 

int[] h2 = {h1[1], 3, 1}; 

h1[2] += h2[2] + h2[1]; 

h2 = h1; 

h1[3] += h1[2]; 

h1[1]++; 

System.out.print(Arrays.toString(h2)); 

 

 

Output H: ______________________________________ 

 

I. What is output by the following code? 

 
int[] i1 = {4, 2, 5}; 

methodI(i1); 

System.out.print(Arrays.toString(i1)); 

 

public static void methodI(int[] data) {  

 data[1] += data[2] - 2; 

 data[2]++; 

} 

 

Output I: ______________________________________ 

 

J. What is output by the following code? 

 
int[] j1 = {4, 2, 5, 12, 13}; 

j1[12] += j1[13]; 

System.out.print(Arrays.toString(j1)); 

 

Output J: ______________________________________ 



                   CS 312 – Exam 2 – Fall 2019  4 

K. What is output by the following code? 

 
int[] k1 = {4, 2}; 

methodK(k1); 

System.out.print(Arrays.toString(k1)); 

 

public static void methodK(int[] data) {  

 data[data.length - 1]--; 

 data = new int[2]; 

 data[1] = 12; 

 System.out.print(Arrays.toString(data) + " "); 

} 

 

Output K: ______________________________________ 

 

 

2. Array Tracing - 5 Points  

Consider the following method. For each of the given arrays indicate what the method num2 returns if the array 

shown is passed as the argument to the method. 

 
public static int num2(int[] data) { 

 int t = 0; 

 for (int i = 1; i < data.length; i++) { 

  if (data[i - 1] <= data[i]) { 

   t++; 

  } else { 

   t *= 10; 

  } 

 } 

 return t; 

} 

 

A. argument: []    num2 returns: _______________ 

   

B. argument: [10]    num2 returns: _______________ 

 
C. argument: [-5, 5, 0]  num2 returns: _______________ 

 
D. argument: [4, 10, 20, 20, 30]  num2 returns: _______________ 

 
E. argument: [5, 9, 0, 10, 28, 3] num2 returns: _______________ 

 

 



                   CS 312 – Exam 2 – Fall 2019  5 

2. Program Logic - 8 Points. Consider the following method. For each of the five points labeled by comments 

and each of the three assertions in the table, write whether the assertion is always true, sometimes true and 

sometimes false, or never true at that point in the code. Abbreviate always with an A, sometimes with an S and 

never with an N. (based on a question from the UW CSE 142, Spring 2019 course) 

 

public static int mystery(int x) { 

 if (x <= 0) { 

  x = 12; 

 } 

 int y = 0; 

 // Point A 

 while (x != 1) { 

  // Point B 

  if (x % 2 == 0) { 

   y++; 

   x = x / 2; 

   // Point C 

  } else { 

   x = 3 * x + 1; 

   // Point D 

  } 

 } 

 // Point E 

 return y; 

} 

 
Abbreviate always with an A, sometimes with an S and never with an N. 
 

 x == 1 x % 2 == 1 y == 0 

POINT A    

POINT B    

POINT C    

POINT D    

POINT E    



                   CS 312 – Exam 2 – Fall 2019  6 

4. Scanners 18 points. Write a method lineWithMax that given a Scanner already connected to a file, 

returns an array of ints of length 2.  

 

The first element in the array is the line number, using zero-based indexing, of the line in the file with the 

maximum sum of integers. The second element in the array is the sum of the integers from the line with the 

maximum sum. 

 

The file the Scanner is connected to is guaranteed to have at least one line with at least one token that can be 

read as an int.  

 

You may create new Scanner objects connected to Strings by calling the Scanner constructor.  

 

You may use the hasNextLine, hasNextInt, hasNextDouble, hasNext, nextLine, 

nextInt, nextDouble, and next methods from the Scanner class.  

 

You may create and use an array of ints with a length of 2.  

 

You may use the Integer.MIN_VALUE constant.  

 

Do not use any other Java classes or methods.  
 

Example file: 

 

 
 

Given the example above, the method would return an array equal to [4, 600].  

 

Line 4 (using zero-based) indexing has the maximum sum of ints, 600 = 100 + 1000 + -500. 

 

Complete the method on the next page. 
 

  

12 Varshinee 37 NotAnInt123456 

 

45.61 -1000 -500 No TAs here 100 

 

100 Tim Outstanding!!!! 1000 -500  

No ints on this line are there???  12.5 

Andrew doing great work!! Num students = 25 

Line 1 and line 3 in this file are blank.       



                   CS 312 – Exam 2 – Fall 2019  7 

/* sc is already connected to a file with at least one line with at least 

one token that can be read as an int.*/ 

public static int[] lineWithMax(Scanner sc) { 

 

  



                   CS 312 – Exam 2 – Fall 2019  8 

5. Scanners and Strings - 15 Points.  The numTokensToGetAlliterationRun method accepts 2 

parameters: 

 

1. A Scanner (sc) already connected to a file. The file is guaranteed to have at least one token. 

2. An int (runLength) that specifies the number of Strings (tokens) in a row necessary for a 

successful outcome. This parameter shall be >= 2.  

 

The method finds a run of Strings (tokens) in the file that the Scanner sc is connected to that start with 

the same character equal in length to runLength. If such a run exists, the method returns the number of 

tokens that occur in the file up to and including the run of the required length. 

 

Consider this example file: 

 

 
 

For this question we define alliteration to be tokens that start with the same character. Note, based on this 

definition we could have tokens that alliterate that don't start with letters. For example, the tokens  

8sweep and 8cheer alliterate based on our definition for this question because they start with the same 

character, 8. Also, our definition is case sensitive, so the tokens Steep and swab do not alliterate.  

 

If the runLength parameter was 2 in the example above, the first run of two words that alliterate are 

two tons and the method would return 17 because there are 17 tokens from the start of the file until the end 

of the run of two tons.  

 

If the runLength parameter was 3 in the example above, the first run of three words that alliterate are 

slim small sleds and the method would return 29 because there are 29 tokens from the start of the file 

until the end of the run of slim small sleds.  

 

If the runLength parameter was 4 in the example above, the first run of three words that alliterate are 

slim small sleds skidding and the method would return 30 because there are 30 tokens from the start 

of the file until the end of the run of slim small sleds skidding.  

 

If the file does not contain a run of the required length, the method returns -1. 

 

The only methods you may use from the Scanner class are the hasNext() and next() methods. 

 

The only method you may use from the String class is the charAt(int index) method.  

Do not use any other Java classes or methods. 
 

Your method shall avoid doing unnecessary computations.  

Alliteration means words that start with the same letter or letters or 

sounds. For example, two tons both start with t. 

 

Example of a longer alliteration: 

 

slim small sleds skidding   

 

Alliteration in literature and writing don't require the words to 

always be consecutive: 

"let us go forth to lead the land we love" - JFK 



                   CS 312 – Exam 2 – Fall 2019  9 

/* sc is already connected to a file. runLength >= 2 */ 

public static int numTokensToGetAlliterationRun(Scanner sc,  

          int runLength) {  

 

 

 

 

  



                   CS 312 – Exam 2 – Fall 2019  10 

6. Arrays 1. 16 points. Write a method containsAll. The method accepts two arrays of ints as 

parameters. The method returns true if every element in the first array appears as least once in the second array.  

 

Examples of calls to the method: 

 
ar1: [-5, 0, -5, 2, -5] 

ar2: [2, 0, -5, 12] 

returns true 

Note, for this question a given value in the second array, ar2, can be used to match multiple values in the first 

array. The single -5 in ar2 can be matched to each of the -5's in ar1. The second array does not have to have 

three copies of -5 for containsAll for this method to return true. One instance of -5 is sufficient for  

this question.  

 
ar1: [] 

ar2: [2] 

returns true 

 

ar1: [0, 5, 1, 17] 

ar2: [1, 0, 17, 17, -5, 15] 

returns false (no 5 in ar2) 

 

ar1: [] 

ar2: [] 

returns true 

 

ar1: [0, 5, 1, 17] 

ar2: [1, 0, 17, 17, -5, 15, 0, 5, 1] 

returns true 

 

ar1: [4, 12, 19, 4, 19] 

ar2: [-19, 12, 0, 3, 8, -4, 0] 

returns false (no 4 or 19 in ar2) 

 

Neither array parameter is altered as a result of this method. 

 

Your method shall avoid doing unnecessary computations.  

 

You may not use any other Java classes or methods. You may not create any new arrays.  

 

You may, of course, use the length field of the given arrays. 
 

Complete the method on the next page. 
 
  



                   CS 312 – Exam 2 – Fall 2019  11 

// We expect ar1 != null and ar2 != null. 

public static boolean containsAll(int[] ar1, int[] ar2) { 

  



                   CS 312 – Exam 2 – Fall 2019  12 

7. Arrays 2. 16 points. Write a static method named doubleArray that accepts an array of ints as a 

parameter and returns a new array two times as large as the original. Each element in the original array has 2 

corresponding elements in the new array.  

 

Each element in the original array is converted to a pair of elements in the new array. One of the elements is 

double the original value. The other value is the negative of the original value. If the original value is even, the 

element that is double comes first in the pair, otherwise the negative of the original value comes first.  

 

Examples of call to doubleArray: 

 

doubleArray ]([]) returns [] 

 

doubleArray([21]) returns [-21, 42] 

 

doubleArray([0]) returns [0, 0] 

 

doubleArray([-2]) returns [-4, 2] 

 

doubleArray([21, 2]) returns [-21, 42, 4, -2] 

 

doubleArray([1, 3, 6]) returns [-1, 2, -3, 6, 12, -6] 

 

doubleArray([10, 5, 20]) returns [20, -10, -5, 10, 40, -20] 

 

doubleArray([12, 13, 7]) returns [24, -12, -13, 26, -7, 14] 

 

The array given as parameter is not altered as a result of this method. 

 

You may not use any other Java classes or methods. You may create and use a single array of ints.   

 

You may, of course, use the length field of the given array. 
 

Complete the method on the next page. 
 
  



                   CS 312 – Exam 2 – Fall 2019  13 

// We expect data != null. 

public static int[] doubleArray(int[] data) { 


